Skip to main content Accessibility help
  • Cited by 1
  • Print publication year: 2011
  • Online publication date: March 2012

Chapter 5 - Introduction to the concept of genetic epilepsy

from Section 2 - Idiopathic epilepsy


Genetic studies of the epilepsies involve two main aspects: detailed gathering of data and data analysis. The contribution of genetics to nosology and classification of the epilepsies should be carefully considered. If genetic criteria were prominent, epilepsy syndromes having heterogeneous clinical expressions would be classified within the same category and homogeneous syndromes caused by different genetic mechanisms would fall in different subcategories. The idiopathic generalized epilepsies constitute a group of syndromes characterized by absence seizures, myoclonus, and generalized tonic-clonic seizures. Chromosomal abnormalities are relatively common genetically determined conditions that increase the risk of epilepsy. Ethical and societal considerations are important in establishing guidelines for both genetic counseling and genetic research in the epilepsies. Standard karyotype and high-resolution chromosome analysis, fluorescent in situ hybridization (FISH), molecular karyotyping with array comparative genomic hybridization, multiple ligation-probe amplification (MLPA) and single-nucleotide polymorphism arrays (SNPs) are the standard cytogenetic and molecular techniques for diagnosis.


Andermann E, (1972) Ph.D. thesis, Montreal, Canada McGill University, Genetics of focal epilepsy and related disorders.
Andermann E, and Metrakos JD (1972) A multifactorial analysis of focal and generalized cortico-reticular (centrencephalic) epilepsy. Epilepsia 13:348–9.
Archer HL, Evans J, Edwards S, et al. (2006) CDKL5 mutations cause infantile spasms, early onset seizures, and severe mental retardation in female patients. J Med Genet 43:729–34.
Barkovich AJ, Kuzniecky RI, Jackson GD, Guerrini R, Dobyns WB (2005) A developmental and genetic classification for malformations of cortical development. Neurology 65:1873–87.
Becker AJ, Urbach H, Scheffler B, et al. (2002) Focal cortical dysplasia of Taylor's balloon cell type: mutational analysis of the TSC1 gene indicates a pathogenic relationship to tuberous sclerosis. Ann Neurol 52:29–37.
Bennett CL, Chen Y, Hahn S, Glass IA, Gospe SM Jr. (2009) Prevalence of ALDH7A1 mutations in 18 North American pyridoxine-dependent seizure (PDS) patients. Epilepsia 50:1167–75.
Berg AT, Berkovic SF, Brodie MJ, et al. (2010) Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia 51:676–85.
Berkovic SF, Howell RA, Hay DA, Hopper JL (1998) Epilepsies in twins: genetics of the major epilepsy syndromes. Ann Neurol 43:435–45.
Berkovic SF, Mulley JC, Scheffer IE, Petrou S (2006) Human epilepsies: interaction of genetic and acquired factors. Trends Neurosci 29:391–7.
Bisulli F, Tinuper P, Avoni P, et al. (2004) Idiopathic partial epilepsy with auditory features (IPEAF): a clinical and genetic study of 53 sporadic cases. Brain 127:1343–52.
Briellmann RS, Torn-Broers Y, Berkovic SF (2001) Idiopathic generalized epilepsies: do sporadic and familial cases differ? Epilepsia 42:1399–402.
Carter NP (2007) Methods and strategies for analyzing copy number variation using DNA microarrays. Nat Genet 39(7 Suppl):S16–21.
Chen Y, Lu J, Pan H, et al. (2003) Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol 54:239–43.
Chioza BA, Aicardi J, Aschauer H, et al. (2009) Genome-wide high density SNP-based linkage analysis of childhood absence epilepsy identifies a susceptibility locus on chromosome 3p23–p14. Epilepsy Res 87:247–55.
Chioza B, Wilkie H, Nashef L, et al. (2001) Association between the alpha(1a) calcium channel gene CACNA1A and idiopathic generalized epilepsy. Neurology 56:1245–6.
Commission on Classification and Terminology of the International League Against Epilepsy (1989) Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia 30:389–99.
Cotton RG, Auerbach AD, Axton M, et al. (2008) GENETICS: the Human Variome Project. Science 322:861–2.
de Kovel CG, Pinto D, Tauer U, et al. (2010a) Whole-genome linkage scan for epilepsy-related photosensitivity: a mega-analysis. Epilepsy Res 89:286–94.
de Kovel CG, Trucks H, Helbig I, et al. (2010b) Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies. Brain 133:23–32.
De Vivo DC, Trifiletti RR, Jacobson RI, et al. (1991) Defective glucose transport across the blood–brain barrier as a cause of persistent hypoglycorrhachia, seizures, and developmental delay. N Engl J Med 325:703–9.
Depienne C, Bouteiller D, Keren B, et al. (2009) Sporadic infantile epileptic encephalopathy caused by mutations in PCDH19 resembles Dravet syndrome but mainly affects females. PLoS Genet 5:e1000381.
Deprez L, Jansen A, De Jonghe P (2009) Genetics of epilepsy syndromes starting in the first year of life. Neurology 72:273–81.
Dibbens LM, Tarpey PS, Hynes K, et al. (2008) X-linked protocadherin 19 mutations cause female-limited epilepsy and cognitive impairment. Nat Genet 40:776–81.
Doose H, Gerken H, Horstmann T, Völzke E (1973) Genetic factors in spike–wave absences. Epilepsia 14:57–75.
Du W, Bautista JF, Yang H, et al. (2005) Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat Genet 37:733–8.
Durner M, Gorroochurn P, Marini C, Guerrini R (2006) Can we increase the likelihood of success for future association studies in epilepsy? Epilepsia 47:1617–21.
Elia M, Falco M, Ferri R, et al. (2008) CDKL5 mutations in boys with severe encephalopathy and early-onset intractable epilepsy. Neurology 71:997–9.
Engel J (2001) A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of ILAE task force on classification and terminology. Epilepsia 42:796–803.
Engel J Jr. (2006a) Report of the ILAE classification core group. Epilepsia 47:1558–68.
Engel J Jr. (2006b) ILAE classification of epilepsy syndromes. Epilepsy Res 70(Suppl 1):S5–10.
Engel J Jr., Pedley TA (2008) Introduction: What is epilepsy? In: Engel J Jr., Peddey TA (eds.) Epilepsy: A Comprehensive Textbook, 2nd edn, vol. 3. Philadelphia, PA: Lippincott Williams and Wilkins, pp. 1–6.
Engels H, Brockschmidt A, Hoischen A, et al. (2007) DNA microarray analysis identifies candidate regions and genes in unexplained mental retardation. Neurology 68:721–2.
Engelsen BA, Tzoulis C, Karlsen B, et al. (2008) POLG1 mutations cause a syndromic epilepsy with occipital lobe predilection. Brain 131:818–28.
Everett KV, Chioza B, Aicardi J, et al. (2007) Linkage and association analysis of CACNG3 in childhood absence epilepsy. Eur J Hum Genet 15:463–72.
Falconer DS (1965) The inheritance of liability to certain diseases, estimated from the incidence among relatives. Ann Hum Genet 29:51–76.
Fan Z, Greenwood R, Fisher A, Pendyal S, Powell CM (2009) Characteristics and frequency of seizure disorder in 56 patients with Prader–Willi syndrome. (Letter.) Am J Med Genet 149A:1581–4.
Feucht M, Fuchs K, Pichlbauer E, et al. (1999) Possible association between childhood absence epilepsy and the gene encoding GABRB3. Biol Psychiatry 46:997–1002.
Fong GC, Shah PU, Gee MN, et al. (1998) Childhood absence epilepsy with tonic–clonic seizures and electroencephalogram 3–4-Hz spike and multispike-slow wave complexes: linkage to chromosome 8q24. Am J Hum Genet 63:1117–29.
Friocourt G, Parnavelas JG (2010) Mutations in ARX result in several defects involving GABAergic neurons. Front Cell Neurosci 4:4.
Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160:636–45.
Guerrini R (2010) Classification concepts and terminology: is clinical description assertive and laboratory testing objective? Epilepsia 51:718–20.
Guerrini R, Carrozzo R, Rinaldi R, Bonanni P (2003a) Angelman syndrome: etiology, clinical features, diagnosis, and management of symptoms. Paediatr Drugs 5:647–61.
Guerrini R, Casari G, Marini C (2003b) The genetic and molecular basis of epilepsy. Trends Mol Med 9:300−6.
Guerrini R, Moro F, Andermann E, et al. (2003c) Nonsyndromic mental retardation and cryptogenic epilepsy in women with doublecortin gene mutations. Ann Neurol 54:30–7.
Guerrini R, Mei D, Sisodiya S, et al. (2004) Germline and mosaic mutations of FLN1 in men with periventricular heterotopia. Neurology 63:51–6.
Guerrini R, Moro F, Kato M, et al. (2007) Expansion of the first PolyA tract of ARX causes infantile spasms and status dystonicus. Neurology 69:427–33.
Guerrini R, Battaglia A, Carrozzo R, et al. (2008a) Chromosomal abnormalities. In: Engel J Jr., Pedley TA (eds.) Epilepsy: A Comprehensive Textbook, 2nd edn, vol. 3. Philadelphia, PA: Lippincott Williams and Wilkins, pp. 2589–601.
Guerrini R, Dobyns WB, Barkovich AJ (2008b) Abnormal development of the human cerebral cortex: genetics, functional consequences and treatment options. Trends Neurosci 31:154–62.
Hamdan FF, Piton A, Gauthier J, et al. (2009) De novo STXBP1 mutations in mental retardation and nonsyndromic epilepsy. Ann Neurol 65:748–53.
Harkin LA, McMahon JM, Iona X, et al. (2007) The spectrum of SCN1A-related infantile epileptic encephalopathies. Brain 130:843–52.
Herman ST (2002) Epilepsy after brain insult: targeting epileptogenesis. Neurology 59:S21–6.
Holmes GL (1987) Genetics of epilepsy. In: Holmes GL (ed.) Diagnosis and Management of Seizures in Children Philadelphia, PA: WB Saunders, pp. 56–71.
Jennings MT, Bird TD (1981) Genetic influences in the epilepsies. Am J Dis Child 135:450–7.
Kato M, Saitoh S, Kamei A, et al. (2007) A longer polyalanine expansion mutation in the ARX gene causes early infantile epileptic encephalopathy with suppression–burst pattern (Ohtahara syndrome). Am J Hum Genet 81:361–6.
Kim HS, Yim SV, Jung KH, et al. (2007) Altered DNA copy number in patients with different seizure disorder type: by array-CGH. Brain Devel 29:639–43.
Kjeldsen MJ, Kyvik KO, Christensen K, Friis ML (2001) Genetic and environmental factors in epilepsy: a population-based study of 11900 Danish twin pairs. Epilepsy Res 44:167–78.
Klepper J, Leiendecker B (2007) GLUT1 deficiency syndrome: 2007 update. Dev Med Child Neurol 49:707–16.
Komura D, Shen F, Ishikawa S, et al. (2006) Genome-wide detection of human copy number variations using high-density DNA oligonucleotide arrays. Genome Res 16:1575–84.
Leary LD, Wang D, Nordli DR Jr., Engelstad K, De Vivo DC (2003) Seizure characterization and electroencephalographic features in Glut-1 deficiency syndrome. Epilepsia 44:701–7.
Ledbetter DH (2008) Cytogenetic technology: genotype and phenotype. N Engl J Med 359:1728–30.
Lennox WG (1951) The heredity of epilepsy as told by relatives and twins. J Am Med Ass 146:529–36.
Lennox WG (1960) Epilepsy and Related Disorders, 2 vols. Boston, MA: Little, Brown and Co.
Lennox WG, Jolly DH (1954) Seizures, brain waves and intelligence tests of epileptic twins. Res Publ Ass Res Nerv Ment Dis 33:325–45.
Lowenstein D, Messing R (2007) Epilepsy genetics: yet more exciting news. Ann Neurol 62:549–50.
Lüders HO, Turnbull J, Kaffashi F (2009) Are the dichotomies generalized versus focal epilepsies and idiopathic versus symptomatic epilepsies still valid in modern epileptology? Epilepsia 50:1336–43.
Maljevic S, Krampfl K, Cobilanschi J, et al. (2006) A mutation in the GABA(A) receptor alpha(1)-subunit is associated with absence epilepsy. Ann Neurol 59:983–7.
Marini C, Scheffer IE, Crossland KM, et al. (2004) Genetic architecture of idiopathic generalized epilepsy: clinical genetic analysis of 55 multiplex families. Epilepsia 45:467–78.
Marini C, Mei D, Helen Cross J, Guerrini R (2006) Mosaic SCN1A mutation in familial severe myoclonic epilepsy of infancy. Epilepsia 47:1737–40.
Marini C, Mei D, Temudo T, et al. (2007) Idiopathic epilepsies with seizures precipitated by fever and SCN1A abnormalities. Epilepsia 48:1678–85.
Marini C, Scheffer IE, Nabbout R, et al. (2009) SCN1A duplications and deletions detected in Dravet syndrome: implications for molecular diagnosis. Epilepsia 50:1670–8.
Marini C, Mei D, Parmeggiani L, et al. (2010) Protocadherin 19 mutations in girls with infantile onset epilepsy. Neurology 75:646–53.
Matthes A, Weber H (1968) Klinische und elektroenzephalographische Familienunterschungen bei Pyknolepsien. Dtsch Med Wschr 93:429–35.
Mei D, Marini C, Novara F, et al. (2009) Xp22.3 genomic deletions involving the CDKL5 gene in girls with early onset epileptic encephalopathy. Epilepsia Sep 22. [Epub ahead of print].
Metrakos JD (1961) Heredity as an etiological factor in convulsive disorders. In: Fields WS, Desmond MM (eds.) Disorders of The Developing Nervous System. Springfield, I: Charles C. Thomas, pp. 23–37.
Metrakos JD, Metrakos K (1969) Genetic studies in clinical epilepsy. In: Jasper HH, Ward AA, Pope A (eds.) Basic Mechanisms of the Epilepsies Boston, MA: Little, Brown and Co., pp. 700–8.
Metrakos JD, Metrakos K (1970) Genetic factors in epilepsy. In: Niedermyer E (ed.) Modern Problems in Pharmacopsychiatry, vol. 4 New York: Karger, pp. 71–86.
Metrakos K, Metrakos JD (1974) Genetics of epilepsy. In: Vinken PJ, Bruyn GW (eds.) The Epilepsies: Handbook of Clinical Neurology, vol. 15. Amsterdam: North-Holland, pp. 429–439.
Miller LL, Pellock JM, DeLorenzo RJ, Meyer JM, Corey LA (1998) Univariate genetic analyses of epilepsy and seizures in a population-based twin study: the Virginia Twin Registry. Genet Epidemiol 15:33–49.
Morimoto M, Mazaki E, Nishimura A, et al. (2006) SCN1A mutation mosaicism in a family with severe myoclonic epilepsy in infancy. Epilepsia 47:1732–6.
Mullen SA, Crompton DE, Carney PW, Helbig I, Berkovic SF (2009) A neurologist's guide to genome-wide association studies. Neurology 72:558–65.
Mulley JC, Scheffer IE, Harkin LA, Berkovic SF, Dibbens LM (2005a) Susceptibility genes for complex epilepsy. Hum Mol Genet 14:R243–R249
Mulley JC, Scheffer IE, Petrou S, et al. (2005b) SCN1A mutations and epilepsy. Hum Mutat 25:535–42.
Nabbout R, Gennaro E, Dalla Bernardina B, et al. (2003) Spectrum of SCN1A mutations in severe myoclonic epilepsy of infancy. Neurology 60:1961–7.
Noebels JL (2003) The biology of epilepsy genes. Ann Rev Neurosci 26:599–625.
Ottman R (2005) Analysis of genetically complex epilepsies. (2005) Epilepsia 46(Suppl 10):7–14.
Ottman R, Winawer MR (2008) Genetic epidemiology. In: Engel J Jr. Pedley TA (eds.) Epilepsy: A Comprehensive Textbook, 2nd edn, vol. 3. Philadelphia, PA: Lippincott Williams and Wilkins, pp. 161–70.
Pfeiffer DA, Le JM, Steemers FJ, et al. (2006) High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping. Genome Res 16:1136–48.
Plecko B, Paul K, Paschke E, et al. (2007) Biochemical and molecular characterization of 18 patients with pyridoxine-dependent epilepsy and mutations of the antiquitin (ALDH7A1) gene. Hum Mutat 28:19–26.
Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273:1516–17.
Robinson R, Taske N, Sander T, et al. (2002) Linkage analysis between childhood absence epilepsy and genes encoding GABAA and GABAB receptors, voltage-dependent calcium channels, and the ECA1 region on chromosome 8q. Epilepsy Res 48:169–79.
Rodin E (2009) The epilepsy diathesis. Epilepsia 50:1649–53.
Roulet-Perez E, Ballhausen D, Bonafé L, Cronel-Ohayon S, Maeder-Ingvar M (2008) Glut-1 deficiency syndrome masquerading as idiopathic generalized epilepsy. Epilepsia 49:1955–8.
Sadilkova K, Gospe SM Jr., Hahn SH (2009) Simultaneous determination of alpha-aminoadipic semialdehyde, piperideine-6-carboxylate and pipecolic acid by LC-MS/MS for pyridoxine-dependent seizures and folinic acid-responsive seizures. J Neurosci Methods 184:136–41.
Saitsu H, Kato M, Mizuguchi T, et al. (2008) De novo mutations in the gene encoding STXBP1 (MUNC18–1) cause early infantile epileptic encephalopathy. Nat Genet 40:782–8.
Sander T, Schulz H, Saar K, et al. (2000) Genome search for susceptibility loci of common idiopathic generalised epilepsies. Hum Mol Genet 9:1465–72.
Schaumann BA, Annegers JF, Johnson SB, et al. (1994) Family history of seizures in posttraumatic and alcohol-associated seizure disorders. Epilepsia 35:48–52.
Scheffer IE, Harkin LA, Grinton BE, et al. (2007) Temporal lobe epilepsy and GEFS+ phenotypes associated with SCN1B mutations. Brain 130:100–9.
Schouten JP, McElgunn CJ, Waaijer R, et al. (2002) Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 15:30:e57.
Seidner G, Alvarez MG, Yeh JI, et al. (1998) GLUT-1 deficiency syndrome caused by haploinsufficiency of the blood–brain barrier hexose carrier. Nat Genet 18:188–91.
Shaw-Smith C, Redon R, Rickman L, et al. (2004) Microarray based comparative genomic hybridisation (array-CGH) detects submicroscopic chromosomal deletions and duplications in patients with learning disability/mental retardation and dysmorphic features. J Med Genet 41:241–8.
Sicca F, Kelemen A, Genton P, et al. (2003) Mosaic mutations of the LIS1 gene cause subcortical band heterotopia. Neurology 28:1042–6.
Singh R, McKinlay Gardner RJ, Crossland KM, Scheffer IE, Berkovic SF (2002) Chromosomal abnormalities and epilepsy: a review for clinicians and gene hunters. Epilepsia 43:127−40.
Stromme P, Mangelsdorf ME, Shaw MA, et al. (2002) Mutations in the human ortholog of Aristaless cause X-linked mental retardation and epilepsy. Nat Genet 30:441–5.
Sugimoto Y, Morita R, Amano K, et al. (2000) Childhood absence epilepsy in 8q24: refinement of candidate region and construction of physical map. Genomics 68:264–72.
Suls A, Dedeken P, Goffin K, et al. (2008) Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1. Brain 131:1831–44.
Suls A, Mullen SA, Weber YG, et al. (2009) Early-onset absence epilepsy caused by mutations in the glucose transporter GLUT1. Ann Neurol 66:415–19.
Tan NC, Mulley JC, Berkovic SF (2004) Genetic association studies in epilepsy: “the truth is out there”. Epilepsia 45:1429–42.
Tanaka M, Olsen RW, Medina MT, et al. (2008) Hyperglycosylation and reduced GABA currents of mutated GABRB3 polypeptide in remitting childhood absence epilepsy. Am J Hum Genet 82:1249–61.
Tharapel AT, Summitt RL (1978) Minor chromosome variation and selected heteromorphisms in 200 unclassifiable mentally retarded patients and 200 normal controls. Hum Genet 41:121–30.
Uusimaa J, Hinttala R, Rantala H, et al. (2008) Homozygous W748S mutation in the POLG1 gene in patients with juvenile-onset alpers syndrome and status epilepticus. Epilepsia 49:1038–45.
Vadlamudi L, Andermann E, Lombroso CT, et al. (2004a): Epilepsy in twins: insights from unique historical data of William Lennox. Neurology 62:1127–33.
Vadlamudi L, Harvey AS, Connellan MM, et al. (2004b) Is benign rolandic epilepsy genetically determined? Ann Neurol 56:129–32.
Vanmolkot KR, Kors EE, Hottenga JJ, et al. (2003) Novel mutations in the Na+, K+-ATPase pump gene ATP1A2 associated with familial hemiplegic migraine and benign familial infantile convulsions. Ann Neurol 54:360–6.
Wallace RH, Marini C, Petrou S, et al. (2001) Mutant GABA(A) receptor gamma2-subunit in childhood absence epilepsy and febrile seizures. Nat Genet 28:49–52.
Weaving LS, Christodoulou J, Williamson SL, et al. (2004) Mutations of CDKL5 cause a severe neurodevelopmental disorder with infantile spasms and mental retardation. Am J Hum Genet 75:1079–93.
Winawer MR, Marini C, Grinton BE, et al. (2005) Familial clustering of seizure types within the idiopathic generalized epilepsies. Neurology 65:523–8.
Yamamoto T, Páez MT, Shimojima K (2009) Comment on “Altered DNA copy number in patients with different seizure disorder type: by array-CGH” by Kim HS et al. Brain Dev; 29:639–43. Brain Dev 31:94.