Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T07:12:03.268Z Has data issue: false hasContentIssue false

3 - Parenting and Brain Development

from Part I - Foundations of Parenting

Published online by Cambridge University Press:  01 December 2022

Amanda Sheffield Morris
Affiliation:
Oklahoma State University
Julia Mendez Smith
Affiliation:
University of North Carolina, Greensboro
Get access

Summary

The quality of the caregiving environment is one of the most impactful elements on youth’s development, with evidence suggesting these experiences are embedded at the neural level. This chapter reviews empirical research characterizing relations between parenting and child and adolescent brain development with respect to a full continuum of maladaptive to adaptive parenting behavior. We consider evidence directly linking parental factors on neural indices of development, as well as growing evidence characterizing individual differences in neurobiological susceptibility to the caregiving environment. We conclude with a discussion of future directions for this research.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abercrombie, E. D., Keefe, K. A., DiFrischia, D. S., & Zigmond, M. J. (1989). Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. Journal of Neurochemistry, 52, 16551658. https://doi.org/10.1111/j.1471-4159.1989.tb09224.xGoogle Scholar
Amato, P. R., & Fowler, F. (2002). Parenting practices, child adjustment, and family diversity. Journal of Marriage and Family, 64, 703716. https://doi.org/10.1111/j.1741-3737.2002.00703.xGoogle Scholar
Andersen, S. L., Tomada, A., Vincow, E. S., Valente, E., Polcari, A., & Teicher, M. H. (2008). Preliminary evidence for sensitive periods in the effect of childhood sexual abuse on regional brain development. The Journal of Neuropsychiatry and Clinical Neurosciences, 20, 292301.Google Scholar
Barbosa, C., Simmons, J. G., Vijayakumar, N. et al. (2018). Interaction between parenting styles and adrenarcheal timing associated with affective brain function in late childhood. Journal of the American Academy of Child & Adolescent Psychiatry, 57, 678686. https://doi.org/10.1016/j.jaac.2018.05.016CrossRefGoogle ScholarPubMed
Belsky, J., & de Haan, M. (2011). Annual research review: Parenting and children’s brain development: The end of the beginning. Journal of Child Psychology and Psychiatry, 52, 409428. https://doi.org/10.1111/j.1467-8721.2007.00525.xCrossRefGoogle ScholarPubMed
Belsky, J., & Pluess, M. (2009). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135, 885908. https://doi.org/10.1037/a0017376CrossRefGoogle ScholarPubMed
Bernier, A., Dégeilh, F., Leblanc, É., Daneault, V., Bailey, H. N., & Beauchamp, M. H. (2019). Mother–infant interaction and child brain morphology: A multidimensional approach to maternal sensitivity. Infancy, 24, 120138. https://doi.org/10.1111/infa.12270CrossRefGoogle ScholarPubMed
Blair, R. J. R., Veroude, K., & Buitelaar, J. K. (2018). Neuro-cognitive system dysfunction and symptom sets: A review of fMRI studies in youth with conduct problems. Neuroscience & Biobehavioral Reviews, 91, 6990. https://doi.org/10.1016/j.neubiorev.2016.10.022Google Scholar
Blakemore, S. J. (2012). Imaging brain development: The adolescent brain. Neuroimage, 61, 397406. https://doi.org/10.1016/j.neuroimage.2011.11.080Google Scholar
Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I. An evolutionary–developmental theory of the origins and functions of stress reactivity. Development and Psychopathology, 17, 271301. https://doi.org/10.10170S0954579405050145Google Scholar
Busso, D. S., McLaughlin, K. A., Brueck, S., Peverill, M., Gold, A. L., & Sheridan, M. A. (2017). Child abuse, neural structure, and adolescent psychopathology: A longitudinal study. Journal of the American Academy of Child & Adolescent Psychiatry, 56, 321328. https://doi.org/10.1016/j.jaac.2017.01.013Google Scholar
Bremner, J. D., Randall, P., Vermetten, E. et al. (1997). Magnetic resonance imaging-based measurement of hippocampal volume in posttraumatic stress disorder related to childhood physical and sexual abuse – A preliminary report. Biological Psychiatry, 41, 2332. https://doi.org/10.1016/S0006–3223(96)00162-XCrossRefGoogle ScholarPubMed
Brenhouse, H., Lukkes, J., & Andersen, S. (2013). Early life adversity alters the developmental profiles of addiction-related prefrontal cortex circuitry. Brain Sciences, 3, 143158. https://doi.org/10.3390/brainsci3010143Google Scholar
Burani, K., Mulligan, E. M., Klawohn, J., Luking, K. R., Nelson, B. D., & Hajcak, G. (2019). Longitudinal increases in reward-related neural activity in early adolescence: Evidence from event-related potentials (ERPs). Developmental Cognitive Neuroscience, 36, e100620. https://doi.org/10.1016/j.dcn.2019.100620Google Scholar
Cabib, S & Puglisi-Allegra, S. (1996). Stress, depression and the mesolimbic dopamine system. Psychopharmacology, 128, 331342.Google Scholar
Cai, L., Dong, Q., & Niu, H. (2018). The development of functional network organization in early childhood and early adolescence: A resting-state fNIRS study. Developmental Cognitive Neuroscience, 30, 223235. https://doi.org/10.1016/j.dcn.2018.03.003Google Scholar
Callaghan, B. L., & Tottenham, N. (2016). The stress acceleration hypothesis: Effects of early-life adversity on emotion circuits and behavior. Current Opinion in Behavioral Sciences, 7, 7681. https://doi.org/10.1016/j.cobeha.2015.11.018Google Scholar
Casement, M. D., Guyer, A. E., Hipwell, A. E. et al. (2014). Girls’ challenging social experiences in early adolescence predict neural response to rewards and depressive symptoms. Developmental Cognitive Neuroscience, 8, 1827. https://doi.org/10.1016/j.dcn.2013.12.003Google Scholar
Casey, B. J., Heller, A. S., Gee, D. G., & Cohen, A. O. (2019). Development of the emotional brain. Neuroscience Letters, 693, 2934. https://doi.org/10.1016/j.neulet.2017.11.055Google Scholar
Chaplin, T. M., Poon, J. A., Thompson, J. C. et al. (2019). Sex‐differentiated associations among negative parenting, emotion‐related brain function, and adolescent substance use and psychopathology symptoms. Social Development, 28, 637656. https://doi.org/10.1111/sode.12364Google Scholar
Cicchetti, D., & Cohen, D. J. (1995). Perspectives on developmental psychopathology. In Cicchetti, D. & Cohen, D. J. (Eds.), Developmental psychopathology, Vol. 1. Theory and methods (pp. 320). John Wiley & Sons.Google Scholar
Corral-Frías, N. S., Nikolova, Y. S., Michalski, L. J., Baranger, D. A., Hariri, A. R., & Bogdan, R. (2015). Stress-related anhedonia is associated with ventral striatum reactivity to reward and transdiagnostic psychiatric symptomatology. Psychological Medicine, 45, 26052617. https://doi.org/10.1017/S0033291715000525CrossRefGoogle ScholarPubMed
Colich, N. L., Rosen, M. L., Williams, E. S., & McLaughlin, K. A. (2020). Biological aging in childhood and adolescence following experiences of threat and deprivation: A systematic review and meta-analysis. Psychological Bulletin, 146, 721764. https://doi.org/10.1037/bul0000270CrossRefGoogle ScholarPubMed
Deane, C., Vijayakumar, N., Allen, N. B. et al. (2019). Parenting x brain development interactions as predictors of adolescent depressive symptoms and well-being: Differential susceptibility or diathesis-stress?. Development and Psychopathology, 1–12. https://doi.org/10.1017/S0954579418001475Google Scholar
Dillon, D. G., Holmes, A. J., Birk, J. L., Brooks, N., Lyons-Ruth, K., & Pizzagalli, D. A. (2009). Childhood adversity is associated with left basal ganglia dysfunction during reward anticipation in adulthood. Biological Psychiatry, 66, 206213. https://doi.org/10.1016/j.biopsych.2009.02.019Google Scholar
Dosenbach, N. U., Nardos, B., Cohen, A. L. et al. (2010). Prediction of individual brain maturity using fMRI. Science, 329, 13581361. https://doi.org/10.1126/science.1194144CrossRefGoogle ScholarPubMed
Feldman, R. (2012). Parent–infant synchrony: A biobehavioral model of mutual influences in the formation of affiliative bonds. Monographs of the Society for Research in Child Development, 77, 4251. https://doi.org/10.1080/15295192.2012.683342Google Scholar
Frye, R. E., Malmberg, B., Swank, P., Smith, K., & Landry, S. (2010). Preterm birth and maternal responsiveness during childhood are associated with brain morphology in adolescence. Journal of the International Neuropsychological Society, 16, 784794. https://doi.org/10.1017/S1355617710000585Google Scholar
Fuligni, A. J. (1998). The adjustment of children from immigrant families. Current Directions in Psychological Science, 7, 99103. https://doi.org/10.1111/1467-8721.ep10774731Google Scholar
Gard, A. M., Waller, R., Shaw, D. S., Forbes, E. E., Hariri, A. R., & Hyde, L. W. (2017). The long reach of early adversity: Parenting, stress, and neural pathways to antisocial behavior in adulthood. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2, 582590. https://doi.org/10.1016/j.bpsc.2017.06.005Google Scholar
Goff, B., Gee, D. G., Telzer, E. H., Humphreys, K. L., Gabard-Durnam, L., Flannery, J., & Tottenham, N. (2013). Reduced nucleus accumbens reactivity and adolescent depression following early-life stress. Neuroscience, 249, 129138. https://doi.org/10.1016/j.neuroscience.2012.12.010CrossRefGoogle ScholarPubMed
Gold, A. L., Sheridan, M. A., Peverill, M. et al. (2016). Childhood abuse and reduced cortical thickness in brain regions involved in emotional processing. Journal of Child Psychology and Psychiatry, 57, 11541164. https://doi.org/10.1111/jcpp.12630Google Scholar
Gorka, A. X., Hanson, J. L., Radtke, S. R., & Hariri, A. R. (2014). Reduced hippocampal and medial prefrontal gray matter mediate the association between reported childhood maltreatment and trait anxiety in adulthood and predict sensitivity to future life stress. Biology of Mood & Anxiety Disorders, 4, e12. https://doi.org/10.1186/2045-5380-4-12Google Scholar
Guassi Moreira, J. F., & Telzer, E. H. (2018). Mother still knows best: Maternal influence uniquely modulates adolescent reward sensitivity during risk taking. Developmental Science, 21, e12484. https://doi.org/10.1111/desc.12484Google Scholar
Gunnar, M. R., DePasquale, C. E., Reid, B. M., & Donzella, B. (2019). Pubertal stress recalibration reverses the effects of early life stress in post-institutionalized children. Proceedings of the National Academy of Sciences, 116, 2398423988. https://doi.org/10.1073/pnas.1909699116Google Scholar
Hanson, J. L., Nacewicz, B. M., Sutterer, M. J. et al. (2015). Behavioral problems after early life stress: Contributions of the hippocampus and amygdala. Biological Psychiatry, 77, 314323. https://doi.org/10.1016/j.biopsych.2014.04.020Google Scholar
Hecht, M. L., Marsiglia, F. F., Elek, E. et al. (2003). Culturally grounded substance use prevention: An evaluation of the keepin’ it R.E.A.L. curriculum. Prevention Science, 4, 233248. https://doi.org/10.1023/A:1026016131401CrossRefGoogle ScholarPubMed
Hein, T. C., & Monk, C. S. (2017). Research review: Neural response to threat in children, adolescents, and adults after child maltreatment – A quantitative meta‐analysis. Journal of Child Psychology and Psychiatry, 58, 222230. https://doi.org/10.1111/jcpp.12651Google Scholar
Hill, N. E. (2006). Disentangling ethnicity, socioeconomic status and parenting: Interactions, influences and meaning. Vulnerable Children and Youth Studies, 1, 114124. https://doi.org/10.1080/17450120600659069Google Scholar
Kok, R., Thijssen, S., Bakermans-Kranenburg, M. J. et al. (2015). Normal variation in early parental sensitivity predicts child structural brain development. Journal of the American Academy of Child & Adolescent Psychiatry, 54, 824831. https://doi.org/10.1016/j.jaac.2015.07.009Google Scholar
Kopala-Sibley, D. C., Cyr, M., Finsaas, M. C. et al. (2018). Early childhood parenting predicts late childhood brain functional connectivity during emotion perception and reward processing. Child Development, 91, 110128. https://doi.org/10.1111/cdev.13126CrossRefGoogle ScholarPubMed
Lambert, H. K., & McLaughlin, K. A. (2019). Impaired hippocampus-dependent associative learning as a mechanism underlying PTSD: A meta-analysis. Neuroscience & Biobehavioral Reviews, 107, 729749. https://doi.org/10.1016/j.neubiorev.2019.09.024CrossRefGoogle ScholarPubMed
Lambert, H. K., Sheridan, M. A., Sambrook, K. A., Rosen, M. L., Askren, M. K., & McLaughlin, K. A. (2017). Hippocampal contribution to context encoding across development is disrupted following early-life adversity. Journal of Neuroscience, 37, 19251934. https://doi.org/10.1523/JNEUROSCI.2618-16.2017CrossRefGoogle ScholarPubMed
Lee, T. H., Miernicki, M. E., & Telzer, E. H. (2017). Families that fire together smile together: Resting state connectome similarity and daily emotional synchrony in parent–child dyads. Neuroimage, 152, 3137. https://doi.org/10.1016/j.neuroimage.2017.02.078Google Scholar
Liu, D., Diorio, J., Tannenbaum, B. et al. (1997). Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science, 277, 16591662. https://doi.org/10.1126/science.277.5332.1659Google Scholar
Luby, J. L., Barch, D. M., Belden, A. et al. (2012). Maternal support in early childhood predicts larger hippocampal volumes at school age. Proceedings of the National Academy of Sciences, 109, 28542859. https://doi.org/10.1073/pnas.1118003109Google Scholar
Mangiavacchi, S., Masi, F., Scheggi, S., Leggio, B., De Montis, M. G., & Gambarana, C. (2001). Long‐term behavioral and neurochemical effects of chronic stress exposure in rats. Journal of Neurochemistry, 79, 11131121. https://doi.org/10.1046/j.1471-4159.2001.00665.xGoogle Scholar
Marusak, H. A., Thomason, M. E., Sala‐Hamrick, K., Crespo, L., & Rabinak, C. A. (2018). What’s parenting got to do with it: Emotional autonomy and brain and behavioral responses to emotional conflict in children and adolescents. Developmental Science, 21, e12605. https://doi.org/10.1111/desc.12605Google Scholar
Matthews, K., & Robbins, T. W. (2003). Early experience as a determinant of adult behavioural responses to reward: The effects of repeated maternal separation in the rat. Neuroscience & Biobehavioral Reviews, 27, 4555. https://doi.org/10.1016/S0149–7634(03)00008-3Google Scholar
McCormick, E. M., McElwain, N. A., & Telzer, E. H. (2019). Alterations in adolescent dopaminergic systems as a function of early mother–toddler attachment: A prospective longitudinal examination. International Journal of Developmental Neuroscience, 78, 122129. https://doi.org/10.1016/j.ijdevneu.2019.06.010Google Scholar
McCormick, E. M., Qu, Y., & Telzer, E. H. (2015). Adolescent neurodevelopment of cognitive control and risk-taking in negative family contexts. NeuroImage, 124, 989996. https://doi.org/10.1016/j.neuroimage.2015.09.063Google Scholar
McLoyd, V. C., Dodge, K. A., & Lansford, J. E. (2005). The cultural context of physically disciplining children. In McLoyd, V. C., Hill, N. E., & Dodge, K. A. (Eds.), African A men’can family life: Ecological and cultural diversity (pp. 245263). Guilford Press.Google Scholar
Mehta, M. A., Golembo, N. I., Nosarti, C. et al. (2009). Amygdala, hippocampal and corpus callosum size following severe early institutional deprivation: The English and Romanian Adoptees study pilot. Journal of Child Psychology and Psychiatry, 50, 943951. https://doi.org/10.1111/j.1469-7610.2009.02084.xGoogle Scholar
Mehta, M. A., Gore-Langton, E., Golembo, N., Colvert, E., Williams, S. C., & Sonuga-Barke, E. (2010). Hyporesponsive reward anticipation in the basal ganglia following severe institutional deprivation early in life. Journal of Cognitive Neuroscience, 22, 23162325. https://doi.org/10.1162/jocn.2009.21394CrossRefGoogle ScholarPubMed
Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: A network model of insula function. Brain Structure and Function, 214, 655667. https://doi.org/10.1007/s00429–010-0262-0Google Scholar
Milgrom, J., Newnham, C., Anderson, P. J. et al. (2010). Early sensitivity training for parents of preterm infants: Impact on the developing brain. Pediatric Research, 67, 330335. https://doi.org/10.1203/PDR.0b013e3181cb8e2fGoogle Scholar
Miller, J. G., Vrtička, P., Cui, X. et al. (2019). Inter-brain synchrony in mother–child dyads during cooperation: An fNIRS hyperscanning study. Neuropsychologia, 124, 117124. https://doi.org/10.1016/j.neuropsychologia.2018.12.021Google Scholar
Mills, K. L., Goddings, A. L., Herting, M. M. et al. (2016). Structural brain development between childhood and adulthood: Convergence across four longitudinal samples. Neuroimage, 141, 273281. https://doi.org/10.1016/j.neuroimage.2016.07.044Google Scholar
Mills, K. L., Lalonde, F., Clasen, L. S., Giedd, J. N., & Blakemore, S. J. (2014). Developmental changes in the structure of the social brain in late childhood and adolescence. Social Cognitive and Affective Neuroscience, 9, 123131. https://doi.org/10.1093/scan/nss113Google Scholar
Morgan, J. K., Shaw, D. S., & Forbes, E. E. (2014). Maternal depression and warmth during childhood predict age 20 neural response to reward. Journal of the American Academy of Child & Adolescent Psychiatry, 53, 108117. https://doi.org/10.1016/j.jaac.2013.10.003CrossRefGoogle ScholarPubMed
McCrory, E. J., Gerin, M. I., & Viding, E. (2017). Annual research review: Childhood maltreatment, latent vulnerability and the shift to preventative psychiatry – The contribution of functional brain imaging. Journal of Child Psychology and Psychiatry, 58, 338357. https://doi.org/10.1111/jcpp.12713Google Scholar
McLaughlin, K. A., Sheridan, M. A., & Lambert, H. K. (2014a). Childhood adversity and neural development: Deprivation and threat as distinct dimensions of early experience. Neuroscience & Biobehavioral Reviews, 47, 578591. https://doi.org/10.1177/0963721416655883Google Scholar
McLaughlin, K. A., Sheridan, M. A., Winter, W., Fox, N. A., Zeanah, C. H., & Nelson, C. A. (2014b). Widespread reductions in cortical thickness following severe early-life deprivation: A neurodevelopmental pathway to attention-deficit/hyperactivity disorder. Biological Psychiatry, 76, 629638. https://doi.org/10.1016/j.biopsych.2013.08.016Google Scholar
Nusslock, R., & Miller, G. E. (2016). Early-life adversity and physical and emotional health across the lifespan: A neuroimmune network hypothesis. Biological Psychiatry, 80, 2332. https://doi.org/10.1016/j.biopsych.2015.05.017Google Scholar
Pechtel, P., Lyons-Ruth, K., Anderson, C. M., & Teicher, M. H. (2014). Sensitive periods of amygdala development: The role of maltreatment in preadolescence. Neuroimage, 97, 236244. https://doi.org/10.1016/j.neuroimage.2014.04.025Google Scholar
Phelps, E. A., & LeDoux, J. E. (2005). Contributions of the amygdala to emotion processing: From animal models to human behavior. Neuron, 48, 175187. https://doi.org/10.1016/j.neuron.2005.09.025Google Scholar
Plomin, R., DeFries, J. C., McClearn, G. E., & McGuffin, P. (2008) Behavioral genetics. Worth Publishers.Google Scholar
Plotsky, P. M., & Meaney, M. J. (1993). Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Molecular Brain Research, 18, 195200. https://doi.org/10.1016/0169-328X(93)90189-VGoogle Scholar
Pozzi, E., Simmons, J. G., Bousman, C. A. et al. (2019). The influence of maternal parenting style on the neural correlates of emotion processing in children. Journal of the American Academy of Child & Adolescent Psychiatry. Advance online publication. https://doi.org/10.1016/j.jaac.2019.01.018Google Scholar
Qu, Y., Fuligni, A. J., Galván, A., Lieberman, M. D., & Telzer, E. H. (2016). Links between parental depression and longitudinal changes in youths’ neural sensitivity to rewards. Social Cognitive and Affective Neuroscience, 11, 12621271. https://doi.org/10.1093/scan/nsw035Google Scholar
Qu, Y., Fuligni, A. J., Galvan, A., & Telzer, E. H. (2015). Buffering effect of positive parent–child relationships on adolescent risk taking: A longitudinal neuroimaging investigation. Developmental Cognitive Neuroscience, 15, 2634. https://doi.org/10.1016/j.dcn.2015.08.005Google Scholar
Qu, Y., Jorgensen, N.A., & Telzer, E.H. (2021). A call for greater attention to culture in the study of brain and development. Perspectives on Psychological Science, 16(2), 275–293. https://doi.org/10.1177/174569162093146Google Scholar
Rao, H., Betancourt, L., Giannetta, J. M. et al. (2010). Early parental care is important for hippocampal maturation: Evidence from brain morphology in humans. Neuroimage, 49, 11441150. https://doi.org/10.1016/j.neuroimage.2009.07.003CrossRefGoogle ScholarPubMed
Reindl, V., Gerloff, C., Scharke, W., & Konrad, K. (2018). Brain-to-brain synchrony in parent–child dyads and the relationship with emotion regulation revealed by fNIRS-based hyperscanning. NeuroImage, 178, 493502. https://doi.org/10.1016/j.neuroimage.2018.05.060Google Scholar
Rifkin-Graboi, A., Kong, L., Sim, L. W. et al. (2015). Maternal sensitivity, infant limbic structure volume and functional connectivity: A preliminary study. Translational Psychiatry, 5, e668. https://doi.org/10.1038/tp.2015.133Google Scholar
Romund, L., Raufelder, D., Flemming, E. et al. (2016). Maternal parenting behavior and emotion processing in adolescents – An fMRI study. Biological Psychology, 120, 120125. https://doi.org/10.1016/j.biopsycho.2016.09.003Google Scholar
Rougé‐Pont, F., Deroche, V., Moal, M. L., & Piazza, P. V. (1998). Individual differences in stress‐induced dopamine release in the nucleus accumbens are influenced by corticosterone. European Journal of Neuroscience, 10, 39033907. https://doi.org/10.1046/j.1460-9568.1998.00438.xGoogle Scholar
Rudolph, K. D., Davis, M. M., Modi, H. H., Fowler, C., Kim, Y., & Telzer, E. H. (2018). Differential susceptibility to parenting in adolescent girls: Moderation by neural sensitivity to social cues. Journal of Research on Adolescence, 30, 177191. https://doi.org/10.1111/jora.12458Google Scholar
Sanchez, M. M., Ladd, C. O., & Plotsky, P. M. (2001). Early adverse experience as a developmental risk factor for later psychophathology: Evidence from rodent and primate models. Development & Psychopathology, 13, 419449. https://doi.org/10.1017/S0954579401003029Google Scholar
Schneider, S., Brassen, S., Bromberg, U. et al. (2012). Maternal interpersonal affiliation is associated with adolescents’ brain structure and reward processing. Translational Psychiatry, 2, e182. https://doi.org/10.1038/tp.2012.113Google Scholar
Schriber, R. A., Anbari, Z., Robins, R. W., Conger, R. D., Hastings, P. D., & Guyer, A. E. (2017). Hippocampal volume as an amplifier of the effect of social context on adolescent depression. Clinical Psychological Science, 5, 632649. https://doi.org/10.1177/2167702617699277Google Scholar
Schriber, R. A., & Guyer, A. E. (2016). Adolescent neurobiological susceptibility to social context. Developmental Cognitive Neuroscience, 19, 118. https://doi.org/10.1016/j.dcn.2015.12.009Google Scholar
Sequeira, S. L., Butterfield, R. D., Silk, J. S., Forbes, E. E., & Ladouceur, C. D. (2019). Neural activation to parental praise interacts with social context to predict adolescent depressive symptoms. Frontiers in Behavioral Neuroscience, 13, e222. https://doi.org/10.3389/fnbeh.2019.00222Google Scholar
Tan, P. Z., Lee, K. H., Dahl, R. E. et al. (2014). Associations between maternal negative affect and adolescent’s neural response to peer evaluation. Developmental Cognitive Neuroscience, 8, 2839. https://doi.org/10.1016/j.dcn.2014.01.006Google Scholar
Tan, P. Z., Oppenheimer, C. W., Ladouceur, C. D., Butterfield, R. D., & Silk, J. S. (2020). A review of associations between parental emotion socialization behaviors and the neural substrates of emotional reactivity and regulation in youth. Developmental Psychology, 56, 516527. https://doi.org/10.1037/dev0000893Google Scholar
Teicher, M. H., Anderson, C. M., & Polcari, A. (2012). Childhood maltreatment is associated with reduced volume in the hippocampal subfields CA3, dentate gyrus, and subiculum. Proceedings of the National Academy of Sciences, 109, 563572. https://doi.org/10.1073/pnas.1115396109Google Scholar
Teicher, M. H., & Samson, J. A. (2016). Annual research review: Enduring neurobiological effects of childhood abuse and neglect. Journal of Child Psychology and Psychiatry, 57, 241266. https://doi.org/10.1111/jcpp.12507Google Scholar
Teicher, M. H., Samson, J. A., Anderson, C. M., & Ohashi, K. (2016). The effects of childhood maltreatment on brain structure, function and connectivity. Nature Reviews Neuroscience, 17, 652666. https://doi.org/10.1038/nrn.2016.111Google Scholar
Telzer, E. H., Fuligni, A. J., Lieberman, M. D., & Gálvan, A. (2013). Ventral striatum activation to prosocial rewards predicts longitudinal declines in adolescent risk taking. Developmental Cognitive Neuroscience, 3, 4552. https://doi.org/10.1016/j.dcn.2012.08.004Google Scholar
Telzer, E. H., Masten, C. L., Berkman, E. T., Lieberman, M. D., & Fuligni, A.J. (2010). Gaining while giving: An fMRI study of the rewards of family assistance among White and Latino youth. Social Neuroscience, 5, 508518. https://doi.org/10.1080/17470911003687913Google Scholar
Thijssen, S., Muetzel, R. L., Bakermans-Kranenburg, M. J. et al. (2017). Insensitive parenting may accelerate the development of the amygdala–medial prefrontal cortex circuit. Development and Psychopathology, 29, 505518. https://doi.org/10.1017/S0954579417000141Google Scholar
Tottenham, N., Hare, T. A., Quinn, B. T. et al. (2010). Prolonged institutional rearing is associated with atypically large amygdala volume and difficulties in emotion regulation. Developmental Science, 13, 4661. https://doi.org/10.1073/pnas.1323014111Google Scholar
Tottenham, N., & Sheridan, M. A. (2010). A review of adversity, the amygdala and the hippocampus: A consideration of developmental timing. Frontiers in Human Neuroscience, 3, 68. https://doi.org/10.3389/neuro.09.068.2009Google Scholar
Turpyn, C. C., Poon, J. A., Ross, C. E., Thompson, J. C., & Chaplin, T. M. (2018). Associations between parent emotional arousal and regulation and adolescents’ affective brain response. Social Development, 27, 318. https://doi.org/10.1111/sode.12263Google Scholar
Whittle, S., Simmons, J. G., Dennison, M. et al. (2014). Positive parenting predicts the development of adolescent brain structure: A longitudinal study. Developmental Cognitive Neuroscience, 8, 717. https://doi.org/10.1016/j.dcn.2013.10.006Google Scholar
Whittle, S., Vijayakumar, N., Dennison, M. et al. (2016). Observed measures of negative parenting predict brain development during adolescence. PLoS ONE, 11, e0147774.Google Scholar
Whittle, S., Yap, M. B., Sheeber, L. et al. (2011). Hippocampal volume and sensitivity to maternal aggressive behavior: A prospective study of adolescent depressive symptoms. Development and Psychopathology, 23, 115129. https://doi.org/10.1093/scan/nsp012Google Scholar
Whittle, S., Yap, M. B., Yücel, M., Sheeber, L., Simmons, J. G., Pantelis, C., & Allen, N. B. (2009). Maternal responses to adolescent positive affect are associated with adolescents’ reward neuroanatomy. Social Cognitive and Affective Neuroscience, 4, 247256.Google Scholar
Valiente, C., Lemery‐Chalfant, K., & Reiser, M. (2007). Pathways to problem behaviors: Chaotic homes, parent and child effortful control, and parenting. Social Development, 16, 249267. https://doi.org/10.1111/j.1467-9507.2007.00383.xCrossRefGoogle Scholar
Vijayakumar, N., Mills, K. L., Alexander-Bloch, A., Tamnes, C. K., & Whittle, S. (2018). Structural brain development: A review of methodological approaches and best practices. Developmental Cognitive Neuroscience, 33, 129148. https://doi.org/10.1016/j.dcn.2017.11.008CrossRefGoogle ScholarPubMed
Yap, M. B., Whittle, S., Yücel, M. et al. (2008). Interaction of parenting experiences and brain structure in the prediction of depressive symptoms in adolescents. Archives of General Psychiatry, 65, 13771385. https://doi.org/10.1001/archpsyc.65.12.1377Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×