Skip to main content Accessibility help
  • Cited by 2
  • Print publication year: 2019
  • Online publication date: February 2019

7 - Incentive Motivation

from Part II - Rewards, Incentives, and Choice


In the behavioral sciences, it is common to explain behavior in terms of what was learned in a task, as if any subsequent change in performance had to denote a change in learning. However, learning alone cannot account for variability in performance. Instead, incentive motivation plays a direct role (and is more effective) in controlling moment-to-moment changes in an individual's responses than the learning process. After briefly introducing the history of the study of incentive motivation, we explain that incentive motivation consists of a dopamine-dependent process that does not require consciousness to influence responding to a task. We analyze two Pavlovian situations in which incentive motivation can modulate performance, irrespective of additional learning: the instant transformation of disgust into attraction for salt and the invigoration of responses under reward uncertainty. Finally, we consider drug addiction as an example of motivational dysregulation rather than as a consequence of the habit to consume substances of abuse.

Anselme, P. (2013). Dopamine, motivation, and the evolutionary significance of gambling-like behaviour. Behavioural Brain Research, 256 C, 14. doi: 10.1016/j.bbr.2013.07.039.
Anselme, P. (2015). Incentive salience attribution under reward uncertainty: A Pavlovian model. Behavioural Processes, 111, 618. doi: 10.1016/j.beproc.2014.10.016.
Anselme, P. (2016). Motivational control of sign-tracking behaviour: A theoretical framework. Neuroscience and Biobehavioral Reviews, 65, 120. doi: 10.1016/j.neubiorev.2016.03.014.
Anselme, P., Robinson, M. J. F., & Berridge, K. C. (2013). Reward uncertainty enhances incentive salience attribution as sign-tracking. Behavioural Brain Research, 238, 5361. doi: 10.1016/j.bbr.2012.10.006.
Archer, J. (1988). The behavioural biology of aggression. Cambridge University Press Archive.
Avena, N. M. & Hoebel, B. G. (2003a). A diet promoting sugar dependency causes behavioral cross-sensitization to a low dose of amphetamine. Neuroscience, 122(1), 1720.
Avena, N. M. & Hoebel, B. G. (2003b). Amphetamine-sensitized rats show sugar-induced hyperactivity (cross-sensitization) and sugar hyperphagia. Pharmacology, Biochemistry, and Behavior, 74(3), 635–9.
Baillargeon, R. (1987). Object permanence in 3½- and 4½-month-old infants. Developmental Psychology, 23(5), 655–64.
Bartlett, E., Hallin, A., Chapman, B., & Angrist, B. (1997). Selective sensitization to the psychosis-inducing effects of cocaine: a possible marker for addiction relapse vulnerability? Neuropsychopharmacology, 16(1), 7782. doi: 10.1016/S0893-133X(96)00164-9.
Belayachi, S., Majerus, S., Gendolla, G., Salmon, E., Peters, F., & Van der Linden, M. (2015). Are the carrot and the stick the two sides of same coin? A neural examination of approach/avoidance motivation during cognitive performance. Behavioural Brain Research, 293, 217–26. doi: 10.1016/j.bbr.2015.07.042.
Berridge, K. C. (2004). Motivation concepts in behavioral neuroscience. Physiology & Behavior, 81(2), 179209. doi: 10.1016/j.physbeh.2004.02.004.
Berridge, K. C. (2007). The debate over dopamine's role in reward: the case for incentive salience. Psychopharmacology, 191(3), 391431. doi: 10.1007/s00213-006-0578-x.
Berridge, K. C. (2012). From prediction error to incentive salience: mesolimbic computation of reward motivation. European Journal of Neuroscience, 35(7), 1124–43. doi: 10.1111/j.1460-9568.2012.07990.x.
Berridge, K. C. & Robinson, T. E. (1998). What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Research Reviews, 28(3), 309–69.
Bindra, D. (1976). A theory of intelligent behavior. Oxford: Wiley-Interscience.
Bodor, J. N., Rice, J. C., Farley, T. A., Swalm, C. M., & Rose, D. (2010). The association between obesity and urban food environments. Journal of Urban Health, 87(5), 771–81. doi: 10.1007/s11524-010-9460-6.
Boileau, I., Payer, D., Chugani, B., Lobo, D. S., Houle, S., Wilson, A. A., ... Zack, M. (2013). In vivo evidence for greater amphetamine-induced dopamine release in pathological gambling: A positron emission tomography study with [11C]-(+)-PHNO. Molecular Psychiatry, 19(12), 1305–13. doi: 10.1038/mp.2013.163.
Bolles, R. C. (1972). Reinforcement, expectancy, and learning. Psychological Review, 79(5), 394409.
Burns, M. & Domjan, M. (1996). Sign tracking versus goal tracking in the sexual conditioning of male Japanese quail (Coturnix japonica). Journal of Experimental Psychology Animal Behavior Processes, 22(3), 297306. doi: 10.1037/0097-7403.22.3.297.
Cannon, C. M. & Bseikri, M. R. (2004). Is dopamine required for natural reward? Physiology & Behavior, 81(5), 741–8. doi: 10.1016/j.physbeh.2004.04.020.
Chase, H. W. & Clark, L. (2010). Gambling severity predicts midbrain response to near miss outcomes. Journal of Neuroscience, 30(18), 6180–7. doi: 10.1523/JNEUROSCI.5758-09.2010.
Clark, L., Lawrence, A. J., Astley-Jones, F., & Gray, N. (2009). Gambling near-misses enhance motivation to gamble and recruit win-related brain circuitry. Neuron, 61(3), 481–90. doi: 10.1016/j.neuron.2008.12.031.
Collins, L. & Pearce, J. M. (1985). Predictive accuracy and the effects of partial reinforcement on serial autoshaping. Journal of Experimental Psychology: Animal Behavior Processes, 11, 548–64.
Collins, L., Young, D. B., Davies, K., & Pearce, J. M. (1983). The influence of partial reinforcement on serial autoshaping with pigeons. The Quarterly Journal of Experimental Psychology B, Comparative and Physiological Psychology, 35(4), 275–90. doi: 10.1080/14640748308400893.
Costikyan, G. (2013). Uncertainty in games. Cambridge: MIT Press.
Cousins, M. S., Sokolowski, J. D., & Salamone, J. D. (1993). Different effects of nucleus accumbens and ventrolateral striatal dopamine depletions on instrumental response selection in the rat. Pharmacology, Biochemistry, and Behavior, 46(4), 943–51.
Crespi, L. P. (1942). Quantitative variation of incentive and performance in the white rat. The American Journal of Psychology, 55(4), 467517. doi: 10.2307/1417120?ref=search-gateway:18b91fd28dc7c135471d0d97bddee0b1.
Cresswell, W. (2003). Testing the mass-dependent predation hypothesis: In European blackbirds poor foragers have higher overwinter body reserves. Animal Behaviour, 65, 1035–44.
D'Souza, M. S. & Duvauchelle, C. L. (2008). Certain or uncertain cocaine expectations influence accumbens dopamine responses to self-administered cocaine and non-rewarded operant behavior. European Neuropsychopharmacology, 18(9), 628–38. doi: 10.1016/j.euroneuro.2008.04.005.
de Lafuente, V. & Romo, R. (2011). Dopamine neurons code subjective sensory experience and uncertainty of perceptual decisions. Proceedings of the National Academy of Sciences of the United States of America, 108(49), 19767–71. doi: 10.1073/pnas.1117636108.
Dodd, M. L., Klos, K. J., Bower, J. H., Geda, Y. E., Josephs, K. A., & Ahlskog, J. E., (2005). Pathological gambling caused by drugs used to treat Parkinson disease. Archives of Neurology, 62(9), 1377–81. doi: 10.1001/archneur.62.9.noc50009.
Domjan, M., O'Vary, D., & Greene, P. (1988). Conditioning of appetitive and consummatory sexual behavior in male Japanese quail. Journal of the Experimental Analysis of Behavior, 50(3), 505–19. doi: 10.1901/jeab.1988.50-505.
Dreher, J.-C., Kohn, P., & Berman, K. F. (2006). Neural coding of distinct statistical properties of reward information in humans. Cerebral Cortex, 16(4), 561–73. doi: 10.1093/cercor/bhj004.
Dweck, C. S. & Leggett, E. L. (1988). A social-cognitive approach to motivation and personality. Psychological Review, 95(2), 256–73.
Ekman, J. B. & Hake, M. K. (1990). Monitoring starvation risk: adjustments of body reserves in greenfinches (Carduelis chloris L.) during periods of unpredictable foraging success. Behavioral Ecology, 1, 62–7.
Everitt, B. J. & Robbins, T. W. (2015). Drug addiction: updating actions to habits to compulsions ten years on. Annual Review of Psychology, 67, 2350. doi: 10.1146/annurev-psych-122414-033457.
Fiorillo, C. D., Tobler, P. N., & Schultz, W. (2003). Discrete coding of reward probability and uncertainty by dopamine neurons. Science, 299(5614), 1898–902. doi: 10.1126/science.1077349.
Fischman, M. W. & Foltin, R. W. (1992). Self-administration of cocaine by humans: a laboratory perspective. Ciba Foundation Symposium, 166, 165–80.
Gibbon, J., Farrell, L., Locurto, C. M., Duncan, H. J., & Terrace, H. S. (1980). Partial reinforcement in autoshaping with pigeons. Animal Learning & Behavior, 8(1), 4559.
Glimcher, P. W. (2011). Understanding dopamine and reinforcement learning: the dopamine reward prediction error hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 108 Suppl 3, 15647–54. doi: 10.1073/pnas.1014269108.
Gosler, A. G. (1996). Environmental and social determinants of winter fat storage in the great tit (Parus major). Journal of Animal Ecology, 65(1), 117. doi: 10.2307/5695?ref=search-gateway:1604b76cc4918de863817a1952f0beff.
Gottlieb, D. A. (2004). Acquisition with partial and continuous reinforcement in pigeon autoshaping. Learning & Behavior, 32(3), 321–34.
Hart, A. S., Clark, J. J., & Phillips, P. E. M. (2015). Dynamic shaping of dopamine signals during probabilistic Pavlovian conditioning. Neurobiology of Learning and Memory, 117, 8492. doi: 10.1016/j.nlm.2014.07.010.
Hidi, S. & Renninger, K. A. (2006). The four-phase model of interest development. Educational Psychologist, 41(2), 111–27.
Hinde, R. A. (1960). Energy models of motivation. Symposia of the Society for Experimental Biology, 14, 199213.
Holst, von E. & Saint Paul, von U. (1963). On the functional organisation of drives. Animal Behaviour, 11(1), 120.
Hull, C. L. (1943). Principles of behavior: An introduction to behavior theory. (Elliott, R. M., Ed.). Appleton-Century.
Ikemoto, S. (2010). Brain reward circuitry beyond the mesolimbic dopamine system: A neurobiological theory. Neuroscience and Biobehavioral Reviews, 35(2), 129–50. doi: 10.1016/j.neubiorev.2010.02.001.
Ikemoto, S. & Panksepp, J. (1996). Dissociations between appetitive and consummatory responses by pharmacological manipulations of reward-relevant brain regions. Behavioral Neuroscience, 110(2), 331–45.
Jenkins, H. M. & Moore, B. R. (1973). The form of the auto-shaped response with food or water reinforcers. Journal of the Experimental Analysis of Behavior, 20(2), 163–81. doi: 10.1901/jeab.1973.20-163.
Kassinove, J. I. & Schare, M. L. (2001). Effects of the “near miss” and the “big win” on persistence at slot machine gambling. Psychology of Addictive Behaviors, 15(2), 155–8. doi: 10.1037//0893-164X.15.2.155.
Koepp, M. J., Gunn, R. N., Lawrence, A. D., Cunningham, V. J., Dagher, A., Jones, T., ... Grasby, P. M. (1998). Evidence for striatal dopamine release during a video game. Nature, 393(6682), 266–8. doi: 10.1038/30498.
Laumann, E. O., Gagnon, J. H., Michael, R. T., & Michaels, S. (1994). The social organization of sexuality: Sexual practices in the United States. University of Chicago Press.
Linnet, J., Peterson, E., Doudet, D. J., Gjedde, A., & Møller, A. (2010). Dopamine release in ventral striatum of pathological gamblers losing money. Acta Psychiatrica Scandinavica, 122(4), 326–33. doi: 10.1111/j.1600-0447.2010.01591.x.
Litt, A., Khan, U., & Shiv, B. (2010). Lusting while loathing: parallel counterdriving of wanting and liking. Psychological Science, 21(1), 118–25. doi: 10.1177/0956797609355633.
McClure, S. M., Daw, N. D., & Montague, P. R. (2003). A computational substrate for incentive salience. Trends in Neurosciences, 26(8), 423–8.
McFarland, D. (1969). Separation of satiating and rewarding consequences of drinking. Physiology & Behavior, 4(6), 987–9. doi: 10.1016/0031-9384(69)90054-7.
Miller, N. E. & Kessen, M. L. (1952). Reward effects of food via stomach fistula compared with those of food via mouth. Journal of Comparative and Physiological Psychology, 45(6), 555–64.
Myers, K. P. & Hall, W. G. (1998). Evidence that oral and nutrient reinforcers differentially condition appetitive and consummatory responses to flavors. Physiology & Behavior, 64(4), 493500.
Nicholls, J. G. (1984). Achievement motivation: Conceptions of ability, subjective experience, task choice, and performance. Psychological Review, 91(3), 328–46.
Nisbett, R. E. & Wilson, T. D. (1977). Telling more than we can know: Verbal reports on mental processes. Psychological Review, 84, 231–59.
Panksepp, J. (1998). Affective neuroscience: The foundations of human and animal emotions. Oxford: Oxford University Press.
Peciña, S., Cagniard, B., Berridge, K. C., Aldridge, J. W., & Zhuang, X. (2003). Hyperdopaminergic mutant mice have higher “wanting” but not “liking” for sweet rewards. The Journal of Neuroscience, 23(28), 9395–402.
Pravosudov, V. V. & Grubb, T. C. (1997). Management of fat reserves and food caches in tufted titmice (Parus bicolor) in relation to unpredictable food supply. Behavioral Ecology, 8, 332–9.
Preuschoff, K., Bossaerts, P., & Quartz, S. R. (2006). Neural differentiation of expected reward and risk in human subcortical structures. Neuron, 51(3), 381–90. doi: 10.1016/j.neuron.2006.06.024.
Redish, A. D., Jensen, S., & Johnson, A. (2008). A unified framework for addiction: Vulnerabilities in the decision process. Behavioral and Brain Sciences, 31(4), 415–37. doi: 10.1017/S0140525X0800472X.
Renninger, K. A. (2000). Individual interest and its implications for understanding intrinsic motivation. In Sansone, C. & Harackiewicz, J. M. (Eds.), Intrinsic and extrinsic motivation: The search for optimal motivation and performance (pp. 375407). New York, NY: Elsevier. doi: 10.1016/B978-012619070-0/50035-0.
Renninger, K. A., Ewen, L., & Lasher, A. K. (2002). Individual interest as context in expository text and mathematical word problems. Learning and Instruction, 12, 467–91.
Renninger, K. A. & Hidi, S. (2016). Interest, attention, and curiosity. In Renninger, K. A. & Hidi, S. (Eds.), The power of interest for motivation and engagement (pp. 3251). New York, NY and London: Routledge.
Rescorla, R. A. & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In Black, A. H. & Prokasy, W. F. (Eds.), Classical conditioning II: Current theory and research (pp. 6499). New York, NY: Appleton-Century-Crofts.
Robinson, M. J. F. & Berridge, K. C. (2013). Instant transformation of learned repulsion into motivational “Wanting”. Current Biology, 23(4), 282–9. doi: 10.1016/j.cub.2013.01.016.
Robinson, M. J. F. & Berridge, K. C. (2015). Wanting vs needing. In Wright, J. D. (Ed.), International encyclopedia of the social & behavioral sciences (2nd ed., Vol. 25, pp. 351–6). Oxford: Elsevier. doi: 10.1016/B978-0-08-097086-8.26091-1.
Robinson, M. J. F., Anselme, P., Fischer, A. M., & Berridge, K. C. (2014a). Initial uncertainty in Pavlovian reward prediction persistently elevates incentive salience and extends sign-tracking to normally unattractive cues. Behavioural Brain Research, 266, 119–30. doi: 10.1016/j.bbr.2014.03.004.
Robinson, M. J. F., Anselme, P., Suchomel, K., & Berridge, K. C. (2015a). Amphetamine-induced sensitization and reward uncertainty similarly enhance incentive salience for conditioned cues. Behavioral Neuroscience, 129(4), 502–11. doi: 10.1037/bne0000064.
Robinson, M. J. F., Burghardt, P. R., Patterson, C. M., Nobile, C. W., Akil, H., Watson, S. J., ... Ferrario, C. R. (2015b). Individual differences in cue-induced motivation and striatal systems in rats susceptible to diet-induced obesity. Neuropsychopharmacology, 40(9), 2113–23. doi: 10.1038/npp.2015.71.
Robinson, M. J. F., Fischer, A. M., Ahuja, A., Lesser, E. N., & Maniates, H. (2015c). Roles of “wanting” and “liking” in motivating behavior: Gambling, food, and drug addictions. In Balsam, P. D. & Simpson, E. H. (Eds.), (Vol. 27, pp. 105–36). Current topics in behavioral neurosciences. doi: 10.1007/7854_2015_387.
Robinson, M. J. F., Robinson, T. E., & Berridge, K. C. (2014b). Incentive salience in addiction and over-consumption. In Preston, S., Kringelbach, M. L., Knutson, B., & Whybrow, P. C. (Eds.), The interdisciplinary science of consumption (pp. 185–97). Cambridge, MA: MIT Press.
Robinson, T. E. & Berridge, K. C. (1993). The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Research Brain Research Reviews, 18(3), 247–91.
Robinson, T. E. & Berridge, K. C. (2001). Incentive-sensitization and addiction. Addiction, 96(1), 103–14. doi: 10.1046/j.1360-0443.2001.9611038.x.
Robinson, T. E. & Berridge, K. C. (2008). The incentive sensitization theory of addiction: some current issues. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 363(1507), 3137–46. doi: 10.1098/rstb.2008.0093.
Rosse, R. B., Fay-McCarthy, M., Collins, J. P., Risher-Flowers, D., Alim, T. N., & Deutsch, S. I. (1993). Transient compulsive foraging behavior associated with crack cocaine use. The American Journal of Psychiatry, 150(1), 155–6.
Salamone, J. D. & Correa, M. (2002). Motivational views of reinforcement: Implications for understanding the behavioral functions of nucleus accumbens dopamine. Behavioural Brain Research, 137, 325.
Salamone, J. D., Cousins, M. S., & Bucher, S. (1994). Anhedonia or anergia? Effects of haloperidol and nucleus accumbens dopamine depletion on instrumental response selection in a T-maze cost/benefit procedure. Behavioural Brain Research, 65(2), 221–9. doi: 10.1016/0166-4328(94)90108-2.
Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80(1), 127.
Schultz, W. (2010). Subjective neuronal coding of reward: temporal value discounting and risk. The European Journal of Neuroscience, 31(12), 2124–35. doi: 10.1111/j.1460-9568.2010.07282.x.
Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593–9.
Singer, B. F., Scott-Railton, J., & Vezina, P. (2012). Unpredictable saccharin reinforcement enhances locomotor responding to amphetamine. Behavioural Brain Research, 226(1), 340–4. doi: 10.1016/j.bbr.2011.09.003.
Spence, K. W. (1956). Behavior theory and conditioning. New Haven, CT: Yale University Press. doi: 10.1037/10029-000.
Tan, C. O. & Bullock, D. (2008). A local circuit model of learned striatal and dopamine cell responses under probabilistic schedules of reward. Journal of Neuroscience, 28(40), 10062–74. doi: 10.1523/JNEUROSCI.0259-08.2008.
Tindell, A. J., Smith, K. S., Berridge, K. C., & Aldridge, J. W. (2009). Dynamic computation of incentive salience: “wanting” what was never “liked”. The Journal of Neuroscience, 29(39), 12220–8. doi: 10.1523/JNEUROSCI.2499-09.2009.
Toates, F. (1986). Motivational systems. New York, NY: Cambridge University Press.
Tolman, E. C. (1949). The nature and functioning of wants. Psychological Review, 56(6), 357–69.
Turner, L. H., Solomon, R. L., Stellar, E., & Wampler, S. N. (1975). Humoral factors controlling food intake in dogs. Acta Neurobiologiae Experimentalis, 35(5-6), 491–8.
Valenstein, E. S., Cox, V. C., & Kakolewski, J. W. (1970). Reexamination of the role of the hypothalamus in motivation. Psychological Review, 77(1), 1631.
Voon, V., Hassan, K., Zurowski, M., Duff-Canning, S., de Souza, M., Fox, S., ... Miyasaki, J. (2006). Prospective prevalence of pathologic gambling and medication association in Parkinson disease. Neurology, 66(11), 1750–2. doi: 10.1212/01.wnl.0000218206.20920.4d.
Wise, R. A. (1982). Neuroleptics and operant behavior: The anhedonia hypothesis. Behavioral and Brain Sciences, 5(1), 3953.
Wolf, S. G. & Wolff, H. G. (1943). Human gastric function: An experimental study of a man and his stomach. London: Oxford University Press.
Woodward, A., Phillips, A., & Spelke, E. S. (1993). Infants’ expectations about the motions of inanimate vs. animate objects. In Proceedings of the Cognitive Science Society, Hillsdale, NJ: Erlbaum.
Young, P. T. (1961). Motivation and emotion: A survey of the determinants of human and animal activity. Oxford: Wiley.
Zack, M., Featherstone, R. E., Mathewson, S., & Fletcher, P. J. (2014). Chronic exposure to a gambling-like schedule of reward predictive stimuli can promote sensitization to amphetamine in rats. In Singer, B. F., Anselme, P., Robinson, M. J., & Vezina, P. (Eds.), Neuronal and Psychological Underpinnings of Pathological Gambling. Lausanne: Frontiers in Behavioral Neuroscience, 8, 36. doi: 10.3389/fnbeh.2014.00036.