Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T18:41:15.251Z Has data issue: false hasContentIssue false

19 - Associative and Controlled Cognition in Divergent Thinking: Theoretical, Experimental, Neuroimaging Evidence, and New Directions

from Part V - Cognitive Control and Executive Functions

Published online by Cambridge University Press:  19 January 2018

Rex E. Jung
Affiliation:
University of New Mexico
Oshin Vartanian
Affiliation:
University of Toronto
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, A. (2014). Creative thinking as orchestrated by semantic processing vs. cognitive control brain networks. Frontiers in Human Neuroscience, 8, 95. http://doi.org/10.3389/fnhum.2014.00095CrossRefGoogle ScholarPubMed
Abraham, A., Beudt, S., Ott, D. V. M., & Yves von Cramon, D. (2012). Creative cognition and the brain: Dissociations between frontal, parietal–temporal and basal ganglia groups. Brain Research, 1482, 5570. http://doi.org/10.1016/j.brainres.2012.09.007CrossRefGoogle ScholarPubMed
Abraham, A., Pieritz, K., Thybusch, K., Rutter, B., Kröger, S., Schweckendiek, J., … Hermann, C. (2012). Creativity and the brain: Uncovering the neural signature of conceptual expansion. Neuropsychologia, 50, 19061917. http://doi.org/10.1016/j.neuropsychologia.2012.04.015CrossRefGoogle ScholarPubMed
Acar, S., & Runco, M. A. (2014). Assessing Associative Distance among ideas elicited by tests of divergent thinking. Creativity Research Journal, 26, 229238. http://doi.org/10.1080/10400419.2014.901095CrossRefGoogle Scholar
Allen, A. P., & Thomas, K. E. (2011). A dual process account of creative thinking. Creativity Research Journal, 23, 109118. http://doi.org/10.1080/10400419.2011.571183CrossRefGoogle Scholar
Andrews-Hanna, J. R., Reidler, J. S., Huang, C., & Buckner, R. L. (2010). Evidence for the default network’s role in spontaneous cognition. Journal of Neurophysiology, 104, 322335. http://doi.org/10.1152/jn.00830.2009CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The default network and self-generated thought: Component processes, dynamic control, and clinical relevance: The brain’s default network. Annals of the New York Academy of Sciences, 1316, 2952. http://doi.org/10.1111/nyas.12360CrossRefGoogle Scholar
Arden, R., Chavez, R. S., Grazioplene, R., & Jung, R. E. (2010). Neuroimaging creativity: A psychometric view. Behavioural Brain Research, 214, 143156. http://doi.org/10.1016/j.bbr.2010.05.015CrossRefGoogle ScholarPubMed
Badre, D. (2008). Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes. Trends in Cognitive Sciences, 12, 193200.CrossRefGoogle ScholarPubMed
Badre, D., Poldrack, R. A., Paré-Blagoev, E. J., Insler, , , R. Z., & Wagner, A. D. (2005). Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex. Neuron, 47, 907918.CrossRefGoogle ScholarPubMed
Baird, B., Smallwood, J., Mrazek, M. D., Kam, J. W. Y., Franklin, M. S., & Schooler, J. W. (2012). Inspired by distraction: Mind wandering facilitates creative incubation. Psychological Science, 23, 11171122. http://doi.org/10.1177/0956797612446024CrossRefGoogle ScholarPubMed
Bar, M., Aminoff, E., Mason, M., & Fenske, M. (2007). The units of thought. Hippocampus, 17, 420428.CrossRefGoogle ScholarPubMed
Baronchelli, A., Ferrer-i-Cancho, R., Pastor-Satorras, R., Chater, N., & Christiansen, M. H. (2013). Networks in cognitive science. Trends in Cognitive Sciences, 17, 348360. http://doi.org/10.1016/j.tics.2013.04.010CrossRefGoogle ScholarPubMed
Beaty, R. E., Benedek, M., Kaufman, B. S., & Silvia, P. J. (2015). Default and executive network coupling supports creative idea production. Scientific Reports, 5, 10964. http://doi.org/10.1038/srep10964CrossRefGoogle Scholar
Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20, 8795. http://doi.org/10.1016/j.tics.2015.10.004CrossRefGoogle ScholarPubMed
Beaty, R. E., Benedek, M., Wilkins, R. W., Jauk, E., Fink, A., Silvia, P. J., … Neubauer, A. C. (2014). Creativity and the default network: A functional connectivity analysis of the creative brain at rest. Neuropsychologia, 64, 9298. http://doi.org/10.1016/j.neuropsychologia.2014.09.019CrossRefGoogle ScholarPubMed
Beaty, R. E., & Silvia, P. J. (2012). Why do ideas get more creative across time? An executive interpretation of the serial order effect in divergent thinking tasks. Psychology of Aesthetics, Creativity, and the Arts, 6, 309319.CrossRefGoogle Scholar
Beaty, R. E., & Silvia, P. J. (2014). The role of associative and executive processes in creative cognition. Memory and Cognition, 42, 11861197.CrossRefGoogle Scholar
Bechtereva, N. P., Korotkov, A. D., Pakhomov, S. V., Roudas, M. S., Starchenko, M. G., & Medvedev, S. V. (2004). PET study of brain maintenance of verbal creative activity. International Journal of Psychophysiology, 53, 1120.CrossRefGoogle ScholarPubMed
Beketayev, K., & Runco, M. A. (2016). Scoring divergent thinking tests by computer with a semantics-based algorithm. European Journal of Psychology, 12, 210220.CrossRefGoogle ScholarPubMed
Bendetowicz, D., Urbanski, M., Aichelburg, C., Levy, R., & Volle, E. (2017). Brain morphometry predicts individual creative potential and the ability to combine remote ideas. Cortex, 86, 216229. doi:10.1016/j.cortex.2016.10.021.CrossRefGoogle ScholarPubMed
Benedek, M., Franz, F., Heene, M., & Neubauer, A. C. (2012). Differential effects of cognitive inhibition and intelligence on creativity. Personality and Individual Differences, 53, 480485. http://doi.org/10.1016/j.paid.2012.04.014CrossRefGoogle ScholarPubMed
Benedek, M., Jauk, E., Beaty, R. E., Fink, A., Koschutnig, K., & Neubauer, A. C. (2016). Brain mechanisms associated with internally directed attention and self-generated thought. Scientific Reports, 6, 22959. http://doi.org/10.1038/srep22959CrossRefGoogle ScholarPubMed
Benedek, M., Jauk, E., Fink, A., Koschutnig, K., Reishofer, G., Ebner, F., & Neubauer, A. C. (2013). To create or to recall? Neural mechanisms underlying the generation of creative new ideas. NeuroImage, 88, 125133. http://doi.org/10.1016/j.neuroimage.2013.11.021CrossRefGoogle ScholarPubMed
Benedek, M., Könen, T., & Neubauer, A. C. (2012). Associative abilities underlying creativity. Psychology of Aesthetics, Creativity, and the Arts, 6, 273281. http://doi.org/10.1037/a0027059CrossRefGoogle Scholar
Benedek, M., Muhlmann, C., Jauk, E., & Neubauer, A. C. (2013). Assessment of divergent thinking by means of the subjective top-scoring method: Effects of the number of top-ideas and time-on-task on reliability and validity. Psychology of Aesthetics, Creativity, and the Arts, 7, 341349. http://doi.org/10.1037/a0033644CrossRefGoogle ScholarPubMed
Benedek, M., & Neubauer, A. C. (2013). Revisiting Mednick’s model on creativity-related differences in associative hierarchies. Evidence for a common path to uncommon thought. The Journal of Creative Behavior, 47, 273289. http://doi.org/10.1002/jocb.35CrossRefGoogle Scholar
Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where ss the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19, 27672796. http://doi.org/10.1093/cercor/bhp055CrossRefGoogle Scholar
Boccia, M., Piccardi, L., Palermo, L., Nori, R., & Palmiero, M. (2015). Where do bright ideas occur in our brain? Meta-analytic evidence from neuroimaging studies of domain-specific creativity. Frontiers in Psychology, 6, 1195. http://doi.org/10.3389/fpsyg.2015.01195CrossRefGoogle ScholarPubMed
Borge-Holthoefer, J., & Arenas, A. (2010). Semantic networks: Structure and dynamics. Entropy, 12, 12641302. http://doi.org/10.3390/e12051264CrossRefGoogle Scholar
Bossomaier, T., Harré, M., Knittel, , , A., & Snyder, A. (2009). A semantic network approach to the creativity quotien (CQ). Creativity Research Journal, 21, 6471.CrossRefGoogle Scholar
Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 138.CrossRefGoogle ScholarPubMed
Burgess, P. W., Gonen-Yaacovi, G., & Volle, E. (2011). Functional neuroimaging studies of prospective memory: What have we learnt so far? Neuropsychologia, 49, 22462257. http://doi.org/10.1016/j.neuropsychologia.2011.02.014CrossRefGoogle ScholarPubMed
Carson, S. H., Peterson, J. B., & Higgins, D. M. (2003). Decreased latent inhibition is associated with increased creative achievement in high-functioning individuals. Journal of Personality and Social Psychology, 85, 499506. http://doi.org/10.1037/0022-3514.85.3.499CrossRefGoogle ScholarPubMed
Cassotti, M., Agogué, M., Camarda, A., Houdé, O., & Borst, G. (2016). Inhibitory control as a core process of creative problem solving and idea generation from childhood to adulthood: Inhibitory control as a core process of creative problem solving. New Directions for Child and Adolescent Development, 151, 6172. http://doi.org/10.1002/cad.20153CrossRefGoogle Scholar
Catani, M., Dell’Acqua, F., & Thiebaut de Schotten, M. (2013). A revised limbic system model for memory, emotion and behaviour. Neuroscience & Biobehavioral Reviews, 37, 17241737. http://doi.org/10.1016/j.neubiorev.2013.07.001CrossRefGoogle ScholarPubMed
Catani, M., & Thiebaut de Schotten, M. (2012). Atlas of human brain connections. Oxford: Oxford University Press.CrossRefGoogle Scholar
Cerruti, C., & Schlaug, G. (2009). Anodal transcranial direct current stimulation of the prefrontal cortex enhances complex verbal associative thought. Journal of Cognitive Neuroscience, 21, 19801987. http://doi.org/10.1162/jocn.2008.21143CrossRefGoogle ScholarPubMed
Changeux, J.-P., Damasio, A. R., Singer, W., & Christen, Y. (2005). Creation, art and the brain. In Neurobiology of human values (pp. 111). Berlin: Springer-Verlag.CrossRefGoogle Scholar
Chavez-Eakle, R. A., Graff-Guerrero, A., García-Reyna, J.-C., Vaugier, , , V., & Cruz-Fuentes, C. (2007). Cerebral blood flow associated with creative performance: A comparative study. NeuroImage, 38, 519528. http://doi.org/10.1016/j.neuroimage.2007.07.059CrossRefGoogle ScholarPubMed
Chen, A. C., Oathes, D. J., Chang, C., Bradley, T., Zhou, Z.-W., Williams, L. M., … Etkin, A. (2013). Causal interactions between frontoparietal central executive and default-mode networks in humans. Proceedings of the National Academy of Sciences, 110, 1994419949. http://doi.org/10.1073/pnas.1311772110CrossRefGoogle ScholarPubMed
Chen, Q., Wei, D., Li, W., Yang, W., Li, H., Lei, Q., … Qiu, J. (2014). Association of creative achievement with cognitive flexibility by a combined voxel-based morphometry and resting-state functional connectivity study. NeuroImage, 102, 474483. http://doi.org/10.1016/j.neuroimage.2014.08.008CrossRefGoogle ScholarPubMed
Chen, Q.-L., Xu, T., Yang, W.-J., Li, Y.-D., Sun, J.-Z., Wang, K.-C., … Qiu, J. (2015). Individual differences in verbal creative thinking are reflected in the precuneus. Neuropsychologia, 75, 441449. http://doi.org/10.1016/j.neuropsychologia.2015.07.001CrossRefGoogle ScholarPubMed
Chermahini, S. A., & Hommel, B. (2012). More creative through positive mood? Not everyone! Frontiers in Human Neuroscience, 6, 319. http://doi.org/10.3389/fnhum.2012.00319Google Scholar
Christoff, K., Gordon, A. M., Smallwood, J., Smith, R., & Schooler, J. W. (2009). Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proceedings of the National Academy of Sciences of the USA, 106, 87198724. http://doi.org/10.1073/pnas.0900234106CrossRefGoogle ScholarPubMed
Christoff, K., Irving, Z. C., Fox, K. C. R., Spreng, R. N., & Andrews-Hanna, J. R. (2016). Mind-wandering as spontaneous thought: A dynamic framework. Nature Reviews Neuroscience, 17(11), 718731.CrossRefGoogle ScholarPubMed
Chrysikou, E. G., Hamilton, R. H., Coslett, H. B., Datta, A., Bikson, M., & Thomspon-Schill, S. L. (2013). Noninvasive transcranial direct current stimulation over the left prefrontal cortex facilitates cognitive flexibility in tool use. Cognitive Neuroscience, 4, 8189. http://doi.org/10.1080/17588928.2013.768221CrossRefGoogle ScholarPubMed
Cole, M. W., Reynolds, J. R., Power, J. D., Repovs, G., Anticevic, A., & Braver, T. S. (2013). Multi-task connectivity reveals flexible hubs for adaptive task control. Nature Neuroscience, 16, 13481355. http://doi.org/10.1038/nn.3470CrossRefGoogle ScholarPubMed
Collins, A. M., & Loftus, E. F. (1975). A spreading-activation theory of semantic processing. Psychological Review, 82, 407428.CrossRefGoogle Scholar
Colombo, B., Bartesaghi, N., Simonelli, L., & Antonietti, A. (2015). The combined effects of neurostimulation and priming on creative thinking. A preliminary tDCS study on dorsolateral prefrontal cortex. Frontiers in Human Neuroscience, 9, 403. http://doi.org/10.3389/fnhum.2015.00403CrossRefGoogle Scholar
Cousijn, J., Zanolie, K., Munsters, R. J. M., Kleibeuker, S. W., & Crone, E. A. (2014). The relation between resting state connectivity and creativity in adolescents before and after training. PLoS ONE, 9, e105780. http://doi.org/10.1371/journal.pone.0105780CrossRefGoogle ScholarPubMed
Davelaar, E. J. (2015). Semantic search in the Remote Associates Test. Topics in Cognitive Science, 7, 494512. http://doi.org/10.1111/tops.12146CrossRefGoogle ScholarPubMed
Davey, J., Thompson, H. E., Hallam, G., Karapanagiotidis, T., Murphy, C., De Caso, I., … Jefferies, E. (2016). Exploring the role of the posterior middle temporal gyrus in semantic cognition: Integration of anterior temporal lobe with goal-oriented cognition. NeuroImage, 137, 165177. http://doi.org/10.1016/j.neuroimage.2016.05.051CrossRefGoogle ScholarPubMed
De Deyne, S., Kenett, Y. N., Anaki, D., Faust, M., & Navarro, D. (2016). Large-scale network representations of semantics in the mental lexicon. In Jones, M. N. (Ed.), Big data in cognitive science: From methods to insights. Hove: Psychology Press.Google Scholar
De Deyne, S., Navarro, D. J., & Storms, G. (2013). Better explanations of lexical and semantic cognition using networks derived from continued rather than single-word associations. Behavior Research Methods, 45, 480498. http://doi.org/10.3758/s13428-012-0260-7CrossRefGoogle ScholarPubMed
De Dreu, C. K. W., Nijstad, B. A., Baas, M., Wolsink, I., & Roskes, M. (2012). Working memory benefits creative insight, musical improvisation, and original ideation through maintained task-focused attention. Personality and Social Psychology Bulletin, 38, 656669. http://doi.org/10.1177/0146167211435795CrossRefGoogle ScholarPubMed
De Neys, W. (2006). Automatic–heuristic and executive–analytic processing during reasoning: Chronometric and dual-task considerations. The Quarterly Journal of Experimental Psychology, 59, 10701100. http://doi.org/10.1080/02724980543000123CrossRefGoogle ScholarPubMed
De Souza, L. C., Guimarães, H. C., Teixeira, , Caramelli, A. L., Levy, P., Dubois, R., , B., & Volle, E. (2014). Frontal lobe neurology and the creative mind. Frontiers in Psychology, 5, 761. http://doi.org/10.3389/fpsyg.2014.00761CrossRefGoogle ScholarPubMed
De Souza, L. C., Volle, E., Bertoux, M., Czernecki, V., Funkiewiez, A., Allali, G., … Levy, R. (2010). Poor creativity in frontotemporal dementia: A window into the neural bases of the creative mind. Neuropsychologia, 48, 37333742. http://doi.org/10.1016/j.neuropsychologia.2010.09.010CrossRefGoogle ScholarPubMed
De Vico Fallani, F., Richiardi, J., Chavez, M., & Achard, S. (2014). Graph analysis of functional brain networks: Practical issues in translational neuroscience. Philosophical Transactions of the Royal Society B: Biological Sciences, 369, 20130521. http://doi.org/10.1098/rstb.2013.0521CrossRefGoogle ScholarPubMed
Demblon, J., Bahri, M. A., & D’Argembeau, A. (2016). Neural correlates of event clusters in past and future thoughts: How the brain integrates specific episodes with autobiographical knowledge. NeuroImage, 127, 257266. http://doi.org/10.1016/j.neuroimage.2015.11.062CrossRefGoogle ScholarPubMed
Dietrich, A. (2004). The cognitive neuroscience of creativity. Psychonomic Bulletin & Review, 11, 10111026.CrossRefGoogle ScholarPubMed
Dietrich, A. (2015). How creativity happens in the brain. Basingstoke: Palgrave Macmillan.CrossRefGoogle Scholar
Dietrich, A., & Kanso, R. (2010). A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychological Bulletin, 136, 822848. http://doi.org/10.1037/a0019749CrossRefGoogle ScholarPubMed
Dijksterhuis, A., & Meurs, T. (2006). Where creativity resides: The generative power of unconscious thought. Consciousness and Cognition, 15, 135146. http://doi.org/10.1016/j.concog.2005.04.007CrossRefGoogle ScholarPubMed
Dorfman, L., Martindale, C., Gassimova, V., & Vartanian, O. (2008). Creativity and speed of information processing: A double dissociation involving elementary versus inhibitory cognitive tasks. Personality and Individual Differences, 44, 13821390. http://doi.org/10.1016/j.paid.2007.12.006CrossRefGoogle Scholar
Dumas, D., & Dunbar, K. N. (2014). Understanding fluency and originality: A latent variable perspective. Thinking Skills and Creativity, 14, 5667. http://doi.org/10.1016/j.tsc.2014.09.003CrossRefGoogle Scholar
Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: Mental programs for intelligent behaviour. Trends in Cognitive Sciences, 14, 172179. http://doi.org/10.1016/j.tics.2010.01.004CrossRefGoogle ScholarPubMed
Durso, F. T., Rea, C. B., & Dayton, T. (1994). Graph-theoretic confirmation of restructuring during insight. Psychological Science, 5, 9497.CrossRefGoogle Scholar
Edl, S., Benedek, M., Papousek, I., Weiss, E. M., & Fink, A. (2014). Creativity and the Stroop interference effect. Personality and Individual Differences, 69, 3842. http://doi.org/10.1016/j.paid.2014.05.009CrossRefGoogle Scholar
Ellamil, M., Dobson, C., Beeman, M., & Christoff, K. (2011). Evaluative and generative modes of thought during the creative process. NeuroImage, 59, 17831794. http://doi.org/16/j.neuroimage.2011.08.008CrossRefGoogle ScholarPubMed
Eustache, F., Viard, A., & Desgranges, B. (2016). The MNESIS model: Memory systems and processes, identity and future thinking. Neuropsychologia, 87, 96109. http://doi.org/10.1016/j.neuropsychologia.2016.05.006CrossRefGoogle ScholarPubMed
Evans, J. S. B. T. (2003). In two minds: Dual-process accounts of reasoning. Trends in Cognitive Sciences, 7, 454459. http://doi.org/10.1016/j.tics.2003.08.012CrossRefGoogle ScholarPubMed
Evans, J. S. B. T. (2008). Dual-processing accounts of reasoning, judgment, and social cognition. Annual Review of Psychology, 59, 255278. http://doi.org/10.1146/annurev.psych.59.103006.093629CrossRefGoogle ScholarPubMed
Evans, J. S. B. T., & Stanovich, K. E. (2013). Dual-process theories of higher cognition: Advancing the debate. Perspectives on Psychological Science, 8, 223241. http://doi.org/10.1177/1745691612460685CrossRefGoogle ScholarPubMed
Eysenck, H. J. (1993). Creativity and personality: Suggestions for a theory. Psychological Inquiry, 4, 147178. http://doi.org/10.1207/s15327965pli0403_1CrossRefGoogle Scholar
Faust, M., & Kenett, Y. N. (2014). Rigidity, chaos and integration: Hemispheric interaction and individual differences in metaphor comprehension. Frontiers in Human Neuroscience, 8, 511. http://doi.org/10.3389/fnhum.2014.00511CrossRefGoogle ScholarPubMed
Faust, M., & Lavidor, M. (2003). Semantically convergent and semantically divergent priming in the cerebral hemispheres: Lexical decision and semantic judgment. Cognitive Brain Research, 17, 585597. http://doi.org/10.1016/S0926-6410(03)00172-1CrossRefGoogle ScholarPubMed
Fedorenko, E., Duncan, J., & Kanwisher, N. (2013). Broad domain generality in focal regions of frontal and parietal cortex. Proceedings of the National Academy of Sciences of the United States of America, 110, 1661616621. http://doi.org/10.1073/pnas.1315235110CrossRefGoogle ScholarPubMed
Ferrand, L., & Alario, F. X. (1998). Normes d’associations verbales pour 366 noms d’objets concrets. L’Année Psychologique, 98, 659670.CrossRefGoogle Scholar
Fink, A., & Benedek, M. (2013). EEG alpha power and creative ideation. Neuroscience & Biobehavioral Reviews, 44, 111123. http://doi.org/10.1016/j.neubiorev.2012.12.002CrossRefGoogle Scholar
Fink, A., Koschutnig, K., Hutterer, L., Steiner, E., Benedek, M., Weber, B., … Weiss, E. M. (2013). Gray matter density in relation to different facets of verbal creativity. Brain Structure and Function, 19, 12631269. http://doi.org/10.1007/s00429-013-0564-0Google Scholar
Forster, E. A., & Dunbar, K. N. (2009). Creativity evaluation through latent semantic analysis. In Proceedings of the Annual Conference of the Cognitive Science Society (pp. 602607). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Forthmann, B., Gerwig, A., Holling, H., Çelik, P., Storme, , , M., & Lubart, T. (2016). The be-creative effect in divergent thinking: The interplay of instruction and object frequency. Intelligence, 57, 2532. http://doi.org/10.1016/j.intell.2016.03.005CrossRefGoogle Scholar
Fox, K. C. R., Spreng, R. N., Ellamil, M., Andrews-Hanna, J. R., & Christoff, K. (2015). The wandering brain: Meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes. NeuroImage, 111, 611621. http://doi.org/10.1016/j.neuroimage.2015.02.039CrossRefGoogle ScholarPubMed
Friedman, N. P., & Miyake, A. (2017). Unity and diversity of executive functions: Individual differences as a window on cognitive structure. Cortex, 86, 186204. doi:10.1016/j.cortex.2016.04.023.CrossRefGoogle ScholarPubMed
Frith, C. D., & Frith, U. (2006). The neural basis of mentalizing. Neuron, 50, 531534.CrossRefGoogle ScholarPubMed
Gabora, L. (2010). Revenge of the “neurds”: Characterizing creative thought in terms of the structure and dynamics of memory. Creativity Research Journal, 22, 113. http://doi.org/10.1080/10400410903579494CrossRefGoogle Scholar
Gabora, L., & Kauffman, S. (2015). Toward an evolutionary-predictive foundation for creativity: Commentary on “Human creativity, evolutionary algorithms, and predictive representations: The mechanics of thought trials” by Arne Dietrich and Hilde Haider, 2014. Psychonomic Bulletin & Review, 23, 632639. http://doi.org/10.3758/s13423-015-0925-1CrossRefGoogle Scholar
Gilbert, S. J., Gonen-Yaacovi, G., Benoit, R. G., Volle, E., & Burgess, P. W. (2010). Distinct functional connectivity associated with lateral versus medial rostral prefrontal cortex: A meta-analysis. NeuroImage, 53, 359367. http://doi.org/10.1016/j.neuroimage.2010.07.032CrossRefGoogle ScholarPubMed
Gilhooly, K. J., Fioratou, E., Anthony, S. H., & Wynn, V. (2007). Divergent thinking: strategies and executive involvement in generating novel uses for familiar objects. British Journal of Psychology, 98, 611625. http://doi.org/10.1348/096317907X173421CrossRefGoogle ScholarPubMed
Gonen-Yaacovi, G., Souza, L. C. de, Levy, R., Urbanski, M., Josse, G., & Volle, E. (2013). Rostral and caudal prefrontal contribution to creativity: A meta-analysis of functional imaging data. Frontiers in Human Neuroscience, 7, 465. http://doi.org/10.3389/fnhum.2013.00465CrossRefGoogle ScholarPubMed
Goñi, J., Arrondo, G., Sepulcre, J., Martincorena, I., Mendizábal, N. V. de, Corominas-Murtra, B., … Villoslada, P. (2011). The semantic organization of the animal category: Evidence from semantic verbal fluency and network theory. Cognitive Processing, 12, 183196. http://doi.org/10.1007/s10339-010-0372-xCrossRefGoogle ScholarPubMed
Goñi, J., Martincorena, , Corominas-Murtra, I., Arrondo, B., Ardanza-Trevijano, G., , S., & Villoslada, P. (2010). Switcher-random-walks: A cognitive-inspired mechanism for network exploration. International Journal of Bifurcation and Chaos, 20, 913922. http://doi.org/10.1142/S0218127410026204CrossRefGoogle Scholar
Goulden, N., Khusnulina, A., Davis, N. J., Bracewell, R. M., Bokde, A. L., McNulty, J. P., & Mullins, P. G. (2014). The salience network is responsible for switching between the default mode network and the central executive network: Replication from DCM. NeuroImage, 99, 180190. http://doi.org/10.1016/j.neuroimage.2014.05.052CrossRefGoogle Scholar
Green, A. E., Cohen, M. S., Raab, H. A., Yedibalian, C. G., & Gray, J. R. (2015). Frontopolar activity and connectivity support dynamic conscious augmentation of creative state: Neuroimaging Augmented State Creativity. Human Brain Mapping, 36, 923934. http://doi.org/10.1002/hbm.22676CrossRefGoogle Scholar
Green, A. E., Kraemer, D. J. M., Fugelsang, J. A., Gray, J. R., & Dunbar, K. N. (2010). Connecting long distance: Semantic distance in analogical reasoning modulates frontopolar cortex activity. Cerebral Cortex, 20, 7076. http://doi.org/10.1093/cercor/bhp081CrossRefGoogle ScholarPubMed
Green, A. E., Kraemer, D. J. M., Fugelsang, J. A., Gray, J. R., & Dunbar, K. N. (2012). Neural correlates of creativity in analogical reasoning. Journal of Experimental Psychology. Learning, Memory, and Cognition, 38, 264272. http://doi.org/10.1037/a0025764CrossRefGoogle ScholarPubMed
Greicius, M. D., Supekar, K., Menon, V., & Dougherty, R. F. (2009). Resting-state functional connectivity reflects structural connectivity in the default mode network. Cerebral Cortex, 19, 7278. http://doi.org/10.1093/cercor/bhn059CrossRefGoogle ScholarPubMed
Gruszka, A., & Necka, E. (2002). Priming and acceptance of close and remote associations by creative and less creative people. Creativity Research Journal, 14, 193205.CrossRefGoogle Scholar
Guilford, J. P. (1950). Creativity. American Psychologist, 5, 444454. http://doi.org/10.1037/h0063487CrossRefGoogle ScholarPubMed
Guilford, J. P. (1967). The nature of human intelligence. New York, NY: McGraw-Hill.Google Scholar
Gupta, N., Jang, Y., Mednick, S. C., & Huber, D. E. (2012). The road not taken: Creative solutions require avoidance of high-frequency responses. Psychological Science, 23, 288294. http://doi.org/10.1177/0956797611429710CrossRefGoogle Scholar
Gusnard, D. A., Akbudak, E., Shulman, G. L., & Raichle, M. E. (2001). Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function. Proceedings of the National Academy of Sciences USA, 98, 42594264.CrossRefGoogle ScholarPubMed
Hirshorn, E. A., & Thompson-Schill, S. L. (2006). Role of the left inferior frontal gyrus in covert word retrieval: Neural correlates of switching during verbal fluency. Neuropsychologia, 44, 25472557. http://doi.org/10.1016/j.neuropsychologia.2006.03.035CrossRefGoogle ScholarPubMed
Hobeika, L., Diard-Detoeuf, C., Garcin, B., Levy, R., & Volle, E. (2016). General and specialized brain correlates for analogical reasoning: A meta-analysis of functional imaging studies. Human Brain Mapping, 37, 19531969.CrossRefGoogle ScholarPubMed
Howard-Jones, P. A., Blakemore, S. J., Samuel, E. A., Summers, I. R., & Claxton, G. (2005). Semantic divergence and creative story generation: An fMRI investigation. Brain Research Cognitive Brain Research, 25, 240250.CrossRefGoogle ScholarPubMed
Jauk, E., Neubauer, A. C., Dunst, B., Fink, A., & Benedek, M. (2015). Gray matter correlates of creative potential: A latent variable voxel-based morphometry study. NeuroImage, 111, 312320. http://doi.org/10.1016/j.neuroimage.2015.02.002CrossRefGoogle ScholarPubMed
Jones, L. L., & Estes, Z. (2015). Convergent and divergent thinking in verbal analogy. Thinking & Reasoning, 21, 473500. http://doi.org/10.1080/13546783.2015.1036120CrossRefGoogle Scholar
Jung, R. E. (2014). Evolution, creativity, intelligence, and madness: “Here Be Dragons.Frontiers in Psychology, 5, 784. doi:10.3389/fpsyg.2014.00784CrossRefGoogle ScholarPubMed
Jung, R. E., Grazioplene, R., Caprihan, A., Chavez, R. S., & Haier, R. J. (2010). White matter integrity, creativity, and psychopathology: Disentangling constructs with diffusion tensor imaging. PLoS ONE, 5, e9818. http://doi.org/10.1371/journal.pone.0009818CrossRefGoogle ScholarPubMed
Jung, R. E., & Haier, R. J. (2007). The Parieto-Frontal Integration Theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behavioural and Brain Sciences, 30, 135154.CrossRefGoogle ScholarPubMed
Jung, R. E., & Haier, R. J. (2013). Creativity and intelligence: Brain networks that link and differentiate the expression of genius. In Vartanian, O., Bristol, A. S., & Kaufman, J. C. (Eds.), The neuroscience of creativity (pp. 233254). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Jung, R. E., Mead, B. S., Carrasco, J., & Flores, R. A. (2013). The structure of creative cognition in the human brain. Frontiers in Human Neuroscience, 7, 330. http://doi.org/10.3389/fnhum.2013.00330CrossRefGoogle ScholarPubMed
Jung, R. E., Segall, J. M., Bockholt, H. J., Flores, R. A., Smith, S. M., Chavez, R. S., & Haier, R. J. (2010). Neuroanatomy of creativity. Human Brain Mapping, 31, 398409. http://doi.org/10.1002/hbm.20874CrossRefGoogle ScholarPubMed
Jung, R. E., Wertz, C. J., Meadows, C. A., Ryman, S. G., Vakhtin, A. A., & Flores, R. A. (2015). Quantity yields quality when it comes to creativity: A brain and behavioral test of the equal-odds rule. Frontiers in Psychology, 6, 864. http://doi.org/10.3389/fpsyg.2015.00864CrossRefGoogle ScholarPubMed
Kahneman, D. (2012). Thinking, fast and slow. London: Penguin.Google Scholar
Kaufman, J. C., & Baer, J. (2012). Beyond new and appropriate: Who decides what is creative? Creativity Research Journal, 24, 8391. http://doi.org/10.1080/10400419.2012.649237CrossRefGoogle Scholar
Kenett, Y., & Austerweil, J. (2016). Examining search processes in low and high creative individuals with random walks. In Papafragou, A., Grodner, D., Mirman, D., & Trueswell, J. C. (Eds.), Proceedings of the 38th Annual Meeting of the Cognitive Science Society (pp. 313318). Austin, TX: Cognitive Science Society.Google Scholar
Kenett, Y. N., Anaki, D., & Faust, M. (2014). Investigating the structure of semantic networks in low and high creative persons. Frontiers in Human Neuroscience, 8, 407. http://doi.org/10.3389/fnhum.2014.00407CrossRefGoogle ScholarPubMed
Kenett, Y. N., Beaty, R. E., Silvia, P. J., Anaki, D., & Faust, M. (2016). Structure and flexibility: Investigating the relation between the structure of the mental lexicon, fluid intelligence, and creative achievement. Psychology of Aesthetics, Creativity, and the Arts. Advance online publication. http://dx.doi.org/10.1037/aca0000056CrossRefGoogle Scholar
Kenett, Y. N., Gold, R., & Faust, M. (2016). The hyper-modular associative mind: A computational analysis of associative responses of persons with Asperger Syndrome. Language and Speech, 59, 297317. http://doi.org/10.1177/0023830915589397CrossRefGoogle ScholarPubMed
Kenett, Y. N., Kenett, D. Y., Ben-Jacob, E., & Faust, M. (2011). Global and local features of semantic networks: Evidence from the Hebrew mental lexicon. PLoS ONE, 6, e23912. http://doi.org/10.1371/journal.pone.0023912CrossRefGoogle ScholarPubMed
Kim, H. (2010). Dissociating the roles of the default-mode, dorsal, and ventral networks in episodic memory retrieval. NeuroImage, 50, 16481657. http://doi.org/10.1016/j.neuroimage.2010.01.051CrossRefGoogle ScholarPubMed
Kim, H. (2016). Default network activation during episodic and semantic memory retrieval: A selective meta-analytic comparison. Neuropsychologia, 80, 3546. http://doi.org/10.1016/j.neuropsychologia.2015.11.006CrossRefGoogle ScholarPubMed
Kim, K. (2008). Meta-analyses of the relationship of creative achievement to both IQ and divergent thinking test scores. The Journal of Creative Behavior, 42, 106130.CrossRefGoogle Scholar
Kim, K. H. (2006). Can we trust creativity TTSTs? A review of the Torrance Tests of Creative Thinking (TTCT). Creativity Research Journal, 18, 314. http://doi.org/10.1207/s15326934crj1801_2CrossRefGoogle Scholar
Koechlin, E., Ody, C., & Kouneiher, F. (2003). The architecture of cognitive control in the human prefrontal cortex. Science, 302, 11811185.CrossRefGoogle ScholarPubMed
Konishi, S., Hirose, S., Jimura, K., Chikazoe, J., Watanabe, T., Kimura, H. M., & Miyashita, Y. (2010). Medial prefrontal activity during shifting under novel situations. Neuroscience Letters, 484, 182186. http://doi.org/16/j.neulet.2010.08.047CrossRefGoogle ScholarPubMed
Kozbelt, A., Beghetto, R. A., & Runco, M. A. (2010). Theories of creativity. In Kaufman, J. C., & Sternberg, R. J. (Eds.), The Cambridge handbook of creativity (pp. 2047). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Kühn, S., Ritter, S. M., Müller, B. C., Baaren, , Brass, R. B., , M., & Dijksterhuis, A. (2014). The importance of the default mode network in creativity – A structural MRI study. The Journal of Creative Behavior, 48, 152163.CrossRefGoogle Scholar
Kveraga, K., Ghuman, A. S., Kassam, K. S., Aminoff, E. A., Hamalainen, M. S., Chaumon, M., & Bar, M. (2011). Early onset of neural synchronization in the contextual associations network. Proceedings of the National Academy of Sciences, 108, 33893394. http://doi.org/10.1073/pnas.1013760108CrossRefGoogle ScholarPubMed
Landauer, T. (1997). A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 104, 211240.CrossRefGoogle Scholar
Lee, C. S., & Therriault, D. J. (2013). The cognitive underpinnings of creative thought: A latent variable analysis exploring the roles of intelligence and working memory in three creative thinking processes. Intelligence, 41, 306320. http://doi.org/10.1016/j.intell.2013.04.008CrossRefGoogle Scholar
Lerner, A. J., Ogrocki, P. K., & Thomas, P. J. (2009). Network graph analysis of category fluency testing. Cognitive and Behavioral Neurology, 22, 4552.CrossRefGoogle ScholarPubMed
Lubart, T., Mouchiroud, C., Tordjman, S., & Zenasni, F. (2015). Psychologie de la créativité (2nd ed.). Paris: Armand Colin.Google Scholar
Maki, W. S., & Buchanan, E. (2008). Latent structure in measures of associative, semantic, and thematic knowledge. Psychonomic Bulletin & Review, 15, 598603.CrossRefGoogle ScholarPubMed
Martindale, C., & Mines, D. (1975). Creativity and cortical activation during creative, intellectual and eeg feedback tasks. Biological Psychology, 3, 91100. http://doi.org/10.1016/0301-0511(75)90011-3CrossRefGoogle ScholarPubMed
Marupaka, N., Iyer, L. R., & Minai, A. A. (2012). Connectivity and thought: The influence of semantic network structure in a neurodynamical model of thinking. Neural Networks, 32, 147. http://doi.org/10.1016/j.neunet.2012.02.004CrossRefGoogle Scholar
Mason, M. F., Norton, M. I., Van Horn, J. D., Wegner, D. M., Grafton, S. T., & Macrae, C. N. (2007). Wandering minds: The default network and stimulus-independent thought. Science, 315, 393395.CrossRefGoogle ScholarPubMed
Mayseless, N., Eran, A., & Shamay-Tsoory, S. G. (2014). Generating original ideas: The neural underpinning of originality. NeuroImage, 64, 157168.Google Scholar
Mayseless, N., & Shamay-Tsoory, S. G. (2015). Enhancing verbal creativity: Modulating creativity by altering the balance between right and left inferior frontal gyrus with tDCS. Neuroscience, 291, 167176. http://doi.org/10.1016/j.neuroscience.2015.01.061CrossRefGoogle ScholarPubMed
McDonald, C. R., Crosson, B., Valenstein, E., & Bowers, D. (2001). Verbal encoding deficits in a patient with a left retrosplenial lesion. Neurocase, 7, 407417. http://doi.org/10.1076/neur.7.5.407.16250CrossRefGoogle Scholar
Mednick, M. T., Mednick, S. A., & Jung, C. C. (1964). Continual association as a function of level of creativity and type of verbal stimulus. Journal of Abnormal Psychology, 69, 511515.CrossRefGoogle ScholarPubMed
Mednick, M. T., Mednick, S. A., & Mednick, E. V. (1964). Incubation of creative performance and specific associative priming. Journal of Abnormal Psychology, 69, 8488.CrossRefGoogle ScholarPubMed
Mednick, S. A. (1962). The associative basis of the creative process. Psychological Review, 69, 220232.CrossRefGoogle ScholarPubMed
Mendelsohn, G. A. (1976). Associative and attentional processes in creative performance 1. Journal of Personality, 44(2), 341369. http://doi.org/10.1111/j.1467-6494.1976.tb00127CrossRefGoogle Scholar
Mendez, M. F. (2004). Dementia as a window to the neurology of art. Medical Hypotheses, 63, 17.CrossRefGoogle Scholar
Merten, T., & Fischer, I. (1999). Creativity, personality and word association responses: Associative behaviour in forty supposedly creative persons. Personality and Individual Differences, 27, 933942. http://doi.org/10.1016/S0191-8869(99)00042-2CrossRefGoogle Scholar
Miller, L. A., & Tippett, L. J. (1996). Effects of focal brain lesions on visual problem-solving. Neuropsychologia, 34, 387398. http://doi.org/10.1016/0028-3932(95)00116-6CrossRefGoogle ScholarPubMed
Mok, L. W. (2014). The interplay between spontaneous and controlled processing in creative cognition. Frontiers in Human Neuroscience, 8, 663. http://doi.org/10.3389/fnhum.2014.00663CrossRefGoogle ScholarPubMed
Morais, A. S., Olsson, H., & Schooler, L. J. (2013). Mapping the structure of semantic memory. Cognitive Science, 37, 125145. http://doi.org/10.1111/cogs.12013CrossRefGoogle ScholarPubMed
Nelson, D. L., Dyrdal, G. M., & Goodmon, L. B. (2005). What is preexisting strength? Predicting free association probabilities, similarity ratings, and cued recall probabilities. Psychonomic Bulletin & Review, 12, 711719.CrossRefGoogle ScholarPubMed
Nijstad, B. A., De Dreu, C. K. W., Rietzschel, E. F., & Baas, M. (2010). The dual pathway to creativity model: Creative ideation as a function of flexibility and persistence. European Review of Social Psychology, 21, 3477.CrossRefGoogle Scholar
Noonan, K. A., Jefferies, E., Visser, M., & Lambon Ralph, M. A. (2013). Going beyond inferior prefrontal involvement in semantic control: Evidence for the additional contribution of dorsal angular gyrus and posterior middle temporal cortex. Journal of Cognitive Neuroscience, 25, 18241850.CrossRefGoogle ScholarPubMed
Northoff, G. (2011). Self and brain: What is self-related processing? Trends in Cognitive Sciences, 15, 186187. http://doi.org/16/j.tics.2011.03.001CrossRefGoogle ScholarPubMed
Nusbaum, E. C., & Silvia, P. J. (2011). Are intelligence and creativity really so different? Fluid intelligence, executive processes, and strategy use in divergent thinking. Intelligence, 39, 3645.CrossRefGoogle Scholar
Perret, E. (1974). The left frontal lobe of man and the suppression of habitual responses in verbal categorical behaviour. Neuropsychologia, 12, 323330.CrossRefGoogle ScholarPubMed
Plucker, J. A., & Makel, M. C. (2010). Assessment of creativity. In Kaufman, J. C. & Sternberg, R. J. (Eds.), The Cambridge handbook of creativity (pp. 4873). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Plucker, J. A., Qian, M., & Schmalensee, S. L. (2014). Is what you see what you really get? Comparison of scoring techniques in the assessment of real-world divergent thinking. Creativity Research Journal, 26, 135143. http://doi.org/10.1080/10400419.2014.901023CrossRefGoogle Scholar
Power, J. D., & Petersen, S. E. (2013). Control-related systems in the human brain. Current Opinion in Neurobiology, 23, 223228.CrossRefGoogle ScholarPubMed
Prabhakaran, R., Green, A. E., & Gray, J. R. (2013). Thin slices of creativity: Using single-word utterances to assess creative cognition. Behavior Research Methods, 46, 641659. http://doi.org/10.3758/s13428-013-0401-7CrossRefGoogle Scholar
Radel, R., Davranche, K., Fournier, M., & Dietrich, A. (2015). The role of (dis)inhibition in creativity: Decreased inhibition improves idea generation. Cognition, 134, 110120. http://doi.org/10.1016/j.cognition.2014.09.001CrossRefGoogle ScholarPubMed
Raichle, M. E. (2015). The restless brain: How intrinsic activity organizes brain function. Philosophical Transactions of the Royal Society B: Biological Sciences, 370, 20140172. http://doi.org/10.1098/rstb.2014.0172CrossRefGoogle ScholarPubMed
Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences USA, 98, 676682.CrossRefGoogle ScholarPubMed
Rankin, K. P., Liu, A. A., Howard, S., Slama, H., Hou, C. E., Shuster, K., & Miller, B. L. (2007). A case-controlled study of altered visual art production in Alzheimer’s and FTLD. Cognitive and Behavioral Neurology, 20, 4861. http://doi.org/10.1097/WNN.0b013e31803141ddCrossRefGoogle ScholarPubMed
Ritter, S. M., & Dijksterhuis, A. (2014). Creativity – The unconscious foundations of the incubation period. Frontiers in Human Neuroscience, 8, 215. http://doi.org/10.3389/fnhum.2014.00215CrossRefGoogle ScholarPubMed
Ritter, S. M., van Baaren, R. B., & Dijksterhuis, A. (2012). Creativity: The role of unconscious processes in idea generation and idea selection. Thinking Skills and Creativity, 7, 2127. http://doi.org/10.1016/j.tsc.2011.12.002CrossRefGoogle Scholar
Rossmann, E., & Fink, A. (2010). Do creative people use shorter associative pathways? Personality and Individual Differences, 49, 891895. http://doi.org/10.1016/j.paid.2010.07.025CrossRefGoogle Scholar
Runco, M. A. (2010). Divergent thinking, creativity, and ideation. In Kaufman, J. C. & Sternberg, R. J. (Eds.), The Cambridge handbook of creativity. Cambridge: Cambridge University Press.Google Scholar
Runco, M. A., & Acar, S. (2012). Divergent thinking as an indicator of creative potential. Creativity Research Journal, 24, 6675. http://doi.org/10.1080/10400419.2012.652929CrossRefGoogle Scholar
Schacter, D. L., Addis, D. R., & Buckner, R. L. (2007). Remembering the past to imagine the future: The prospective brain. Nature Reviews Neuroscience, 8, 657661. http://doi.org/10.1038/nrn2213CrossRefGoogle ScholarPubMed
Schilling, M. A. (2005). A “small-world” network model of cognitive insight. Creativity Research Journal, 17, 131154.CrossRefGoogle Scholar
Schott, G. D. (2012). Pictures as a neurological tool: Lessons from enhanced and emergent artistry in brain disease. Brain, 135, 19471963. http://doi.org/10.1093/brain/awr314CrossRefGoogle ScholarPubMed
Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., … Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of Neuroscience, 27, 23492356. http://doi.org/10.1523/JNEUROSCI.5587-06.2007CrossRefGoogle ScholarPubMed
Shah, C., Erhard, K., Ortheil, H.-J., Kaza, E., Kessler, C., & Lotze, M. (2013). Neural correlates of creative writing: An fMRI study. Human Brain Mapping, 34, 10881101. http://doi.org/10.1002/hbm.21493CrossRefGoogle ScholarPubMed
Shallice, T., Fletcher, P., Frith, C. D., Grasby, P., Frackowiak, R. S., & Dolan, R. J. (1994). Brain regions associated with acquisition and retrieval of verbal episodic memory. Nature, 368, 633635. http://doi.org/10.1038/368633a0CrossRefGoogle ScholarPubMed
Shamay-Tsoory, S. G., Adler, N., Aharon-Peretz, J., Perry, D., & Mayseless, N. (2011). The origins of originality: The neural bases of creative thinking and originality. Neuropsychologia, 49, 178185. http://doi.org/10.1016/j.neuropsychologia.2010.11.020CrossRefGoogle ScholarPubMed
Shapira-Lichter, I., Oren, N., Jacob, Y., Gruberger, M., & Hendler, T. (2013). Portraying the unique contribution of the default mode network to internally driven mnemonic processes. Proceedings of the National Academy of Sciences USA, 110, 49504955. http://doi.org/10.1073/pnas.1209888110CrossRefGoogle ScholarPubMed
Silvia, P. J. (2008a). Creativity and intelligence revisited: A latent variable analysis of Wallach and Kogan (1965). Creativity Research Journal, 20, 3439. http://doi.org/10.1080/10400410701841807CrossRefGoogle Scholar
Silvia, P. J. (2008b). Discernment and creativity: How well can people identify their most creative ideas? Psychology of Aesthetics, Creativity, and the Arts, 2, 139146. http://doi.org/10.1037/1931-3896.2.3.139CrossRefGoogle Scholar
Silvia, P. J., Beaty, R. E., & Nusbaum, E. C. (2013). Verbal fluency and creativity: General and specific contributions of broad retrieval ability (Gr) factors to divergent thinking. Intelligence, 41, 328340. http://doi.org/10.1016/j.intell.2013.05.004CrossRefGoogle Scholar
Silvia, P. J., Nusbaum, E. C., & Beaty, R. E. (2015). Old or new? Evaluating the old/new scoring method for divergent thinking tasks. The Journal of Creative Behavior. http://doi.org/10.1002/jocb.101Google Scholar
Simonton, D. K. (2015). On praising convergent thinking: Creativity as blind variation and Sslective retention. Creativity Research Journal, 27, 262270. http://doi.org/10.1080/10400419.2015.1063877CrossRefGoogle Scholar
Singer, J. L. (1993). Experimental studies of ongoing conscious experience. In Bock, G. R., & Marsh, J. (Eds.), Ciba Foundation Symposium 174: Experimental and Theoretical Studies of consciousness. Chichester: John Wiley and Sons.Google Scholar
Sio, U. N., & Ormerod, T. C. (2009). Does incubation enhance problem solving? A meta-analytic review. Psychological Bulletin, 135, 94120. http://doi.org/10.1037/a0014212CrossRefGoogle ScholarPubMed
Smallwood, J., & Schooler, J. W. (2015). The science of mind wandering: Empirically navigating the stream of consciousness. Annual Review of Psychology, 66, 487518. http://doi.org/10.1146/annurev-psych-010814-015331CrossRefGoogle ScholarPubMed
Smith, K. A., Huber, D. E., & Vul, E. (2013). Multiply-constrained semantic search in the Remote Associates Test. Cognition, 128, 6475. http://doi.org/10.1016/j.cognition.2013.03.001CrossRefGoogle ScholarPubMed
Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., … Beckmann, C. F. (2009). Correspondence of the brain’s functional architecture during activation and rest. Proceedings of the National Academy of Sciences USA, 106, 1304013045. http://doi.org/10.1073/pnas.0905267106CrossRefGoogle ScholarPubMed
Snyder, A., Mitchel, D., Bossomaier, T., & Pallier, G. (2004). The Creativity Quotient, an objective scoring of ideational fluency. Creativity Research Journal, 16, 415420.CrossRefGoogle Scholar
Sowden, P., Pringle, A., & Gabora, L. (2015). The shifting sands of creative thinking: Connections to dual process theory and implications for creativity training. Thinking and Reasoning, 21, 4060.CrossRefGoogle Scholar
Spreng, R. N., DuPre, E., Selarka, D., Garcia, J., Gojkovic, S., Mildner, J., … & Turner, G. R. (2014). Goal-congruent default network activity facilitates cognitive control. The Journal of Neuroscience, 34, 1410814114. http://doi.org/10.1523/JNEUROSCI.2815-14.2014CrossRefGoogle ScholarPubMed
Spreng, R. N., Stevens, W. D., Chamberlain, J. P., Gilmore, A. W., & Schacter, D. L. (2010). Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. NeuroImage, 53, 303317. http://doi.org/16/j.neuroimage.2010.06.016CrossRefGoogle ScholarPubMed
Sridharan, D., Levitin, D. J., & Menon, V. (2008). A critical role for the right frontoinsular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences USA, 105, 1256912574. http://doi.org/10.1073/pnas.0800005105CrossRefGoogle ScholarPubMed
Steyvers, M., Shiffrin, R. M., & Nelson, D. L. (2004). Word association spaces for predicting semantic similarity effects in episodic memory. In Healy, A. F. (Ed.), Experimental cognitive psychology and its applications (pp. 237249). Washington, DC: American Psychological Association.Google Scholar
Takeuchi, H., Taki, Y., Hashizume, H., Sassa, Y., Nagase, T., Nouchi, R., & Kawashima, R. (2011). Failing to deactivate: The association between brain activity during a working memory task and creativity. NeuroImage, 55, 681687. http://doi.org/10.1016/j.neuroimage.2010.11.052CrossRefGoogle ScholarPubMed
Takeuchi, H., Taki, Y., Hashizume, H., Sassa, Y., Nagase, T., Nouchi, R., & Kawashima, R. (2012). The association between resting functional connectivity and creativity. Cerebral Cortex, 22, 29212929. http://doi.org/10.1093/cercor/bhr371CrossRefGoogle ScholarPubMed
Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima, A., & Kawashima, R. (2010a). Regional gray matter volume of dopaminergic system associate with creativity: Evidence from voxel-based morphometry. NeuroImage, 51, 578585. http://doi.org/10.1016/j.neuroimage.2010.02.078CrossRefGoogle ScholarPubMed
Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima, A., & Kawashima, R. (2010b). White matter structures associated with creativity: Evidence from diffusion tensor imaging. NeuroImage, 51, 1118. http://doi.org/10.1016/j.neuroimage.2010.02.035CrossRefGoogle ScholarPubMed
Thompson-Schill, S. L., & Botvinick, M. M. (2006). Resolving conflict: A response to Martin and Cheng (2006). Psychonomic Bulletin and Review, 13, 402408.CrossRefGoogle ScholarPubMed
Torrance, E. P. (2004). Un résumé historique du développement des tests de pensée créative de Torrance. Revue Européenne de Psychologie Appliquée/European Review of Applied Psychology, 54, 5763. http://doi.org/10.1016/j.erap.2004.01.003CrossRefGoogle Scholar
Troyer, A. K. (2000). Normative data for clustering and switching on verbal fluency tasks. Journal of Clinical and Experimental Neuropsychology, 22, 370378. http://doi.org/10.1076/1380–3395(200006)22:3;1-V;FT370CrossRefGoogle ScholarPubMed
Troyer, A. K., Moscovitch, M., & Winocur, G. (1997). Clustering and switching as two components of verbal fluency: Evidence from younger and older healthy adults. Neuropsychology, 11, 138146.CrossRefGoogle ScholarPubMed
Troyer, A. K., Moscovitch, M., Winocur, G., Alexander, M. P., & Stuss, D. (1998). Clustering and switching on verbal fluency: The effects of focal frontal- and temporal-lobe lesions. Neuropsychologia, 36, 499504. http://doi.org/10.1016/S0028-3932(97)00152-8CrossRefGoogle ScholarPubMed
Unsworth, N., Spillers, G. J., & Brewer, G. A. (2011). Variation in verbal fluency: A latent variable analysis of clustering, switching, and overall performance. The Quarterly Journal of Experimental Psychology, 64, 447466. http://doi.org/10.1080/17470218.2010.505292CrossRefGoogle ScholarPubMed
Urbanski, M., Bréchemier, M., Garcin, B., Bendetowicz, D., Foulon, C., Thiebaut de Schotten, M., … Volle, E. (2016). Reasoning by analogy requires the left frontal pole: Lesion-deficit mapping and clinical implications. Brain, 139, 17831799.CrossRefGoogle ScholarPubMed
Varga, A. L., & Hamburger, K. (2014). Beyond type 1 vs. type 2 processing: The tri-dimensional way. Cognitive Science, 5, 993. http://doi.org/10.3389/fpsyg.2014.00993Google ScholarPubMed
Vartanian, O. (2009). Variable attention facilitates creative problem solving. Psychology of Aesthetics, Creativity, and the Arts, 3, 5759.CrossRefGoogle Scholar
Vartanian, O., Martindale, C., & Kwiatkowski, J. (2007). Creative potential, attention, and speed of information processing. Personality and Individual Differences, 43, 14701480. http://doi.org/10.1016/j.paid.2007.04.027CrossRefGoogle Scholar
Vartanian, O., Martindale, C., & Matthews, J. (2009). Divergent thinking ability is related to faster relatedness judgments. Psychology of Aesthetics, Creativity, and the Arts, 3, 99103. http://doi.org/10.1037/a0013106CrossRefGoogle Scholar
Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E., & Buckner, R. L. (2008). Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. Journal of Neurophysiology, 100, 33283342. http://doi.org/10.1152/jn.90355.2008CrossRefGoogle ScholarPubMed
Volle, E., Kinkingnéhun, S., Pochon, J.-B., Mondon, K., Thiebaut de Schotten, M., Seassau, M., … Levy, R. (2008). The functional architecture of the left posterior and lateral prefrontal cortex in humans. Cerebral Cortex, 18, 24602469. http://doi.org/10.1093/cercor/bhn010CrossRefGoogle ScholarPubMed
Volle, E., Levy, R., & Burgess, P. W. (2013). A new era for lesion-behavior mapping of prefrontal functions. In Stuss, D. T. & Knight, R. T. (Eds.), Principles of frontal lobe function (pp. 500523). New York, NY: Oxford University Press.Google Scholar
Ward, T. B. (2007). Creative cognition as a window on creativity. Methods, 42, 2837.CrossRefGoogle ScholarPubMed
Ward, T. B., & Kolomyts, Y. (2010). Cognition and creativity. In Kaufman, J. C., & Sternberg, R. J. (Eds.), The Cambridge handbook of creativity (pp. 93112). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Wei, D., Yang, J., Li, W., Wang, K., Zhang, Q., & Qiu, J. (2014). Increased resting functional connectivity of the medial prefrontal cortex in creativity by means of cognitive stimulation. Cortex, 51, 92102. http://doi.org/10.1016/j.cortex.2013.09.004CrossRefGoogle ScholarPubMed
Wei, T., Liang, X., He, Y., Zang, Y., Han, Z., Caramazza, A., & Bi, Y. (2012). Predicting conceptual processing capacity from spontaneous neuronal activity of the left middle temporal gyrus. The Journal of Neuroscience, 32, 481489. http://doi.org/10.1523/JNEUROSCI.1953-11.2012CrossRefGoogle ScholarPubMed
Wiggins, G., & Bhattacharya, J. (2014). Mind the gap: An attempt to bridge computational and neuroscientific approaches to study creativity. Frontiers in Human Neuroscience, 8, 540.CrossRefGoogle ScholarPubMed
Wirth, M., Jann, K., Dierks, T., Federspiel, A., Wiest, R., & Horn, H. (2011). Semantic memory involvement in the default mode network: A functional neuroimaging study using independent component analysis. NeuroImage, 54, 30573066. http://doi.org/10.1016/j.neuroimage.2010.10.039CrossRefGoogle ScholarPubMed
Woolgar, A., Parr, A., Cusack, R., Thompson, R., Nimmo-Smith, I., Torralva, T., … Duncan, J. (2010). Fluid intelligence loss linked to restricted regions of damage within frontal and parietal cortex. Proceedings of the National Academy of Sciences USA, 107, 1489914902. http://doi.org/10.1073/pnas.1007928107CrossRefGoogle ScholarPubMed
Wu, X., Yang, W., Tong, D., Sun, J., Chen, Q., Wei, D., … Qiu, J. (2015). A meta-analysis of neuroimaging studies on divergent thinking using activation likelihood estimation. Human Brain Mapping, 36, 27032718. http://doi.org/10.1002/hbm.22801CrossRefGoogle ScholarPubMed
Yaniv, I., & Meyer, D. E. (1987). Activation and metacognition of inaccessible stored information: Potential bases for incubation effects in problem solving. Journal of Experimental Psychology. Learning, Memory, and Cognition, 13, 187205.CrossRefGoogle ScholarPubMed
Zabelina, D. L., & Andrews-Hanna, J. R. (2016). Dynamic network interactions supporting internally-oriented cognition. Current Opinion in Neurobiology, 40, 8693.CrossRefGoogle ScholarPubMed
Zabelina, D. L., & Robinson, M. D. (2010). Child’s play: Facilitating the originality of creative output by a priming manipulation. Psychology of Aesthetics, Creativity, and the Arts, 4, 5765. http://doi.org/10.1037/a0015644CrossRefGoogle Scholar
Zeng, L., Proctor, R. W., & Salvendy, G. (2011). Can traditional divergent thinking tests be trusted in measuring and predicting real-world creativity? Creativity Research Journal, 23, 2437.CrossRefGoogle Scholar
Zhong, C.-B., Dijksterhuis, A., & Galinsky, A. D. (2008). The merits of unconscious thought in creativity. Psychological Science, 19, 912918. http://doi.org/10.1111/j.1467-9280.2008.02176.xCrossRefGoogle ScholarPubMed
Zhu, F., Zhang, Q., & Qiu, J. (2013). Relating inter-individual differences in verbal creative thinking to cerebral structures: An optimal voxel-based morphometry study. PLoS ONE, 8, e79272. http://doi.org/10.1371/journal.pone.0079272CrossRefGoogle ScholarPubMed
Zmigrod, S., Zmigrod, L., & Hommel, B. (2015). Zooming into creativity: Individual differences in attentional global–local biases are linked to creative thinking. Frontiers in Psychology, 6, 1647. http://doi.org/10.3389/fpsyg.2015.01647CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×