Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T16:02:49.342Z Has data issue: false hasContentIssue false

8 - Molecular genetics of acute myeloid leukemia

from Section 2 - Cell biology and pathobiology

Published online by Cambridge University Press:  05 April 2013

Ching-Hon Pui
Affiliation:
St Jude's Children's Research Hospital
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Childhood Leukemias , pp. 204 - 238
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rubnitz, JE, Inaba, H, Dahl, G, et al. Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: results of the AML02 multicentre trial. Lancet Oncol 2010;11:543–552.CrossRefGoogle ScholarPubMed
Lange, BJ, Smith, FO, Feusner, J, et al. Outcomes in CCG-2961, a Children's Oncology Group phase 3 trial for untreated pediatric acute myeloid leukemia: a report from the Children's Oncology Group. Blood 2008;111:1044–1053.CrossRefGoogle ScholarPubMed
Gibson, BE, Wheatley, K, Hann, IM, et al. Treatment strategy and long-term results in paediatric patients treated in consecutive UK AML trials. Leukemia 2005;19:2130–2138.CrossRefGoogle ScholarPubMed
Bennett, JM, Catovsky, D, Daniel, MT, et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French–American–British Cooperative Group. Ann Intern Med 1985;103:620–625.CrossRefGoogle ScholarPubMed
Arber, A, Brunning, BR, Orazi, A. Acute myeloid leukaemia with myelodysplasia-related changes. In Swerdlow, SH, Campos, E, Harris, NL, et al. (eds.) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press, 2008:124–126.Google Scholar
Löwenberg, B. Acute myeloid leukemia: the challenge of capturing disease variety. Hematol Am Soc Hematol Educ Program 2008;1–11.
Ross, ME, Mahfouz, R, Onciu, M, et al. Gene expression profiling of pediatric acute myelogenous leukemia. Blood 2004;104:3679–3687.CrossRefGoogle ScholarPubMed
Valk, PJ, Verhaak, RG, Beijen, MA, et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 2004;350:1617–1628.CrossRefGoogle ScholarPubMed
Bullinger, L, Dohner, K, Bair, E, et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 2004;350:1605–1616.CrossRefGoogle ScholarPubMed
Gilliland, DG, Tallman, MS. Focus on acute leukemias. Cancer Cell 2002;1:417–420.CrossRefGoogle ScholarPubMed
Stephens, PJ, McBride, DJ, Lin, ML, et al. Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 2009;462:1005–1010.CrossRefGoogle ScholarPubMed
Pleasance, ED, Cheetham, RK, et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 2010;463:191–196.CrossRefGoogle ScholarPubMed
Pleasance, ED, Stephens, PJ, O'Meara, S, et al. A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 2010;463:184–190.CrossRefGoogle ScholarPubMed
Berger, MF, Lawrence, MS, Demichelis, F, et al. The genomic complexity of primary human prostate cancer. Nature 2011;470:214–220.CrossRefGoogle ScholarPubMed
Ley, TJ, Mardis, ER, Ding, L, et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 2008;456:66–72.CrossRefGoogle ScholarPubMed
Mardis, ER, Ding, L, Dooling, DJ, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 2009;361:1058–1066.CrossRefGoogle ScholarPubMed
Radtke, I, Mullighan, CG, Ishii, M, et al. Genomic analysis reveals few genetic alterations in pediatric acute myeloid leukemia. Proc Natl Acad Sci USA 2009;106:12944–12949.CrossRefGoogle ScholarPubMed
Mullighan, CG, Goorha, S, Radtke, I, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007;446:758–764.CrossRefGoogle ScholarPubMed
Ogawa, E, Inuzuka, M, Maruyama, M, et al. Molecular cloning and characterization of PEBP2 beta, the heterodimeric partner of a novel Drosophila runt-related DNA binding protein PEBP2 alpha. Virology 1993;194:314–331.CrossRefGoogle ScholarPubMed
Ogawa, E, Maruyama, M, Kagoshima, H, et al. PEBP2/PEA2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene. Proc Natl Acad Sci USA 1993;90:6859–6863.CrossRefGoogle ScholarPubMed
Wang, S, Wang, Q, Crute, BE, et al. Cloning and characterization of subunits of the T-cell receptor and murine leukemia virus enhancer core-binding factor. Mol Cell Biol 1993;13:3324–3339.CrossRefGoogle ScholarPubMed
Miyoshi, H, Shimizu, K, Kozu, T, et al. t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc Natl Acad Sci USA 1991;88:10431–10434.CrossRefGoogle Scholar
Erickson, P, Gao, J, Chang, KS, et al. Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt. Blood 1992;80:1825–1831.Google Scholar
Liu, P, Tarle, SA, Hajra, A, et al. Fusion between transcription factor CBF beta/PEBP2 beta and a myosin heavy chain in acute myeloid leukemia. Science 1993;261:1041–1044.CrossRefGoogle Scholar
Song, WJ, Sullivan, MG, Legare, RD, et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet 1999;23:166–175.CrossRefGoogle ScholarPubMed
Tang, JL, Hou, HA, Chen, CY, et al. AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: prognostic implication and interaction with other gene alterations. Blood 2009;114:5352–5361.CrossRefGoogle ScholarPubMed
Roumier, C, Fenaux, P, Lafage, M, et al. New mechanisms of AML1 gene alteration in hematological malignancies. Leukemia 2003;17:9–16.CrossRefGoogle ScholarPubMed
Roumier, C, Eclache, V, Imbert, M, et al. M0 AML, clinical and biologic features of the disease, including AML1 gene mutations: a report of 59 cases by the Groupe Francais d'Hematologie Cellulaire (GFHC) and the Groupe Francais de Cytogenetique Hematologique (GFCH). Blood 2003;101:1277–1283.CrossRefGoogle Scholar
Osato, M. Point mutations in the RUNX1/AML1 gene: another actor in RUNX leukemia. Oncogene 2004;23:4284–4296.CrossRefGoogle ScholarPubMed
Silva, FP, Swagemakers, SM, Erpelinck-Verschueren, C, et al. Gene expression profiling of minimally differentiated acute myeloid leukemia: M0 is a distinct entity subdivided by RUNX1 mutation status. Blood 2009;114:3001–3007.CrossRefGoogle ScholarPubMed
Streubel, B, Valent, P, Lechner, K, Fonatsch, C. Amplification of the AML1(CBFA2) gene on ring chromosomes in a patient with acute myeloid leukemia and a constitutional ring chromosome 21. Cancer Genet Cytogenet 2001;124:42–46.CrossRefGoogle Scholar
Dal Cin, P, Atkins, L, Ford, C, et al. Amplification of AML1 in childhood acute lymphoblastic leukemias. Genes Chromosomes Cancer 2001;30:407–409.Google Scholar
Takahashi, A, Satake, M, Yamaguchi-Iwai, Y, et al. Positive and negative regulation of granulocyte–macrophage colony-stimulating factor promoter activity by AML1-related transcription factor, PEBP2. Blood 1995;86:607–616.Google ScholarPubMed
Meyers, S, Downing, JR, Hiebert, SW. Identification of AML-1 and the (8;21) translocation protein (AML-1/ETO) as sequence-specific DNA-binding proteins: the runt homology domain is required for DNA binding and protein-protein interactions. Mol Cell Biol 1993;13:6336–6345.CrossRefGoogle ScholarPubMed
Sun, W, O'Connell, M, Speck, NA. Characterization of a protein that binds multiple sequences in mammalian type C retrovirus enhancers. J Virol 1993;67:1976–1986.Google ScholarPubMed
Daga, A, Tighe, JE, Calabi, F. Leukaemia/Drosophila homology. Nature 1992;356:484.CrossRefGoogle ScholarPubMed
Huang, G, Shigesada, K, Ito, K, et al. Dimerization with PEBP2beta protects RUNX1/AML1 from ubiquitin-proteasome-mediated degradation. EMBO J 2001;20:723–733.CrossRefGoogle ScholarPubMed
Wang, Q, Stacy, T, Binder, M, et al. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci USA 1996;93:3444–3449.CrossRefGoogle ScholarPubMed
Sasaki, K, Yagi, H, Bronson, RT, et al. Absence of fetal liver hematopoiesis in mice deficient in transcriptional coactivator core binding factor beta. Proc Natl Acad Sci USA 1996;93:12359–12363.CrossRefGoogle ScholarPubMed
Wang, Q, Stacy, T, Miller, JD, et al. The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo. Cell 1996;87:697–708.CrossRefGoogle ScholarPubMed
Okuda, T, van Deursen, J, Hiebert, SW, Grosveld, G, Downing, JR. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 1996;84:321–330.CrossRefGoogle ScholarPubMed
Chen, MJ, Yokomizo, T, Zeigler, BM, Dzierzak, E, Speck, NA. Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 2009;457:887–891.CrossRefGoogle Scholar
Ichikawa, M, Asai, T, Saito, T, et al. AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med 2004;10:299–304.CrossRefGoogle Scholar
Kundu, M, Chen, A, Anderson, S, et al. Role of Cbfb in hematopoiesis and perturbations resulting from expression of the leukemogenic fusion gene Cbfb-MYH11. Blood 2002;100:2449–2456.CrossRefGoogle ScholarPubMed
North, TE, de Bruijn, MF, Stacy, T, et al. Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo. Immunity 2002;16:661–672.CrossRefGoogle ScholarPubMed
Cai, Z, de Bruijn, M, Ma, X, et al. Haploinsufficiency of AML1 affects the temporal and spatial generation of hematopoietic stem cells in the mouse embryo. Immunity 2000;13:423–431.CrossRefGoogle ScholarPubMed
Speck, NA, Gilliland, DG. Core-binding factors in haematopoiesis and leukaemia. Nat Rev Cancer 2002;2:502–513.CrossRefGoogle ScholarPubMed
Nuchprayoon, I, Meyers, S, Scott, LM, et al. PEBP2/CBF, the murine homolog of the human myeloid AML1 and PEBP2 beta/CBF beta proto-oncoproteins, regulates the murine myeloperoxidase and neutrophil elastase genes in immature myeloid cells. Mol Cell Biol 1994;14:5558–5568.CrossRefGoogle Scholar
Zhang, DE, Fujioka, K, Hetherington, CJ, et al. Identification of a region which directs the monocytic activity of the colony-stimulating factor 1 (macrophage colony-stimulating factor) receptor promoter and binds PEBP2/CBF (AML1). Mol Cell Biol 1994;14:8085–8095.CrossRefGoogle Scholar
Hsiang, YH, Spencer, D, Wang, S, Speck, NA, Raulet, DH. The role of viral enhancer “core” motif-related sequences in regulating T cell receptor-gamma and -delta gene expression. J Immunol 1993;150:3905–3916.Google ScholarPubMed
Shoemaker, SG, Hromas, R, Kaushansky, K. Transcriptional regulation of interleukin 3 gene expression in T lymphocytes. Proc Natl Acad Sci USA 1990;87:9650–9654.CrossRefGoogle ScholarPubMed
Yeamans, C, Wang, D, Paz-Priel, I, et al. C/EBPalpha binds and activates the PU.1 distal enhancer to induce monocyte lineage commitment. Blood 2007;110:3136–3142.CrossRefGoogle ScholarPubMed
Wotton, D, Ghysdael, J, Wang, S, Speck, NA, Owen, MJ. Cooperative binding of Ets-1 and core binding factor to DNA. Mol Cell Biol 1994;14:840–850.CrossRefGoogle Scholar
Hernandez-Munain, C, Krangel, MS. c-Myb and core-binding factor/PEBP2 display functional synergy but bind independently to adjacent sites in the T-cell receptor delta enhancer. Mol Cell Biol 1995;15:3090–3099.CrossRefGoogle ScholarPubMed
Britos-Bray, M, Friedman, AD. Core binding factor cannot synergistically activate the myeloperoxidase proximal enhancer in immature myeloid cells without c-Myb. Mol Cell Biol 1997;17:5127–5135.CrossRefGoogle ScholarPubMed
Carey, M. The enhanceosome and transcriptional synergy. Cell 1998;92:5–8.CrossRefGoogle ScholarPubMed
Giese, K, Kingsley, C, Kirshner, JR, Grosschedl, R. Assembly and function of a TCR alpha enhancer complex is dependent on LEF-1-induced DNA bending and multiple protein-protein interactions. Genes Dev 1995;9:995–1008.CrossRefGoogle ScholarPubMed
De Braekeleer, E, Ferec, C, De Braekeleer, M. RUNX1 translocations in malignant hemopathies. Anticancer Res 2009;29:1031–1037.Google ScholarPubMed
Yergeau, DA, Hetherington, CJ, Wang, Q, et al. Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML1-ETO fusion gene. Nat Genet 1997;15:303–306.CrossRefGoogle ScholarPubMed
Okuda, T, Cai, Z, Yang, S, et al. Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors. Blood 1998;91:3134–3143.Google ScholarPubMed
Mulloy, JC, Cammenga, J, MacKenzie, KL, et al. The AML1-ETO fusion protein promotes the expansion of human hematopoietic stem cells. Blood 2002;99:15–23.CrossRefGoogle ScholarPubMed
Higuchi, M, O'Brien, D, Kumaravelu, P, et al. Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell 2002;1:63–74.CrossRefGoogle Scholar
Liu, Y, Chen, W, Gaudet, J, et al. Structural basis for recognition of SMRT/N-CoR by the MYND domain and its contribution to AML1/ETO's activity. Cancer Cell 2007;11:483–497.CrossRefGoogle ScholarPubMed
Liu, Y, Cheney, MD, Gaudet, JJ, et al. The tetramer structure of the Nervy homology two domain, NHR2, is critical for AML1/ETO's activity. Cancer Cell 2006;9:249–260.CrossRefGoogle ScholarPubMed
Gelmetti, V, Zhang, J, Fanelli, M, et al. Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol Cell Biol 1998;18:7185–7191.CrossRefGoogle ScholarPubMed
Lutterbach, B, Westendorf, JJ, Linggi, B, et al. ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors. Mol Cell Biol 1998;18:7176–7184.CrossRefGoogle Scholar
Fazi, F, Racanicchi, S, Zardo, G, et al. Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell 2007;12:457–466.CrossRefGoogle ScholarPubMed
Melnick, A, Carlile, GW, McConnell, MJ, et al. AML-1/ETO fusion protein is a dominant negative inhibitor of transcriptional repression by the promyelocytic leukemia zinc finger protein. Blood 2000;96:3939–3947.Google ScholarPubMed
Melnick, AM, Westendorf, JJ, Polinger, A, et al. The ETO protein disrupted in t(8;21)-associated acute myeloid leukemia is a corepressor for the promyelocytic leukemia zinc finger protein. Mol Cell Biol 2000;20:2075–2086.CrossRefGoogle Scholar
Minucci, S, Maccarana, M, Cioce, M, et al. Oligomerization of RAR and AML1 transcription factors as a novel mechanism of oncogenic activation. Mol Cell 2000;5:811–820.CrossRefGoogle ScholarPubMed
McNeil, S, Zeng, C, Harrington, KS, et al. The t(8;21) chromosomal translocation in acute myelogenous leukemia modifies intranuclear targeting of the AML1/CBFalpha2 transcription factor. Proc Natl Acad Sci USA 1999;96:14882–14887.CrossRefGoogle Scholar
Peterson, LF, Yan, M, Zhang, DE. The p21Waf1 pathway is involved in blocking leukemogenesis by the t(8;21) fusion protein AML1–ETO. Blood 2007;109:4392–4398.CrossRefGoogle Scholar
Klampfer, L, Zhang, J, Zelenetz, AO, Uchida, H, Nimer, SD. The AML1/ETO fusion protein activates transcription of BCL-2. Proc Natl Acad Sci USA 1996;93:14059–14064.CrossRefGoogle ScholarPubMed
Zaidi, SK, Dowdy, CR, van Wijnen, AJ, et al. Altered Runx1 subnuclear targeting enhances myeloid cell proliferation and blocks differentiation by activating a miR-24/MKP-7/MAPK network. Cancer Res 2009;69:8249–8255.CrossRefGoogle ScholarPubMed
Shimada, H, Ichikawa, H, Nakamura, S, et al. Analysis of genes under the downstream control of the t(8;21) fusion protein AML1–MTG8: overexpression of the TIS11b (ERF-1, cMG1) gene induces myeloid cell proliferation in response to G-CSF. Blood 2000;96:655–663.Google Scholar
Gardini, A, Cesaroni, M, Luzi, L, et al. AML1/ETO oncoprotein is directed to AML1 binding regions and co-localizes with AML1 and HEB on its targets. PLoS Genet 2008;4:e1000275.CrossRefGoogle ScholarPubMed
Yan, M, Kanbe, E, Peterson, LF, et al. A previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesis. Nat Med 2006;12:945–949.CrossRefGoogle Scholar
Kwok, C, Zeisig, BB, Qiu, J, Dong, S, So, CW. Transforming activity of AML1–ETO is independent of CBFbeta and ETO interaction but requires formation of homo-oligomeric complexes. Proc Natl Acad Sci USA 2009;106:2853–2858.CrossRefGoogle ScholarPubMed
Yan, M, Ahn, EY, Hiebert, SW, Zhang, DE. RUNX1/AML1 DNA-binding domain and ETO/MTG8 NHR2-dimerization domain are critical to AML1–ETO9a leukemogenesis. Blood 2009;113:883–886.CrossRefGoogle ScholarPubMed
Yan, M, Burel, SA, Peterson, LF, et al. Deletion of an AML1–ETO C-terminal NcoR/SMRT-interacting region strongly induces leukemia development. Proc Natl Acad Sci USA 2004;101:17186–17191.CrossRefGoogle ScholarPubMed
LaFiura, KM, Edwards, H, Taub, JW, et al. Identification and characterization of novel AML1-ETO fusion transcripts in pediatric t(8;21) acute myeloid leukemia: a report from the Children's Oncology Group. Oncogene 2008;27:4933–4942.CrossRefGoogle Scholar
Zuber, J, Radtke, I, Pardee, TS, et al. Mouse models of human AML accurately predict chemotherapy response. Genes Dev 2009;23:877–889.CrossRefGoogle ScholarPubMed
Roudaia, L, Cheney, MD, Manuylova, E, et al. CBFbeta is critical for AML1–ETO and TEL-AML1 activity. Blood 2009;113:3070–3079.CrossRefGoogle ScholarPubMed
Matheny, CJ, Speck, ME, Cushing, PR, et al. Disease mutations in RUNX1 and RUNX2 create nonfunctional, dominant-negative, or hypomorphic alleles. EMBO J 2007;26:1163–1175.CrossRefGoogle ScholarPubMed
Park, S, Speck, NA, Bushweller, JH. The role of CBFbeta in AML1–ETO's activity. Blood 2009;114:2849–2850.CrossRefGoogle ScholarPubMed
Shurtleff, SA, Meyers, S, Hiebert, SW, et al. Heterogeneity in CBF beta/MYH11 fusion messages encoded by the inv(16)(p13q22) and the t(16;16)(p13;q22) in acute myelogenous leukemia. Blood 1995;85:3695–3703.Google Scholar
Castilla, LH, Garrett, L, Adya, N, et al. The fusion gene Cbfb-MYH11 blocks myeloid differentiation and predisposes mice to acute myelomonocytic leukaemia. Nat Genet 1999;23:144–146.CrossRefGoogle ScholarPubMed
Kuo, YH, Landrette, SF, Heilman, SA, et al. Cbf beta-SMMHC induces distinct abnormal myeloid progenitors able to develop acute myeloid leukemia. Cancer Cell 2006;9:57–68.CrossRefGoogle ScholarPubMed
Adya, N, Stacy, T, Speck, NA, Liu, PP. The leukemic protein core binding factor beta (CBFbeta)-smooth-muscle myosin heavy chain sequesters CBFalpha2 into cytoskeletal filaments and aggregates. Mol Cell Biol 1998;18:7432–7443.CrossRefGoogle ScholarPubMed
Kanno, Y, Kanno, T, Sakakura, C, Bae, SC, Ito, Y. Cytoplasmic sequestration of the polyomavirus enhancer binding protein 2 (PEBP2)/core binding factor alpha (CBFalpha) subunit by the leukemia-related PEBP2/CBFbeta-SMMHC fusion protein inhibits PEBP2/CBF-mediated transactivation. Mol Cell Biol 1998;18:4252–4261.CrossRefGoogle ScholarPubMed
Lutterbach, B, Hou, Y, Durst, KL, Hiebert, SW. The inv(16) encodes an acute myeloid leukemia 1 transcriptional corepressor. Proc Natl Acad Sci USA 1999;96:12822–12827.CrossRefGoogle ScholarPubMed
Hyde, RK, Liu, PP. RUNX1 repression-independent mechanisms of leukemogenesis by fusion genes CBFB-MYH11 and AML1-ETO (RUNX1-RUNX1T1). J Cell Biochem 110:1039–1045.CrossRef
Hyde, RK, Kamikubo, Y, Anderson, S, et al. Cbfb/Runx1 repression-independent blockage of differentiation and accumulation of Csf2rb-expressing cells by Cbfb-MYH11. Blood 115: 1433–1443.Google Scholar
Kamikubo, Y, Zhao, L, Wunderlich, M, et al. Accelerated leukemogenesis by truncated CBF beta-SMMHC defective in high-affinity binding with RUNX1. Cancer Cell 2010;17:455–468.CrossRefGoogle ScholarPubMed
van der Reijden, BA, de Wit, L, van der Poel, S, et al. Identification of a novel CBFB-MYH11 transcript: implications for RT-PCR diagnosis. Hematol J 2001;2:206–209.CrossRefGoogle ScholarPubMed
Dissing, M, Le Beau, MM, Pedersen-Bjergaard, J. Inversion of chromosome 16 and uncommon rearrangements of the CBFB and MYH11 genes in therapy-related acute myeloid leukemia: rare events related to DNA-topoisomerase II inhibitors?J Clin Oncol 1998;16:1890–1896.CrossRefGoogle ScholarPubMed
Miyamoto, T, Nagafuji, K, Akashi, K, et al. Persistence of multipotent progenitors expressing AML1/ETO transcripts in long-term remission patients with t(8;21) acute myelogenous leukemia. Blood 1996;87:4789–4796.Google Scholar
Miyamoto, T, Weissman, IL, Akashi, K. AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. Proc Natl Acad Sci USA 2000;97:7521–7526.CrossRefGoogle ScholarPubMed
Yuan, Y, Zhou, L, Miyamoto, T, et al. AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci USA 2001;98:10398–10403.CrossRefGoogle ScholarPubMed
Melo, JV. The molecular biology of chronic myeloid leukaemia. Leukemia 1996;10:751–756.Google ScholarPubMed
Kojima, K, Yasukawa, M, Ishimaru, F, et al. Additional translocation (8;21)(q22;q22) in a patient with Philadelphia-positive chronic myelogenous leukaemia in the blastic phase. Br J Haematol 1999;106:720–722.CrossRefGoogle Scholar
Golub, TR, Barker, GF, Lovett, M, Gilliland, DG. Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 1994;77:307–316.CrossRefGoogle Scholar
Grisolano, JL, O'Neal, J, Cain, J, Tomasson, MH. An activated receptor tyrosine kinase, TEL/PDGFbetaR, cooperates with AML1/ETO to induce acute myeloid leukemia in mice. Proc Natl Acad Sci USA 2003;100:9506–9511.CrossRefGoogle ScholarPubMed
Kiyoi, H, Naoe, T, Nakano, Y, et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood 1999;93:3074–3080.Google ScholarPubMed
Renneville, A, Roumier, C, Biggio, V, et al. Cooperating gene mutations in acute myeloid leukemia: a review of the literature. Leukemia 2008;22:915–931.CrossRefGoogle ScholarPubMed
Beghini, A, Peterlongo, P, Ripamonti, CB, et al. c-kit mutations in core binding factor leukemias. Blood 2000;95:726–727.Google ScholarPubMed
Bacher, U, Haferlach, T, Schoch, C, Kern, W, Schnittger, S. Implications of NRAS mutations in AML: a study of 2502 patients. Blood 2006;107:3847–3853.CrossRefGoogle ScholarPubMed
Schuettengruber, B, Chourrout, D, Vervoort, M, Leblanc, B, Cavalli, G. Genome regulation by polycomb and trithorax proteins. Cell 2007;128:735–745.CrossRefGoogle ScholarPubMed
Hanson, RD, Hess, JL, Yu, BD, et al. Mammalian Trithorax and polycomb-group homologues are antagonistic regulators of homeotic development. Proc Natl Acad Sci USA 1999;96:14372–14377.CrossRefGoogle ScholarPubMed
Yu, BD, Hanson, RD, Hess, JL, Horning, SE, Korsmeyer, SJ. MLL, a mammalian trithorax-group gene, functions as a transcriptional maintenance factor in morphogenesis. Proc Natl Acad Sci USA 1998;95:10632–10636.CrossRefGoogle ScholarPubMed
Nakamura, T, Mori, T, Tada, S, et al. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol Cell 2002;10:1119–1128.CrossRefGoogle ScholarPubMed
Yokoyama, A, Lin, M, Naresh, A, Kitabayashi, I, Cleary, ML. A higher-order complex containing AF4 and ENL family proteins with P-TEFb facilitates oncogenic and physiologic MLL-dependent transcription. Cancer Cell 2010;17:198–212.CrossRefGoogle ScholarPubMed
Lin, C, Smith, ER, Takahashi, H, et al. AFF4, a component of the ELL/P-TEFb elongation complex and a shared subunit of MLL chimeras, can link transcription elongation to leukemia. Mol Cell 2010;37:429–437.CrossRefGoogle Scholar
Milne, TA, Briggs, SD, Brock, HW, et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell 2002;10:1107–1117.CrossRefGoogle ScholarPubMed
Guenther, MG, Jenner, RG, Chevalier, B, et al. Global and Hox-specific roles for the MLL1 methyltransferase. Proc Natl Acad Sci USA 2005;102:8603–8608.CrossRefGoogle ScholarPubMed
Zeleznik-Le, NJ, Harden, AM, Rowley, JD. 11q23 translocations split the “AT-hook” cruciform DNA-binding region and the transcriptional repression domain from the activation domain of the mixed-lineage leukemia (MLL) gene. Proc Natl Acad Sci USA 1994;91:10610–10614.CrossRefGoogle ScholarPubMed
Ma, Q, Alder, H, Nelson, KK, et al. Analysis of the murine All-1 gene reveals conserved domains with human ALL-1 and identifies a motif shared with DNA methyltransferases. Proc Natl Acad Sci USA 1993;90:6350–6354.CrossRefGoogle ScholarPubMed
Xia, ZB, Anderson, M, Diaz, MO, Zeleznik-Le, NJ. MLL repression domain interacts with histone deacetylases, the polycomb group proteins HPC2 and BMI-1, and the corepressor C-terminal-binding protein. Proc Natl Acad Sci USA 2003;100:8342–8347.CrossRefGoogle ScholarPubMed
Fair, K, Anderson, M, Bulanova, E, et al. Protein interactions of the MLL PHD fingers modulate MLL target gene regulation in human cells. Mol Cell Biol 2001;21:3589–3597.CrossRefGoogle ScholarPubMed
Baker, LA, Allis, CD, Wang, GG. PHD fingers in human diseases: disorders arising from misinterpreting epigenetic marks. Mutat Res 2008;647:3–12.CrossRefGoogle ScholarPubMed
Chang, PY, Hom, RA, Musselman, CA, et al. Binding of the MLL PHD3 finger to histone H3K4me3 is required for MLL-dependent gene transcription. J Mol Biol 2010;400:137–144.CrossRefGoogle ScholarPubMed
Ernst, P, Wang, J, Huang, M, Goodman, RH, Korsmeyer, SJ. MLL and CREB bind cooperatively to the nuclear coactivator CREB-binding protein. Mol Cell Biol 2001;21:2249–2258.CrossRefGoogle ScholarPubMed
Yokoyama, A, Kitabayashi, I, Ayton, PM, Cleary, ML, Ohki, M. Leukemia proto-oncoprotein MLL is proteolytically processed into 2 fragments with opposite transcriptional properties. Blood 2002;100:3710–3718.CrossRefGoogle ScholarPubMed
Yu, BD, Hess, JL, Horning, SE, Brown, GA, Korsmeyer, SJ. Altered Hox expression and segmental identity in Mll-mutant mice. Nature 1995;378:505–508.CrossRefGoogle ScholarPubMed
Yagi, H, Deguchi, K, Aono, A, et al. Growth disturbance in fetal liver hematopoiesis of Mll-mutant mice. Blood 1998;92:108–117.Google ScholarPubMed
Hess, JL, Yu, BD, Li, B, Hanson, R, Korsmeyer, SJ. Defects in yolk sac hematopoiesis in Mll-null embryos. Blood 1997;90:1799–1806.Google ScholarPubMed
Ernst, P, Fisher, JK, Avery, W, et al. Definitive hematopoiesis requires the mixed-lineage leukemia gene. Dev Cell 2004;6:437–443.CrossRefGoogle ScholarPubMed
Jude, CD, Climer, L, Xu, D, et al. Unique and independent roles for MLL in adult hematopoietic stem cells and progenitors. Cell Stem Cell 2007;1:324–337.CrossRefGoogle ScholarPubMed
Daser, A, Rabbitts, TH. The versatile mixed lineage leukaemia gene MLL and its many associations in leukaemogenesis. Semin Cancer Biol 2005;15:175–188.CrossRefGoogle ScholarPubMed
Meyer, C, Kowarz, E, Hofmann, J, et al. New insights to the MLL recombinome of acute leukemias. Leukemia 2009;23:1490–1499.CrossRefGoogle ScholarPubMed
Huret, JL, Dessen, P, Bernheim, A. An atlas of chromosomes in hematological malignancies. Example: 11q23 and MLL partners. Leukemia 2001;15:987–989.CrossRefGoogle ScholarPubMed
Biondi, A, Cimino, G, Pieters, R, Pui, CH. Biological and therapeutic aspects of infant leukemia. Blood 2000;96:24–33.Google ScholarPubMed
Krivtsov, AV, Armstrong, SA. MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer 2007;7:823–833.CrossRefGoogle ScholarPubMed
Milne, TA, Martin, ME, Brock, HW, Slany, RK, Hess, JL, Leukemogenic MLL fusion proteins bind across a broad region of the Hox a9 locus, promoting transcription and multiple histone modifications. Cancer Res 2005;65:11367–11374.CrossRefGoogle ScholarPubMed
Lavau, C, Szilvassy, SJ, Slany, R, Cleary, ML. Immortalization and leukemic transformation of a myelomonocytic precursor by retrovirally transduced HRX-ENL. EMBO J 1997;16:4226–4237.CrossRefGoogle ScholarPubMed
DiMartino, JF, Miller, T, Ayton, PM, et al. A carboxy-terminal domain of ELL is required and sufficient for immortalization of myeloid progenitors by MLL-ELL. Blood 2000;96:3887–3893.Google ScholarPubMed
DiMartino, JF, Ayton, PM, Chen, EH, et al. The AF10 leucine zipper is required for leukemic transformation of myeloid progenitors by MLL-AF10. Blood 2002;99:3780–3785.CrossRefGoogle ScholarPubMed
So, CW, Cleary, ML. MLL-AFX requires the transcriptional effector domains of AFX to transform myeloid progenitors and transdominantly interfere with forkhead protein function. Mol Cell Biol 2002;22:6542–6552.CrossRefGoogle ScholarPubMed
So, CW, Cleary, ML. Common mechanism for oncogenic activation of MLL by forkhead family proteins. Blood 2003;101:633–639.CrossRefGoogle ScholarPubMed
Lavau, C, Du, C, Thirman, M, Zeleznik-Le, N. Chromatin-related properties of CBP fused to MLL generate a myelodysplastic-like syndrome that evolves into myeloid leukemia. EMBO J 2000;19:4655–4664.CrossRefGoogle ScholarPubMed
Okada, Y, Feng, Q, Lin, Y, et al. hDOT1L links histone methylation to leukemogenesis. Cell 2005;121:167–178.CrossRefGoogle ScholarPubMed
Steger, DJ, Lefterova, MI, Ying, L, et al. DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells. Mol Cell Biol 2008;28:2825–2839.CrossRefGoogle ScholarPubMed
Jones, B, Su, H, Bhat, A, et al. The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure. PLoS Genet 2008;4:e1000190.CrossRefGoogle ScholarPubMed
Eguchi, M, Eguchi-Ishimae, M, Greaves, M. The small oligomerization domain of gephyrin converts MLL to an oncogene. Blood 2004;103:3876–3882.CrossRefGoogle Scholar
So, CW, Lin, M, Ayton, PM, Chen, EH, Cleary, ML. Dimerization contributes to oncogenic activation of MLL chimeras in acute leukemias. Cancer Cell 2003;4:99–110.CrossRefGoogle ScholarPubMed
Dobson, CL, Warren, AJ, Pannell, R, Forster, A, Rabbitts, TH. Tumorigenesis in mice with a fusion of the leukaemia oncogene Mll and the bacterial lacZ gene. EMBO J 2000;19:843–851.CrossRefGoogle ScholarPubMed
Cairns, BR, Henry, NL, Kornberg, RD. TFG/TAF30/ANC1, a component of the yeast SWI/SNF complex that is similar to the leukemogenic proteins ENL and AF-9. Mol Cell Biol 1996;16:3308–3316.CrossRefGoogle ScholarPubMed
Nie, Z, Yan, Z, Chen, EH, et al. Novel SWI/SNF chromatin-remodeling complexes contain a mixed-lineage leukemia chromosomal translocation partner. Mol Cell Biol 2003;23:2942–2952.CrossRefGoogle ScholarPubMed
Debernardi, S, Bassini, A, Jones, LK, et al. The MLL fusion partner AF10 binds GAS41, a protein that interacts with the human SWI/SNF complex. Blood 2002;99:275–281.CrossRefGoogle ScholarPubMed
Armstrong, SA, Staunton, JE, Silverman, LB, et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002;30:41–47.CrossRefGoogle ScholarPubMed
Sauvageau, G, Lansdorp, PM, Eaves, CJ, et al. Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. Proc Natl Acad Sci USA 1994;91:12223–12227.CrossRefGoogle ScholarPubMed
Lawrence, HJ, Largman, C. Homeobox genes in normal hematopoiesis and leukemia. Blood 1992;80:2445–2453.Google ScholarPubMed
Pineault, N, Helgason, CD, Lawrence, HJ, Humphries, RK. Differential expression of Hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. Exp Hematol 2002;30:49–57.CrossRefGoogle ScholarPubMed
Thorsteinsdottir, U, Sauvageau, G, Hough, MR, et al. Overexpression of HOXA10 in murine hematopoietic cells perturbs both myeloid and lymphoid differentiation and leads to acute myeloid leukemia. Mol Cell Biol 1997;17:495–505.CrossRefGoogle ScholarPubMed
Sauvageau, G, Thorsteinsdottir, U, Eaves, CJ, et al. Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev 1995;9:1753–1765.CrossRefGoogle ScholarPubMed
Sauvageau, G, Thorsteinsdottir, U, Hough, MR, et al. Overexpression of HOXB3 in hematopoietic cells causes defective lymphoid development and progressive myeloproliferation. Immunity 1997;6:13–22.CrossRefGoogle ScholarPubMed
Crooks, GM, Fuller, J, Petersen, D, et al. Constitutive HOXA5 expression inhibits erythropoiesis and increases myelopoiesis from human hematopoietic progenitors. Blood 1999;94:519–528.Google ScholarPubMed
Thorsteinsdottir, U, Mamo, A, Kroon, E, et al. Overexpression of the myeloid leukemia-associated Hoxa9 gene in bone marrow cells induces stem cell expansion. Blood 2002;99:121–129.CrossRefGoogle ScholarPubMed
Yokoyama, A, Cleary, ML. Menin critically links MLL proteins with LEDGF on cancer-associated target genes. Cancer Cell 2008;14:36–46.CrossRefGoogle ScholarPubMed
Hughes, CM, Rozenblatt-Rosen, O, Milne, TA, et al. Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol Cell 2004;13:587–597.CrossRefGoogle ScholarPubMed
Ayton, PM, Cleary, ML. Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev 2003;17:2298–2307.CrossRefGoogle ScholarPubMed
Faber, J, Krivtsov, AV, Stubbs, MC, et al. HOXA9 is required for survival in human MLL-rearranged acute leukemias. Blood 2009;113:2375–2385.CrossRefGoogle ScholarPubMed
Kumar, AR, Hudson, WA, Chen, W, et al. Hoxa9 influences the phenotype but not the incidence of Mll-AF9 fusion gene leukemia. Blood 2004;103:1823–1828.CrossRefGoogle Scholar
Azpiazu, N, Morata, G. Functional and regulatory interactions between Hox and extradenticle genes. Genes Dev 1998;12:261–273.CrossRefGoogle ScholarPubMed
Ryoo, HD, Marty, T, Casares, F, Affolter, M, Mann, RS. Regulation of Hox target genes by a DNA bound Homothorax/Hox/Extradenticle complex. Development 1999;126:5137–5148.Google ScholarPubMed
Lawrence, HJ, Rozenfeld, S, Cruz, C, et al. Frequent co-expression of the HOXA9 and MEIS1 homeobox genes in human myeloid leukemias. Leukemia 1999;13:1993–1999.CrossRefGoogle ScholarPubMed
Wong, P, Iwasaki, M, Somervaille, TC, So, CW, Cleary, ML. Meis1 is an essential and rate-limiting regulator of MLL leukemia stem cell potential. Genes Dev 2007;21:2762–2774.CrossRefGoogle ScholarPubMed
Kumar, AR, Li, Q, Hudson, WA, et al. A role for MEIS1 in MLL-fusion gene leukemia. Blood 2009;113:1756–1758.CrossRefGoogle ScholarPubMed
Miyamoto, T, Iwasaki, H, Reizis, B, et al. Myeloid or lymphoid promiscuity as a critical step in hematopoietic lineage commitment. Dev Cell 2002;3:137–147.CrossRefGoogle ScholarPubMed
So, CW, Karsunky, H, Passegue, E, et al. MLL-GAS7 transforms multipotent hematopoietic progenitors and induces mixed lineage leukemias in mice. Cancer Cell 2003;3:161–171.CrossRefGoogle ScholarPubMed
Wei, J, Wunderlich, M, Fox, C, et al. Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia. Cancer Cell 2008;13:483–495.CrossRefGoogle Scholar
Barabe, F, Kennedy, JA, Hope, KJ, Dick, JE. Modeling the initiation and progression of human acute leukemia in mice. Science 2007;316:600–604.CrossRefGoogle ScholarPubMed
Caligiuri, MA, Schichman, SA, Strout, MP, et al. Molecular rearrangement of the ALL-1 gene in acute myeloid leukemia without cytogenetic evidence of 11q23 chromosomal translocations. Cancer Res 1994;54:370–373.Google ScholarPubMed
Wiedemann, LM, MacGregor, A, Caldas, C. Analysis of the region of the 5′ end of the MLL gene involved in genomic duplication events. Br J Haematol 1999;105:256–264.CrossRefGoogle ScholarPubMed
Thiel, AT, Blessington, P, Zou, T, et al. MLL-AF9-induced leukemogenesis requires coexpression of the wild-type Mll allele. Cancer Cell 2010;17:148–159.CrossRefGoogle ScholarPubMed
Whitman, SP, Liu, S, Vukosavljevic, T, et al. The MLL partial tandem duplication: evidence for recessive gain-of-function in acute myeloid leukemia identifies a novel patient subgroup for molecular-targeted therapy. Blood 2005;106:345–352.CrossRefGoogle ScholarPubMed
Martin, ME, Milne, TA, Bloyer, S, et al. Dimerization of MLL fusion proteins immortalizes hematopoietic cells. Cancer Cell 2003;4:197–207.CrossRefGoogle ScholarPubMed
Dorrance, AM, Liu, S, Yuan, W, et al. Mll partial tandem duplication induces aberrant Hox expression in vivo via specific epigenetic alterations. J Clin Invest 2006;116:2707–2716.CrossRefGoogle ScholarPubMed
Dorrance, AM, Liu, S, Chong, A, et al. The Mll partial tandem duplication: differential, tissue-specific activity in the presence or absence of the wild-type allele. Blood 2008;112:2508–2511.CrossRefGoogle ScholarPubMed
Bardini, M, Spinelli, R, Bungaro, S, et al. DNA copy-number abnormalities do not occur in infant ALL with t(4;11)/MLL-AF4. Leukemia 2010;24:169–176.CrossRefGoogle Scholar
Liang, DC, Shih, LY, Fu, JF, et al. K-Ras mutations and N-Ras mutations in childhood acute leukemias with or without mixed-lineage leukemia gene rearrangements. Cancer 2006;106:950–956.CrossRefGoogle ScholarPubMed
Cozzio, A, Passegue, E, Ayton, PM, et al. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev 2003;17:3029–3305.CrossRefGoogle ScholarPubMed
Corral, J, Lavenir, I, Impey, H, et al. An Mll-AF9 fusion gene made by homologous recombination causes acute leukemia in chimeric mice: a method to create fusion oncogenes. Cell 1996;85:853–861.CrossRefGoogle ScholarPubMed
Rowley, JD, Golomb, HM, Dougherty, C. 15/17 translocation, a consistent chromosomal change in acute promyelocytic leukaemia. Lancet 1977;i:549–550.CrossRefGoogle Scholar
de Thé, H, Chomienne, C, Lanotte, M, Degos, L, Dejean, A. The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature 1990;347:558–561.CrossRefGoogle Scholar
Cunningham, I, Gee, TS, Reich, LM, et al. Acute promyelocytic leukemia: treatment results during a decade at Memorial Hospital. Blood 1989;73:1116–1122.Google ScholarPubMed
Sanz, MA, Jarque, I, Martin, G, et al. Acute promyelocytic leukemia. Therapy results and prognostic factors. Cancer 1988;61:7–13.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Tallman, MS, Kwaan, HC. Reassessing the hemostatic disorder associated with acute promyelocytic leukemia. Blood 1992;79:543–553.Google ScholarPubMed
Sachs, L. Control of normal cell differentiation and the phenotypic reversion of malignancy in myeloid leukaemia. Nature 1978;274:535–539.CrossRefGoogle ScholarPubMed
Breitman, TR, Selonick, SE, Collins, SJ. Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid. Proc Natl Acad Sci USA 1980;77:2936–2940.CrossRefGoogle ScholarPubMed
Wang, ZY, Chen, Z. Acute promyelocytic leukemia: from highly fatal to highly curable. Blood 2008;111:2505–2515.CrossRefGoogle ScholarPubMed
Huang, ME, Ye, YC, Chen, SR, et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 1988;72:567–572.Google ScholarPubMed
Sanz, MA, Montesinos, P, Rayon, C, et al. Risk-adapted treatment of acute promyelocytic leukemia based on all-trans retinoic acid and anthracycline with addition of cytarabine in consolidation therapy for high-risk patients: further improvements in treatment outcome. Blood 2010;115:5137–5146.CrossRefGoogle ScholarPubMed
Liu, YJ, Wu, DP, Liang, JY, et al. Long-term survey of outcome in acute promyelocytic leukemia: a single center experience in 340 patients. Med Oncol 2011;28(Suppl 1):513–521.CrossRefGoogle ScholarPubMed
Imaizumi, M, Tawa, A, Hanada, R, et al. Prospective study of a therapeutic regimen with all-trans retinoic acid and anthracyclines in combination of cytarabine in children with acute promyelocytic leukaemia: the Japanese childhood acute myeloid leukaemia cooperative study. Br J Haematol 2011;152:89–98.CrossRefGoogle ScholarPubMed
Kakizuka, A, Miller, WH, Jr., Umesono, K, et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RARalpha with a novel putative transcription factor, PML. Cell 1991;66:663–674.CrossRefGoogle Scholar
de Thé, H, Lavau, C, Marchio, A, et al. The PML-RARalpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 1991;66:675–684.CrossRefGoogle Scholar
Lemons, RS, Eilender, D, Waldmann, RA, et al. Cloning and characterization of the t(15;17) translocation breakpoint region in acute promyelocytic leukemia. Genes Chromosomes Cancer 1990;2:79–87.CrossRefGoogle Scholar
Borrow, J, Goddard, AD, Sheer, D, Solomon, E. Molecular analysis of acute promyelocytic leukemia breakpoint cluster region on chromosome 17. Science 1990;249:1577–1580.CrossRefGoogle ScholarPubMed
Chen, Z, Chen, SJ, Tong, JH, et al. The retinoic acid alpha receptor gene is frequently disrupted in its 5′ part in Chinese patients with acute promyelocytic leukemia. Leukemia 1991;5:288–292.Google ScholarPubMed
Biondi, A, Rambaldi, A, Alcalay, M, et al. RAR-alpha gene rearrangements as a genetic marker for diagnosis and monitoring in acute promyelocytic leukemia. Blood 1991;77:1418–1422.Google ScholarPubMed
Chomienne, C, Ballerini, P, Balitrand, N, et al. The retinoic acid receptor alpha gene is rearranged in retinoic acid-sensitive promyelocytic leukemias. Leukemia 1990;4:802–807.Google ScholarPubMed
Heinzel, T, Lavinsky, RM, Mullen, TM, et al. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 1997;387:43–48.CrossRefGoogle ScholarPubMed
Nagy, L, Kao, HY, Chakravarti, D, et al. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 1997;89:373–380.CrossRefGoogle ScholarPubMed
Dilworth, FJ, Fromental-Ramain, C, Yamamoto, K, Chambon, P. ATP-driven chromatin remodeling activity and histone acetyltransferases act sequentially during transactivation by RAR/RXR in vitro. Mol Cell 2000;6:1049–1058.CrossRefGoogle ScholarPubMed
de Thé, H, Marchio, A, Tiollais, P, Dejean, A. Differential expression and ligand regulation of the retinoic acid receptor alpha and beta genes. EMBO J 1989;8:429–433.Google ScholarPubMed
Zhu, J, Heyworth, CM, Glasow, A, et al. Lineage restriction of the RARalpha gene expression in myeloid differentiation. Blood 2001;98:2563–2567.CrossRefGoogle ScholarPubMed
Johnson, BS, Mueller, L, Si, J, Collins, SJ. The cytokines IL-3 and GM-CSF regulate the transcriptional activity of retinoic acid receptors in different in vitro models of myeloid differentiation. Blood 2002;99:746–753.CrossRefGoogle ScholarPubMed
Kastner, P, Lawrence, HJ, Waltzinger, C, et al. Positive and negative regulation of granulopoiesis by endogenous RARalpha. Blood 2001;97:1314–1320.CrossRefGoogle ScholarPubMed
Wang, ZG, Ruggero, D, Ronchetti, S, et al. PML is essential for multiple apoptotic pathways. Nat Genet 1998;20:266–272.CrossRefGoogle ScholarPubMed
Wang, ZG, Delva, L, Gaboli, M, et al. Role of PML in cell growth and the retinoic acid pathway. Science 1998;279:1547–1551.CrossRefGoogle ScholarPubMed
Quignon, F, De Bels, F, Koken, M, et al. PML induces a novel caspase-independent death process. Nat Genet 1998;20:259–265.CrossRefGoogle ScholarPubMed
Mu, ZM, Chin, KV, Liu, JH, Lozano, G, Chang, KS. PML, a growth suppressor disrupted in acute promyelocytic leukemia. Mol Cell Biol 1994;14:6858–6867.CrossRefGoogle ScholarPubMed
Grignani, F, De Matteis, S, Nervi, C, et al. Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature 1998;391:815–818.CrossRefGoogle ScholarPubMed
Lin, RJ, Nagy, L, Inoue, S, et al. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 1998;391:811–814.CrossRefGoogle ScholarPubMed
He, LZ, Guidez, F, Tribioli, C, et al. Distinct interactions of PML-RARalpha and PLZF-RARalpha with co-repressors determine differential responses to RA in APL. Nat Genet 1998;18:126–135.CrossRefGoogle ScholarPubMed
Hong, SH, David, G, Wong, CW, Dejean, A, Privalsky, ML. SMRT corepressor interacts with PLZF and with the PML-retinoic acid receptor alpha (RARalpha) and PLZF-RARalpha oncoproteins associated with acute promyelocytic leukemia. Proc Natl Acad Sci USA 1997;94:9028–9033.CrossRefGoogle ScholarPubMed
Sternsdorf, T, Phan, VT, Maunakea, ML, et al. Forced retinoic acid receptor alpha homodimers prime mice for APL-like leukemia. Cancer Cell 2006;9:81–94.CrossRefGoogle ScholarPubMed
Kwok, C, Zeisig, BB, Dong, S, So, CW. Forced homo-oligomerization of RARalpha leads to transformation of primary hematopoietic cells. Cancer Cell 2006;9:95–108.CrossRefGoogle ScholarPubMed
Zeisig, BB, Kwok, C, Zelent, A, et al. Recruitment of RXR by homotetrameric RARalpha fusion proteins is essential for transformation. Cancer Cell 2007;12:36–51.CrossRefGoogle ScholarPubMed
Zhu, J, Nasr, R, Peres, L, et al. RXR is an essential component of the oncogenic PML/RARA complex in vivo. Cancer Cell 2007;12:23–35.CrossRefGoogle ScholarPubMed
Wang, K, Wang, P, Shi, J, et al. PML/RARalpha targets promoter regions containing PU.1 consensus and RARE half sites in acute promyelocytic leukemia. Cancer Cell 2010;17:186–197.CrossRefGoogle ScholarPubMed
Daniel, MT, Koken, M, Romagne, O, et al. PML protein expression in hematopoietic and acute promyelocytic leukemia cells. Blood 1993;82:1858–1867.Google ScholarPubMed
Koken, MH, Puvion-Dutilleul, F, Guillemin, MC, et al. The t(15;17) translocation alters a nuclear body in a retinoic acid-reversible fashion. EMBO J 1994;13:1073–1083.Google Scholar
Weis, K, Rambaud, S, Lavau, C, et al. Retinoic acid regulates aberrant nuclear localization of PML-RAR alpha in acute promyelocytic leukemia cells. Cell 1994;76:345–356.CrossRefGoogle ScholarPubMed
Dyck, JA, Maul, GG, Miller, WH, Jr., et al. A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein. Cell 1994;76:333–343.CrossRefGoogle ScholarPubMed
Lallemand-Breitenbach, V, de Thé, H. PML nuclear bodies. Cold Spring Harb Perspect Biol 2010;2:a000661.CrossRefGoogle ScholarPubMed
de Stanchina, E, Querido, E, Narita, M, et al. PML is a direct p53 target that modulates p53 effector functions. Mol Cell 2004;13:523–535.CrossRefGoogle ScholarPubMed
Louria-Hayon, I, Grossman, T, Sionov, RV, et al. The promyelocytic leukemia protein protects p53 from Mdm2-mediated inhibition and degradation. J Biol Chem 2003;278:33134–33141.CrossRefGoogle ScholarPubMed
Bernardi, R, Scaglioni, PP, Bergmann, S, et al. PML regulates p53 stability by sequestering Mdm2 to the nucleolus. Nat Cell Biol 2004;6:665–672.CrossRefGoogle ScholarPubMed
Zhu, J, Zhou, J, Peres, L, et al. A sumoylation site in PML/RARA is essential for leukemic transformation. Cancer Cell 2005;7:143–153.CrossRefGoogle ScholarPubMed
He, LZ, Tribioli, C, Rivi, R, et al. Acute leukemia with promyelocytic features in PML/RARalpha transgenic mice. Proc Natl Acad Sci USA 1997;94:5302–5307.CrossRefGoogle ScholarPubMed
Brown, D, Kogan, S, Lagasse, E, et al. A PML-RARalpha transgene initiates murine acute promyelocytic leukemia. Proc Natl Acad Sci USA 1997;94:2551–2256.CrossRefGoogle Scholar
Grisolano, JL, Wesselschmidt, RL, Pelicci, PG, Ley, TJ. Altered myeloid development and acute leukemia in transgenic mice expressing PML-RARalpha under control of cathepsin G regulatory sequences. Blood 1997;89:376–387.Google ScholarPubMed
Early, E, Moore, MA, Kakizuka, A, et al. Transgenic expression of PML/RARalpha impairs myelopoiesis. Proc Natl Acad Sci USA 1996;93:7900–7904.CrossRefGoogle ScholarPubMed
David, G, Terris, B, Marchio, A, Lavau, C, Dejean, A. The acute promyelocytic leukemia PML-RAR alpha protein induces hepatic preneoplastic and neoplastic lesions in transgenic mice. Oncogene 1997;14:1547–1554.CrossRefGoogle ScholarPubMed
Westervelt, P, Lane, AA, Pollock, JL, et al. High-penetrance mouse model of acute promyelocytic leukemia with very low levels of PML-RARalpha expression. Blood 2003;102:1857–1865.CrossRefGoogle ScholarPubMed
Kelly, LM, Kutok, JL, Williams, IR, et al. PML/RARalpha and FLT3-ITD induce an APL-like disease in a mouse model. Proc Natl Acad Sci USA 2002;99:8283–8288.CrossRefGoogle ScholarPubMed
Chan, IT, Kutok, JL, Williams, IR, et al. Oncogenic K-ras cooperates with PML-RAR alpha to induce an acute promyelocytic leukemia-like disease. Blood 2006;108:1708–1715.CrossRefGoogle ScholarPubMed
Breitman, TR, Collins, SJ, Keene, BR. Terminal differentiation of human promyelocytic leukemic cells in primary culture in response to retinoic acid. Blood 1981;57:1000–1004.Google ScholarPubMed
Nilsson, B. Probable in vivo induction of differentiation by retinoic acid of promyelocytes in acute promyelocytic leukaemia. Br J Haematol 1984;57:365–371.CrossRefGoogle ScholarPubMed
Flynn, PJ, Miller, WJ, Weisdorf, DJ, et al. Retinoic acid treatment of acute promyelocytic leukemia: in vitro and in vivo observations. Blood 1983;62:1211–1217.Google ScholarPubMed
Zheng, PZ, Wang, KK, Zhang, QY, et al. Systems analysis of transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell differentiation/apoptosis of promyelocytic leukemia. Proc Natl Acad Sci USA 2005;102:7653–7658.CrossRefGoogle ScholarPubMed
Yoshida, H, Kitamura, K, Tanaka, K, et al. Accelerated degradation of PML–retinoic acid receptor alpha (PML–RARA) oncoprotein by all-trans-retinoic acid in acute promyelocytic leukemia: possible role of the proteasome pathway. Cancer Res 1996;56:2945–2948.Google ScholarPubMed
Kamashev, D, Vitoux, D, de Thé, H. PML–RARA–RXR oligomers mediate retinoid and rexinoid/cAMP cross-talk in acute promyelocytic leukemia cell differentiation. J Exp Med 2004;199:1163–1174.CrossRefGoogle ScholarPubMed
Altucci, L, Rossin, A, Hirsch, O, et al. Rexinoid-triggered differentiation and tumor-selective apoptosis of acute myeloid leukemia by protein kinase A-mediated desubordination of retinoid X receptor. Cancer Res 2005;65:8754–8765.CrossRefGoogle ScholarPubMed
Guillemin, MC, Raffoux, E, Vitoux, D, et al. In vivo activation of cAMP signaling induces growth arrest and differentiation in acute promyelocytic leukemia. J Exp Med 2002;196:1373–1380.CrossRefGoogle ScholarPubMed
Nasr, R, Guillemin, MC, Ferhi, O, et al. Eradication of acute promyelocytic leukemia-initiating cells through PML-RARA degradation. Nat Med 2008;14:1333–1342.CrossRefGoogle ScholarPubMed
Sun, HD, Ma, L, Hu, XC. Ai-ling 1 treated 32 cases of acute promyelocytic leukemia. Chin J Integrat Trad Chin West Med 1992;12:170–171.Google Scholar
Chen, GQ, Shi, XG, Tang, W, et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cells. Blood 1997;89:3345–3353.Google ScholarPubMed
Chen, GQ, Zhu, J, Shi, XG, et al. In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RAR alpha/PML proteins. Blood 1996;88:1052–1061.Google ScholarPubMed
Shen, ZX, Chen, GQ, Ni, JH, et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood 1997;89:3354–3360.Google ScholarPubMed
Jeanne, M, Lallemand-Breitenbach, V, Ferhi, O, et al. PML/RARA oxidation and arsenic binding initiate the antileukemia response of As2O3. Cancer Cell 2010;18:88–98.CrossRefGoogle ScholarPubMed
Chen, Z, Brand, NJ, Chen, A, et al. Fusion between a novel Kruppel-like zinc finger gene and the retinoic acid receptor-alpha locus due to a variant t(11;17) translocation associated with acute promyelocytic leukaemia. EMBO J 1993;12:1161–1167.Google Scholar
Barna, M, Merghoub, T, Costoya, JA, et al. Plzf mediates transcriptional repression of HoxD gene expression through chromatin remodeling. Dev Cell 2002;3:499–510.CrossRefGoogle ScholarPubMed
Boukarabila, H, Saurin, AJ, Batsche, E, et al. The PRC1 Polycomb group complex interacts with PLZF/RARA to mediate leukemic transformation. Genes Dev 2009;23:1195–1206.CrossRefGoogle ScholarPubMed
He, LZ, Tolentino, T, Grayson, P, et al. Histone deacetylase inhibitors induce remission in transgenic models of therapy-resistant acute promyelocytic leukemia. J Clin Invest 2001;108:1321–1330.CrossRefGoogle ScholarPubMed
Kitamura, K, Hoshi, S, Koike, M, et al. Histone deacetylase inhibitor but not arsenic trioxide differentiates acute promyelocytic leukaemia cells with t(11;17) in combination with all-trans retinoic acid. Br J Haematol 2000;108:696–702.CrossRefGoogle ScholarPubMed
Rego, EM, He, LZ, Warrell, RP, Jr., Wang, ZG, Pandolfi, PP. Retinoic acid (RA) and As2O3 treatment in transgenic models of acute promyelocytic leukemia (APL) unravel the distinct nature of the leukemogenic process induced by the PML–RARalpha and PLZF–RARalpha oncoproteins. Proc Natl Acad Sci USA 2000;97:10173–10178.CrossRefGoogle ScholarPubMed
Creutzig, U, Reinhardt, D, Diekamp, S, et al. AML patients with Down syndrome have a high cure rate with AML-BFM therapy with reduced dose intensity. Leukemia 2005;19:1355–1360.CrossRefGoogle ScholarPubMed
Rao, A, Hills, RK, Stiller, C, et al. Treatment for myeloid leukaemia of Down syndrome: population-based experience in the UK and results from the Medical Research Council AML 10 and AML 12 trials. Br J Haematol 2006;132:576–583.CrossRefGoogle ScholarPubMed
Hitzler, JK, Zipursky, A. Origins of leukaemia in children with Down syndrome. Nat Rev Cancer 2005;5:11–20.CrossRefGoogle ScholarPubMed
Hitzler, JK, Cheung, J, Li, Y, Scherer, SW, Zipursky, A. GATA1 mutations in transient leukemia and acute megakaryoblastic leukemia of Down syndrome. Blood 2003;101:4301–4304.CrossRefGoogle ScholarPubMed
Wechsler, J, Greene, M, McDevitt, MA, et al. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat Genet 2002;32:148–152.CrossRefGoogle ScholarPubMed
Hirose, Y, Kudo, K, Kiyoi, H, et al. Comprehensive analysis of gene alterations in acute megakaryoblastic leukemia of Down's syndrome. Leukemia 2003;17:2250–2252.CrossRefGoogle ScholarPubMed
Mundschau, G, Gurbuxani, S, Gamis, AS, et al. Mutagenesis of GATA1 is an initiating event in Down syndrome leukemogenesis. Blood 2003;101:4298–4300.CrossRefGoogle ScholarPubMed
Groet, J, McElwaine, S, Spinelli, M, et al. Acquired mutations in GATA1 in neonates with Down's syndrome with transient myeloid disorder. Lancet 2003;361:1617–1620.CrossRefGoogle ScholarPubMed
Rainis, L, Bercovich, D, Strehl, S, et al. Mutations in exon 2 of GATA1 are early events in megakaryocytic malignancies associated with trisomy 21. Blood 2003;102:981–986.CrossRefGoogle ScholarPubMed
Gamis, AS. Acute myeloid leukemia and Down syndrome evolution of modern therapy: state of the art review. Pediatr Blood Cancer 2005;44:13–20.CrossRefGoogle ScholarPubMed
Gamis, AS, Woods, WG, Alonzo, TA, et al. Increased age at diagnosis has a significantly negative effect on outcome in children with Down syndrome and acute myeloid leukemia: a report from the Children's Cancer Group Study 2891. J Clin Oncol 2003;21:3415–3422.CrossRefGoogle Scholar
Bourquin, JP, Subramanian, A, Langebrake, C, et al. Identification of distinct molecular phenotypes in acute megakaryoblastic leukemia by gene expression profiling. Proc Natl Acad Sci USA 2006;103:3339–3344.CrossRefGoogle ScholarPubMed
Dastugue, N, Lafage-Pochitaloff, M, Pages, MP, et al. Cytogenetic profile of childhood and adult megakaryoblastic leukemia (M7): a study of the Groupe Francais de Cytogenetique Hematologique (GFCH). Blood 2002;100:618–626.CrossRefGoogle Scholar
Reinhardt, D, Diekamp, S, Langebrake, C, et al. Acute megakaryoblastic leukemia in children and adolescents, excluding Down's syndrome: improved outcome with intensified induction treatment. Leukemia 2005;19:1495–1496.CrossRefGoogle ScholarPubMed
Athale, UH, Razzouk, BI, Raimondi, SC, et al. Biology and outcome of childhood acute megakaryoblastic leukemia: a single institution's experience. Blood 2001;97:3727–3732.CrossRefGoogle ScholarPubMed
Homans, AC, Verissimo, AM, Vlacha, V. Transient abnormal myelopoiesis of infancy associated with trisomy 21. Am J Pediatr Hematol Oncol 1993;15:392–399.Google ScholarPubMed
Shimada, A, Xu, G, Toki, T, et al. Fetal origin of the GATA1 mutation in identical twins with transient myeloproliferative disorder and acute megakaryoblastic leukemia accompanying Down syndrome. Blood 2004;103:366.CrossRefGoogle ScholarPubMed
Chen, J, Li, Y, Doedens, M, et al. Functional differences between myeloid leukemia-initiating and transient leukemia cells in Down's syndrome. Leukemia 2010;24:1012–1017.CrossRefGoogle ScholarPubMed
Shimizu, R, Engel, JD, Yamamoto, M. GATA1-related leukaemias. Nat Rev Cancer 2008;8:279–287.CrossRefGoogle ScholarPubMed
Phillips, JD, Steensma, DP, Pulsipher, MA, Spangrude, GJ, Kushner, JP. Congenital erythropoietic porphyria due to a mutation in GATA1: the first trans-acting mutation causative for a human porphyria. Blood 2007;109:2618–2621.CrossRefGoogle ScholarPubMed
Nichols, KE, Crispino, JD, Poncz, M, et al. Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1. Nat Genet 2000;24:266–270.CrossRefGoogle Scholar
Freson, K, Devriendt, K, Matthijs, G, et al. Platelet characteristics in patients with X-linked macrothrombocytopenia because of a novel GATA1 mutation. Blood 2001;98:85–92.CrossRefGoogle ScholarPubMed
Mehaffey, MG, Newton, AL, Gandhi, MJ, Crossley, M, Drachman, JG. X-linked thrombocytopenia caused by a novel mutation of GATA-1. Blood 2001;98:2681–2688.CrossRefGoogle ScholarPubMed
Yu, C, Niakan, KK, Matsushita, M, et al. X-linked thrombocytopenia with thalassemia from a mutation in the amino finger of GATA-1 affecting DNA binding rather than FOG-1 interaction. Blood 2002;100:2040–2045.CrossRefGoogle ScholarPubMed
Shimizu, R, Kuroha, T, Ohneda, O, et al. Leukemogenesis caused by incapacitated GATA-1 function. Mol Cell Biol 2004;24:10814–10825.CrossRefGoogle ScholarPubMed
Li, Z, Godinho, FJ, Klusmann, JH, et al. Developmental stage-selective effect of somatically mutated leukemogenic transcription factor GATA1. Nat Genet 2005;37:613–619.CrossRefGoogle ScholarPubMed
Fujiwara, T, O'Geen, H, Keles, S, et al. Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy. Mol Cell 2009;36:667–681.CrossRefGoogle ScholarPubMed
Malinge, S, Izraeli, S, Crispino, JD. Insights into the manifestations, outcomes, and mechanisms of leukemogenesis in Down syndrome. Blood 2009;113:2619–2628.CrossRefGoogle ScholarPubMed
Chou, ST, Opalinska, JB, Yao, Y, et al. Trisomy 21 enhances human fetal erythro-megakaryocytic development. Blood 2008;112:4503–4506.CrossRefGoogle ScholarPubMed
Tunstall-Pedoe, O, Roy, A, Karadimitris, A, et al. Abnormalities in the myeloid progenitor compartment in Down syndrome fetal liver precede acquisition of GATA1 mutations. Blood 2008;112:4507–4511.CrossRefGoogle ScholarPubMed
Marcucci, G, Maharry, K, Whitman, SP, et al. High expression levels of the ETS-related gene, ERG, predict adverse outcome and improve molecular risk-based classification of cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B Study. J Clin Oncol 2007;25:3337–3343.CrossRefGoogle ScholarPubMed
Shimizu, K, Ichikawa, H, Tojo, A, et al. An ets-related gene, ERG, is rearranged in human myeloid leukemia with t(16;21) chromosomal translocation. Proc Natl Acad Sci USA 1993;90:10280–10284.CrossRefGoogle Scholar
Loughran, SJ, Kruse, EA, Hacking, DF, et al. The transcription factor Erg is essential for definitive hematopoiesis and the function of adult hematopoietic stem cells. Nat Immunol 2008;9:810–819.CrossRefGoogle ScholarPubMed
Salek-Ardakani, S, Smooha, G, de Boer, J, et al. ERG is a megakaryocytic oncogene. Cancer Res 2009;69:4665–4673.CrossRefGoogle ScholarPubMed
Edwards, H, Xie, C, LaFiura, KM, et al. RUNX1 regulates phosphoinositide 3-kinase/AKT pathway: role in chemotherapy sensitivity in acute megakaryocytic leukemia. Blood 2009;114:2744–2752.CrossRefGoogle ScholarPubMed
Elagib, KE, Racke, FK, Mogass, M, et al. RUNX1 and GATA-1 coexpression and cooperation in megakaryocytic differentiation. Blood 2003;101:4333–4341.CrossRefGoogle ScholarPubMed
Xu, G, Nagano, M, Kanezaki, R, et al. Frequent mutations in the GATA-1 gene in the transient myeloproliferative disorder of Down syndrome. Blood 2003;102:2960–2968.CrossRefGoogle ScholarPubMed
Kiyoi, H, Yamaji, S, Kojima, S, Naoe, T. JAK3 mutations occur in acute megakaryoblastic leukemia both in Down syndrome children and non-Down syndrome adults. Leukemia 2007;21:574–576.CrossRefGoogle ScholarPubMed
Norton, A, Fisher, C, Liu, H, et al. Analysis of JAK3, JAK2, and c-MPL mutations in transient myeloproliferative disorder and myeloid leukemia of Down syndrome blasts in children with Down syndrome. Blood 2007;110:1077–1079.CrossRefGoogle ScholarPubMed
Klusmann, JH, Reinhardt, D, Hasle, H, et al. Janus kinase mutations in the development of acute megakaryoblastic leukemia in children with and without Down's syndrome. Leukemia 2007;21:1584–1587.CrossRefGoogle ScholarPubMed
Malkin, D, Brown, EJ, Zipursky, A. The role of p53 in megakaryocyte differentiation and the megakaryocytic leukemias of Down syndrome. Cancer Genet Cytogenet 2000;116:1–5.CrossRefGoogle ScholarPubMed
Lo, KC, Chalker, J, Strehl, S, et al. Array comparative genome hybridization analysis of acute lymphoblastic leukaemia and acute megakaryoblastic leukaemia in patients with Down syndrome. Br J Haematol 2008;142:934–945.CrossRefGoogle ScholarPubMed
Hama, A, Yagasaki, H, Takahashi, Y, et al. Acute megakaryoblastic leukaemia (AMKL) in children: a comparison of AMKL with and without Down syndrome. Br J Haematol 2008;140:552–561.CrossRefGoogle ScholarPubMed
Malinge, S, Ragu, C, Della-Valle, V, et al. Activating mutations in human acute megakaryoblastic leukemia. Blood 2008;112:4220–4226.CrossRefGoogle ScholarPubMed
Walters, DK, Mercher, T, Gu, TL, et al. Activating alleles of JAK3 in acute megakaryoblastic leukemia. Cancer Cell 2006;10:65–75.CrossRefGoogle ScholarPubMed
Sato, T, Toki, T, Kanezaki, R, et al. Functional analysis of JAK3 mutations in transient myeloproliferative disorder and acute megakaryoblastic leukaemia accompanying Down syndrome. Br J Haematol 2008;141:681–688.CrossRefGoogle ScholarPubMed
De Vita, S, Mulligan, C, McElwaine, S, et al. Loss-of-function JAK3 mutations in TMD and AMKL of Down syndrome. Br J Haematol 2007;137:337–341.CrossRefGoogle ScholarPubMed
Carroll, A, Civin, C, Schneider, N, et al. The t(1;22) (p13;q13) is nonrandom and restricted to infants with acute megakaryoblastic leukemia: a Pediatric Oncology Group Study. Blood 1991;78:748–752.Google Scholar
Ma, Z, Morris, SW, Valentine, V, et al. Fusion of two novel genes, RBM15 and MKL1, in the t(1;22)(p13;q13) of acute megakaryoblastic leukemia. Nat Genet 2001;28:220–221.CrossRefGoogle Scholar
Bernstein, J, Dastugue, N, Haas, OA, et al. Nineteen cases of the t(1;22)(p13;q13) acute megakaryblastic leukaemia of infants/children and a review of 39 cases: report from a t(1;22) study group. Leukemia 2000;14:216–218.CrossRefGoogle Scholar
Baruchel, A, Daniel, MT, Schaison, G, Berger, R. Nonrandom t(1;22)(p12-p13;q13) in acute megakaryocytic malignant proliferation. Cancer Genet Cytogenet 1991;54:239–243.CrossRefGoogle Scholar
Mercher, T, Coniat, MB, Monni, R, et al. Involvement of a human gene related to the Drosophila spen gene in the recurrent t(1;22) translocation of acute megakaryocytic leukemia. Proc Natl Acad Sci USA 2001;98:5776–5779.CrossRefGoogle Scholar
Mercher, T, Raffel, GD, Moore, SA, et al. The OTT-MAL fusion oncogene activates RBPJ-mediated transcription and induces acute megakaryoblastic leukemia in a knockin mouse model. J Clin Invest 2009;119:852–864.Google Scholar
Miralles, F, Posern, G, Zaromytidou, AI, Treisman, R. Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 2003;113:329–342.CrossRefGoogle ScholarPubMed
Cheng, EC, Luo, Q, Bruscia, EM, et al. Role for MKL1 in megakaryocytic maturation. Blood 2009;113:2826–2834.CrossRefGoogle ScholarPubMed
Oswald, F, Kostezka, U, Astrahantseff, K, et al. SHARP is a novel component of the Notch/RBP-Jkappa signalling pathway. EMBO J 2002;21:5417–5426.CrossRefGoogle ScholarPubMed
Ariyoshi, M, Schwabe, JW. A conserved structural motif reveals the essential transcriptional repression function of Spen proteins and their role in developmental signaling. Genes Dev 2003;17:1909–1920.CrossRefGoogle ScholarPubMed
Raffel, GD, Mercher, T, Shigematsu, H, et al. Ott1(Rbm15) has pleiotropic roles in hematopoietic development. Proc Natl Acad Sci USA 2007;104:6001–6006.CrossRefGoogle ScholarPubMed
Guo, Y, Niu, C, Breslin, P, et al. c-Myc-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Blood 2009;114:2097–2106.CrossRefGoogle ScholarPubMed
Descot, A, Rex-Haffner, M, Courtois, G, et al. OTT-MAL is a deregulated activator of serum response factor-dependent gene expression. Mol Cell Biol 2008;28:6171–6181.CrossRefGoogle ScholarPubMed
Jelinek, J, Oki, Y, Gharibyan, V, et al. JAK2 mutation 1849G>T is rare in acute leukemias but can be found in CMML, Philadelphia chromosome-negative CML, and megakaryocytic leukemia. Blood 2005;106:3370–3373.CrossRefGoogle ScholarPubMed
Mercher, T, Wernig, G, Moore, SA, et al. JAK2T875N is a novel activating mutation that results in myeloproliferative disease with features of megakaryoblastic leukemia in a murine bone marrow transplantation model. Blood 2006;108:2770–2779.CrossRefGoogle Scholar
Pikman, Y, Lee, BH, Mercher, T, et al. MPL W515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 2006;3:e270.CrossRefGoogle ScholarPubMed
Hussein, K, Bock, O, Theophile, K, et al. MPL W515L mutation in acute megakaryoblastic leukaemia. Leukemia 2009;23:852–855.CrossRefGoogle ScholarPubMed
Szalai, G, LaRue, AC, Watson, DK. Molecular mechanisms of megakaryopoiesis. Cell Mol Life Sci 2006;63:2460–2476.CrossRefGoogle ScholarPubMed
Meshinchi, S, Stirewalt, DL, Alonzo, TA, et al. Activating mutations of RTK/ras signal transduction pathway in pediatric acute myeloid leukemia. Blood 2003;102:1474–1479.CrossRefGoogle ScholarPubMed
Zwaan, CM, Meshinchi, S, Radich, JP, et al. FLT3 internal tandem duplication in 234 children with acute myeloid leukemia: prognostic significance and relation to cellular drug resistance. Blood 2003;102:2387–2394.CrossRefGoogle ScholarPubMed
Brown, P, McIntyre, E, Rau, R, et al. The incidence and clinical significance of nucleophosmin mutations in childhood AML. Blood 2007;110:979–985.CrossRefGoogle ScholarPubMed
Andersson, A, Miller, DW, Lynch, JA, et al. IDH1 and IDH2 mutations in pediatric acute leukemia. Leukemia 2011;25:1570–1577.CrossRef
Ho, PA, Alonzo, TA, Gerbing, RB, et al. Prevalence and prognostic implications of CEBPA mutations in pediatric acute myeloid leukemia (AML): a report from the Children's Oncology Group. Blood 2009;113:6558–6566.CrossRefGoogle ScholarPubMed
Grisendi, S, Mecucci, C, Falini, B, Pandolfi, PP. Nucleophosmin and cancer. Nat Rev Cancer 2006;6:493–505.CrossRefGoogle ScholarPubMed
Morris, SW, Kirstein, MN, Valentine, MB, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 1994;263:1281–1284.CrossRefGoogle ScholarPubMed
Yoneda-Kato, N, Look, AT, Kirstein, MN, et al. The t(3;5)(q25.1;q34) of myelodysplastic syndrome and acute myeloid leukemia produces a novel fusion gene, NPM-MLF1. Oncogene 1996;12:265–275.Google Scholar
Redner, RL, Rush, EA, Faas, S, Rudert, WA, Corey, SJ. The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion. Blood 1996;87:882–886.Google Scholar
Falini, B, Mecucci, C, Tiacci, E, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 2005;352:254–266.CrossRefGoogle ScholarPubMed
Cazzaniga, G, Dell'Oro, MG, Mecucci, C, et al. Nucleophosmin mutations in childhood acute myelogenous leukemia with normal karyotype. Blood 2005;106:1419–1422.CrossRefGoogle ScholarPubMed
Chou, WC, Tang, JL, Lin, LI, et al. Nucleophosmin mutations in de novo acute myeloid leukemia: the age-dependent incidences and the stability during disease evolution. Cancer Res 2006;66:3310–3316.CrossRefGoogle ScholarPubMed
Thiede, C, Creutzig, E, Reinhardt, D, Ehninger, G, Creutzig, U. Different types of NPM1 mutations in children and adults: evidence for an effect of patient age on the prevalence of the TCTG-tandem duplication in NPM1-exon 12. Leukemia 2007;21:366–367.CrossRefGoogle ScholarPubMed
Bertwistle, D, Sugimoto, M, Sherr, CJ. Physical and functional interactions of the Arf tumor suppressor protein with nucleophosmin/B23. Mol Cell Biol 2004;24:985–996.CrossRefGoogle ScholarPubMed
Kuo, ML, den Besten, W, Bertwistle, D, Roussel, MF, Sherr, CJ. N-terminal polyubiquitination and degradation of the Arf tumor suppressor. Genes Dev 2004;18:1862–1874.CrossRefGoogle ScholarPubMed
Grisendi, S, Bernardi, R, Rossi, M, et al. Role of nucleophosmin in embryonic development and tumorigenesis. Nature 2005;437:147–153.CrossRefGoogle ScholarPubMed
Kurki, S, Peltonen, K, Latonen, L, et al. Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell 2004;5:465–475.CrossRefGoogle ScholarPubMed
Bonetti, P, Davoli, T, Sironi, C, et al. Nucleophosmin and its AML-associated mutant regulate c-Myc turnover through Fbw7 gamma. J Cell Biol 2008;182:19–26.CrossRefGoogle ScholarPubMed
Cheng, K, Sportoletti, P, Ito, K, et al. The cytoplasmic NPM mutant induces myeloproliferation in a transgenic mouse model. Blood 2010;115:3341–3345.CrossRefGoogle Scholar
Giuriato, S, Foisseau, M, Dejean, E, et al. Conditional TPM3-ALK and NPM-ALK transgenic mice develop reversible ALK-positive early B-cell lymphoma/leukemia. Blood 2010;115:4061–4070.CrossRefGoogle ScholarPubMed
Klapproth, K, Wirth, T. Advances in the understanding of MYC-induced lymphomagenesis. Br J Haematol 2010;149:484–497.CrossRefGoogle ScholarPubMed
Chiarle, R, Voena, C, Ambrogio, C, Piva, R, Inghirami, G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer 2008;8:11–23.CrossRefGoogle Scholar
Parsons, DW, Jones, S, Zhang, X, et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008;321:1807–1812.CrossRefGoogle ScholarPubMed
Yan, H, Parsons, DW, Jin, G, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009;360:765–773.CrossRefGoogle ScholarPubMed
Ho, PA, Alonzo, TA, Kopecky, KJ, et al. Molecular alterations of the IDH1 gene in AML: a Children's Oncology Group and Southwest Oncology Group study. Leukemia 2010;24:909–913.CrossRefGoogle ScholarPubMed
Damm, F, Thol, F, Hollink, I, et al. Prevalence and prognostic value of IDH1 and IDH2 mutations in childhood AML: a study of the AML-BFM and DCOG study groups. Leukemia 2011;25:1704–1710.CrossRefGoogle ScholarPubMed
Xu, W, Yang, H, Liu, Y, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 2011;19:17–30.CrossRefGoogle ScholarPubMed
Ward, PS, Patel, J, Wise, DR, et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 2010;17:225–234.CrossRefGoogle ScholarPubMed
Figueroa, ME, Abdel-Wahab, O, Lu, C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010;18:553–567.CrossRefGoogle Scholar
Delhommeau, F, Dupont, S, Della Valle, V, et al. Mutation in TET2 in myeloid cancers. N Engl J Med 2009;360:2289–2301.CrossRefGoogle ScholarPubMed
Abdel-Wahab, O, Mullally, A, Hedvat, C, et al. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood 2009;114:144–147.CrossRefGoogle ScholarPubMed
Langemeijer, SM, Kuiper, RP, Berends, M, et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet 2009;41:838–842.CrossRefGoogle ScholarPubMed
Langemeijer, SM, Jansen, JH, Hooijer, J, et al. TET2 mutations in childhood leukemia. Leukemia 2011;25:189–192.CrossRefGoogle ScholarPubMed
Ito, S, D'Alessio, AC, Taranova, OV, et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 2010;466:1129–1133.CrossRefGoogle ScholarPubMed
Koh, KP, Yabuuchi, A, Rao, S, et al. Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell 2010;8:200–213.CrossRefGoogle Scholar
Moran-Crusio, K, Reavie, L, Shih, A, et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 2011;20:11–24.CrossRefGoogle ScholarPubMed
Quivoron, C, Couronne, L, Della Valle, V, et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 2011;20:25–38.CrossRefGoogle ScholarPubMed
Pronier, E, Almire, C, Mokrani, H, et al. Inhibition of TET2-mediated conversion of 5-methylcytosine to 5-hydroxymethylcytosine disturbs erythroid and granulo-monocytic differentiation of human hematopoietic progenitors. Blood 2011;118:2551–2555.CrossRefGoogle Scholar
Li, Z, Cai, X, Cai, C, et al. Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood 2011;118:4509–4518.CrossRefGoogle ScholarPubMed
Thiede, C, Steudel, C, Mohr, B, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002;99:4326–4335.CrossRefGoogle ScholarPubMed
Meshinchi, S, Woods, WG, Stirewalt, DL, et al. Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood 2001;97:89–94.CrossRefGoogle ScholarPubMed
Bacher, U, Haferlach, C, Kern, W, Haferlach, T, Schnittger, S. Prognostic relevance of FLT3-TKD mutations in AML: the combination matters – an analysis of 3082 patients. Blood 2008;111:2527–2537.CrossRefGoogle ScholarPubMed
Nakao, M, Yokota, S, Iwai, T, et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 1996;10:1911–1918.Google ScholarPubMed
Kiyoi, H, Towatari, M, Yokota, S, et al. Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia 1998;12:1333–1337.CrossRefGoogle Scholar
Kiyoi, H, Ohno, R, Ueda, R, Saito, H, Naoe, T. Mechanism of constitutive activation of FLT3 with internal tandem duplication in the juxtamembrane domain. Oncogene 2002;21:2555–2563.CrossRefGoogle ScholarPubMed
Griffith, J, Black, J, Faerman, C, et al. The structural basis for autoinhibition of FLT3 by the juxtamembrane domain. Mol Cell 2004;13:169–178.CrossRefGoogle ScholarPubMed
Kelly, LM, Liu, Q, Kutok, JL, et al. FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model. Blood 2002;99:310–318.CrossRefGoogle Scholar
Ishikawa, Y, Kiyoi, H, Tsujimura, A, et al. Comprehensive analysis of cooperative gene mutations between class I and class II in de novo acute myeloid leukemia. Eur J Haematol 2009;83:90–98.CrossRefGoogle Scholar
Yamamoto, Y, Kiyoi, H, Nakano, Y, et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 2001;97:2434–2439.CrossRefGoogle ScholarPubMed
Schnittger, S, Schoch, C, Dugas, M, et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 2002;100:59–66.CrossRefGoogle ScholarPubMed
Naoe, T, Kiyoi, H. Normal and oncogenic FLT3. Cell Mol Life Sci 2004;61:2932–2938.CrossRefGoogle ScholarPubMed
Grundler, R, Miething, C, Thiede, C, Peschel, C, Duyster, J. FLT3-ITD and tyrosine kinase domain mutants induce 2 distinct phenotypes in a murine bone marrow transplantation model. Blood 2005;105:4792–4799.CrossRefGoogle Scholar
Schubbert, S, Shannon, K, Bollag, G. Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 2007;7:295–308.CrossRefGoogle ScholarPubMed
Harris, TJ, McCormick, F. The molecular pathology of cancer. Nat Rev Clin Oncol 2010;7:251–265.CrossRefGoogle Scholar
Trahey, M, McCormick, F. A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science 1987;238:542–545.CrossRefGoogle Scholar
Serrano, M, Lin, AW, McCurrach, ME, Beach, D, Lowe, SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997;88:593–602.CrossRefGoogle ScholarPubMed
Li, Q, Haigis, KM, McDaniel, A, et al. Hematopoiesis and leukemogenesis in mice expressing oncogenic NrasG12D from the endogenous locus. Blood 2011;117:2022–2032.CrossRefGoogle ScholarPubMed
Pabst, T, Mueller, BU. Complexity of CEBPA dysregulation in human acute myeloid leukemia. Clin Cancer Res 2009;15:5303–5307.CrossRefGoogle ScholarPubMed
Koschmieder, S, Halmos, B, Levantini, E, Tenen, DG. Dysregulation of the C/EBPalpha differentiation pathway in human cancer. J Clin Oncol 2009;27:619–628.CrossRefGoogle Scholar
Yamaguchi, Y, Nishio, H, Kishi, K, Ackerman, SJ, Suda, T. C/EBPbeta and GATA-1 synergistically regulate activity of the eosinophil granule major basic protein promoter: implication for C/EBPbeta activity in eosinophil gene expression. Blood 1999;94:1429–1439.Google ScholarPubMed
McNagny, KM, Sieweke, MH, Doderlein, G, Graf, T, Nerlov, C. Regulation of eosinophil-specific gene expression by a C/EBP-Ets complex and GATA-1. EMBO J 1998;17:3669–3680.CrossRefGoogle ScholarPubMed
Zhang, DE, Zhang, P, Wang, ND, et al. Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice. Proc Natl Acad Sci USA 1997;94:569–574.CrossRefGoogle ScholarPubMed
Zhang, P, Iwasaki-Arai, J, Iwasaki, H, et al. Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBP alpha. Immunity 2004;21:853–863.CrossRefGoogle ScholarPubMed
Schlenk, RF, Dohner, K, Krauter, J, et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med 2008;358:1909–1918.CrossRefGoogle ScholarPubMed
Preudhomme, C, Sagot, C, Boissel, N, et al. Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). Blood 2002;100:2717–2723.CrossRefGoogle Scholar
Frohling, S, Schlenk, RF, Stolze, I, et al. CEBPA mutations in younger adults with acute myeloid leukemia and normal cytogenetics: prognostic relevance and analysis of cooperating mutations. J Clin Oncol 2004;22:624–633.CrossRefGoogle ScholarPubMed
Smith, ML, Cavenagh, JD, Lister, TA, Fitzgibbon, J. Mutation of CEBPA in familial acute myeloid leukemia. N Engl J Med 2004;351:2403–2407.CrossRefGoogle ScholarPubMed
Pabst, T, Eyholzer, M, Haefliger, S, Schardt, J, Mueller, BU. Somatic CEBPA mutations are a frequent second event in families with germline CEBPA mutations and familial acute myeloid leukemia. J Clin Oncol 2008;26:5088–5093.CrossRefGoogle ScholarPubMed
Renneville, A, Mialou, V, Philippe, N, et al. Another pedigree with familial acute myeloid leukemia and germline CEBPA mutation. Leukemia 2009;23:804–806.CrossRefGoogle ScholarPubMed
Kirstetter, P, Schuster, MB, Bereshchenko, O, et al. Modeling of C/EBPalpha mutant acute myeloid leukemia reveals a common expression signature of committed myeloid leukemia-initiating cells. Cancer Cell 2008;13:299–310.CrossRefGoogle ScholarPubMed
Pabst, T, Mueller, BU, Harakawa, N, et al. AML1–ETO downregulates the granulocytic differentiation factor C/EBPalpha in t(8;21) myeloid leukemia. Nat Med 2001;7:444–451.CrossRefGoogle Scholar
Helbling, D, Mueller, BU, Timchenko, NA, et al. The leukemic fusion gene AML1-MDS1-EVI1 suppresses CEBPA in acute myeloid leukemia by activation of calreticulin. Proc Natl Acad Sci USA 2004;101:13312–13317.CrossRefGoogle ScholarPubMed
Helbling, D, Mueller, BU, Timchenko, NA, et al. CBFB-SMMHC is correlated with increased calreticulin expression and suppresses the granulocytic differentiation factor CEBPA in AML with inv(16). Blood 2005;106:1369–1375.CrossRefGoogle Scholar
Timchenko, LT, Iakova, P, Welm, AL, Cai, ZJ, Timchenko, NA. Calreticulin interacts with C/EBPalpha and C/EBPbeta mRNAs and represses translation of C/EBP proteins. Mol Cell Biol 2002;22:7242–7257.CrossRefGoogle Scholar
Chim, CS, Wong, AS, Kwong, YL. Infrequent hypermethylation of CEBPA promotor in acute myeloid leukaemia. Br J Haematol 2002;119:988–990.CrossRefGoogle ScholarPubMed
Figueroa, ME, Wouters, BJ, Skrabanek, L, et al. Genome-wide epigenetic analysis delineates a biologically distinct immature acute leukemia with myeloid/T-lymphoid features. Blood 2009;113:2795–2804.CrossRefGoogle ScholarPubMed
Wouters, BJ, Jorda, MA, Keeshan, K, et al. Distinct gene expression profiles of acute myeloid/T-lymphoid leukemia with silenced CEBPA and mutations in NOTCH1. Blood 2007;110:3706–3714.CrossRefGoogle ScholarPubMed
Radomska, HS, Basseres, DS, Zheng, R, et al. Block of C/EBP alpha function by phosphorylation in acute myeloid leukemia with FLT3 activating mutations. J Exp Med 2006;203:371–381.CrossRefGoogle ScholarPubMed
Truong, BT, Lee, YJ, Lodie, TA, et al. CCAAT/Enhancer binding proteins repress the leukemic phenotype of acute myeloid leukemia. Blood 2003;101:1141–1148.CrossRefGoogle ScholarPubMed
Park, DJ, Chumakov, AM, Vuong, PT, et al. CCAAT/enhancer binding protein epsilon is a potential retinoid target gene in acute promyelocytic leukemia treatment. J Clin Invest 1999;103:1399–1408.CrossRefGoogle ScholarPubMed
Keeshan, K, He, Y, Wouters, BJ, et al. Tribbles homolog 2 inactivates C/EBPalpha and causes acute myelogenous leukemia. Cancer Cell 2006;10:401–411.CrossRefGoogle ScholarPubMed
Rowley, JD. Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973;243:290–293.CrossRefGoogle ScholarPubMed
Rowley, JD. Identification of a translocation with quinacrine fluorescence in a patient with acute leukemia. Ann Genet 1973;16:109–112.Google Scholar
Esteller, M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 2007;8:286–298.CrossRefGoogle ScholarPubMed
Bullinger, L, Ehrich, M, Dohner, K, et al. Quantitative DNA methylation predicts survival in adult acute myeloid leukemia. Blood 2010;115:636–642.CrossRefGoogle ScholarPubMed
Figueroa, ME, Lugthart, S, Li, Y, et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell 2010;17:13–27.CrossRefGoogle ScholarPubMed
Alvarez, S, Suela, J, Valencia, A, et al. DNA methylation profiles and their relationship with cytogenetic status in adult acute myeloid leukemia. PLoS One 2010;5:e12197.CrossRefGoogle ScholarPubMed
Ley, TJ, Ding, L, Walter, MJ, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med 2010;363:2424–2433.CrossRefGoogle ScholarPubMed
Trowbridge, JJ, Snow, JW, Kim, J, Orkin, SH. DNA methyltransferase 1 is essential for and uniquely regulates hematopoietic stem and progenitor cells. Cell Stem Cell 2009;5:442–449.CrossRefGoogle ScholarPubMed
Thol, F, Heuser, M, Damm, F, et al. DNMT3A mutations are rare in childhood acute myeloid leukemia. Haematologica 2011;96:1238–1240.CrossRefGoogle ScholarPubMed
Ho, PA, Kutny, MA, Alonzo, TA, et al. Leukemic mutations in the methylation-associated genes DNMT3A and IDH2 are rare events in pediatric AML: a report from the Children's Oncology Group. Pediatr Blood Cancer 2011;57:204–209.CrossRefGoogle ScholarPubMed
Muller-Tidow, C, Klein, HU, Hascher, A, et al. Profiling of histone H3 lysine 9 trimethylation levels predicts transcription factor activity and survival in acute myeloid leukemia. Blood 2010;116:3564–3571.CrossRefGoogle ScholarPubMed
Marcucci, G, Mrozek, K, Radmacher, MD, Garzon, R, Bloomfield, CD. The prognostic and functional role of microRNAs in acute myeloid leukemia. Blood 2011;117:1121–1129.CrossRefGoogle ScholarPubMed
Jongen-Lavrencic, M, Sun, SM, Dijkstra, MK, Valk, PJ, Löwenberg, B. MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood 2008;111: 5078–5085.CrossRefGoogle ScholarPubMed
Li, Z, Lu, J, Sun, M, et al. Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci USA 2008;105:15535–15540.CrossRefGoogle ScholarPubMed
Dixon-McIver, A, East, P, Mein, CA, et al. Distinctive patterns of microRNA expression associated with karyotype in acute myeloid leukaemia. PLoS One 2008;3:e2141.CrossRefGoogle ScholarPubMed
Costinean, S, Sandhu, SK, Pedersen, IM, et al. Src homology 2 domain-containing inositol-5-phosphatase and CCAAT enhancer-binding protein beta are targeted by miR-155 in B cells of Emicro-MiR-155 transgenic mice. Blood 2009;114:1374–1382.CrossRefGoogle Scholar
Han, YC, Park, CY, Bhagat, G, et al. microRNA-29a induces aberrant self-renewal capacity in hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia. J Exp Med 2011;207:475–489.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×