Skip to main content Accessibility help
  • Print publication year: 2013
  • Online publication date: February 2013

Chapter 9 - Pain and the Emotional Responses to Noxious Stimuli

from Section III - Emotion Perception and Elicitation


Recent years have seen exciting developments in virtually every aspect of electroencephalography (EEG)/ magneto-encephalography (MEG) research of emotion, ranging from innovation in data-recording techniques to novel experimental paradigms and sophisticated analysis techniques. A major advantage of electrophysiological time series is that they directly reflect neuroelectric processes rather than blood flow (such as functional magnetic resonance imaging (fMRI)) or metabolic processes (such as positron emission tomography (PET)), which makes them unique indices of neuronal activity. This chapter considers the specific properties of the neural population activity that underlies EEG/MEG recordings. EEG and MEG are safe and noninvasive procedures that are associated with minimum discomfort to the participant. The chapter discusses a few interesting issues that inform but also constrain the use of frequencydomain techniques in affective neuroscience research. Electrophysiological studies of emotion may move beyond a descriptive analysis of waveforms to consider the data as measures of in-vivo neurophysiology.

Related content

Powered by UNSILO


Albanese, M. C., Duerden, E. G., Rainville, P., & Duncan, G. H. (2007). Memory traces of pain in human cortex. Journal of Neuroscience, 27, 4612–20.
Apkarian, A. V., Bushnell, M. C., Treede, R. D., & Zubieta, J. K. (2005). Human brain mechanisms of pain perception and regulation in health and disease. European Journal of Pain, 9, 463–84.
Augustine, J. R. (1996). Circuitry and functional aspects of the insular lobe in primates including humans. Brain Research: Brain Research Reviews, 22, 229–44.
Baliki, M. N., Geha, P. Y., & Apkarian, A. V. (2009). Parsing pain perception between nociceptive representation and magnitude estimation. Journal of Neurophysiology, 101, 875–87.
Bandler, R., & Shipley, M. T. (1994). Columnar organization in the midbrain periaqueductal gray: Modules for emotional expression? Trends in Neuroscience, 17, 379–89.
Bechara, A. (2004). The role of emotion in decision-making: Evidence from neurological patients with orbitofrontal damage. Brain and Cognition, 55, 30–40.
Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (1997). Deciding advantageously before knowing the advantageous strategy. Science, 275, 1293–95.
Bernard, J. F., Bester, H., & Besson, J. M. (1996). Involvement of the spinoparabrachio amygdaloid and hypothalamic pathways in the autonomic and affective emotional aspects of pain. Progress in Brain Research, 107, 243–55.
Bernard, J. F. & Villanueva, L. (2009). Architecture fonctionnelle des systèmes nociceptifs. In D. Bouhassira & B. Calvino (Eds.), Douleurs: Physiologie, physiopathologie et pharmacologie (pp. 1–29). Paris: Arnette.
Bingel, U., Lorenz, J., Schoell, E., Weiller, C., & Buchel, C. (2006). Mechanisms of placebo analgesia: rACC recruitment of a subcortical antinociceptive network. Pain, 120, 8–15.
Bornhövd, K., Quante, M., Glauche, V., Bromm, B., Weiller, C., & Büchel, C. (2002). Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal, insula and somatosensory cortex: A single-trial fMRI study. Brain, 125, 1326–36.
Bourgeais, L., Monconduit, L., Villanueva, L., & Bernard, J. F. (2001). Parabrachial internal lateral neurons convey nociceptive messages from the deep laminas of the dorsal horn to the intralaminar thalamus. Journal of Neuroscience, 21, 2159–65.
Büchel, C., Bornhovd, K., Quante, M., Glauche, V., Bromm, B., & Weiller, C. (2002). Dissociable neural responses related to pain intensity, stimulus intensity, and stimulus awareness within the anterior cingulate cortex: A parametric single-trial laser functional magnetic resonance imaging study. Journal of Neuroscience, 22, 970–76.
Chapman, W. P., Rose, A. S., & Solomon, H. C. (1950). A follow-up study of motor withdrawal reaction to heat discomfort in patients before and after frontal lobotomy. American Journal of Psychiatry, 107, 221–24.
Coghill, R. C., McHaffie, J. G., & Yen, Y. F. (2003). Neural correlates of interindividual differences in the subjective experience of pain. Proceedings of the National Academy of Sciences, 100, 8538–42.
Coghill, R. C., Sang, C. N., Maisog, J. M., & Iadarola, M. J. (1999). Pain intensity processing within the human brain: A bilateral, distributed mechanism. Journal of Neurophysiology, 82, 1934–43.
Craig, A. D. (2002). How do you feel? Interoception: The sense of the physiological condition of the body. Nature Reviews Neuroscience, 3, 655–66.
Craig, A. D. (2003). A new view of pain as a homeostatic emotion. Trends in Neuroscience, 26, 303–7.
Craig, A. D. (2009). How do you feel – now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10, 59–70.
Craig, K. D., Prkachin, K. M., & Grunau, R. V. E. (2001). The facial expression of pain. In D. C. Turk & R. Melzack (Eds.), Handbook of pain assessment (2nd ed., pp. 153–69). New York: Guilford Press.
Damasio, A. R. (1994). Descartes’ error: Emotion, reason and the human brain. New York: Avon Books.
Damasio, A. R. (1996). The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 351, 1413–20.
Damasio, A. R. (1999). The feeling of what happens: Body and emotion in the making of consciousness. New York: Hartcourt Brace.
Derbyshire, S. W., Jones, A. K., Gyulai, F., Clark, S., Townsend, D., & Firestone, L. L. (1997). Pain processing during three levels of noxious stimulation produces differential patterns of central activity. Pain, 73, 431–45.
Dostrovsky, J. O. & Craig, A. D. (2006). Ascending projection systems. In S. B. McMahon & M. Koltzenburg (Eds.), Textbook of pain of Wall and Melzack (5th ed., pp. 187–203). London: Elsevier Science.
Downar, J., Crawley, A. P., Mikulis, D. J., & Davis, K. D. (2000). A multimodal cortical network for the detection of changes in the sensory environment. Nature Neuroscience, 3, 277–83.
Dube, A. A., Duquette, M., Roy, M., Lepore, F., Duncan, G., & Rainville, P. (2009). Brain activity associated with the electrodermal reactivity to acute heat pain. Neuroimage, 45, 169–80.
Duerden, E. G., Fu, J. M., Rainville, P., & Duncan, G. H. (2008). Activation likelihood estimation map of pain-evoked functional brain imaging data in healthy subjects: A meta-analysis. Paper presented at the 12th International Association for the Study of Pain (IASP) World Congress, Glasgow.
Dum, R. P., Levinthal, D. J., & Strick, P. L. (2009). The spinothalamic system targets motor and sensory areas in the cerebral cortex of monkeys. Journal of Neuroscience, 29, 14223–35.
Duquette, M., Roy, M., Lepore, F., Peretz, I., & Rainville, P. (2007). [Cerebral mechanisms involved in the interaction between pain and emotion]. Revue Neurologique (Paris), 163, 169–79.
Faymonville, M. E., Roediger, L., Del Fiore, G., Delgueldre, C., Phillips, C., Lamy, M., et al. (2003). Increased cerebral functional connectivity underlying the antinociceptive effects of hypnosis. Brain Research: Cognitive Brain Research, 17, 255–62.
Fillingim, R. B., Maixner, W., Bunting, S., & Silva, S. (1998). Resting blood pressure and thermal pain responses among females: Effects on pain unpleasantness but not pain intensity. International Journal of Psychophysiology, 30, 313–18.
Frankenstein, U. N., Richter, W., McIntyre, M. C., & Remy, F. (2001). Distraction modulates anterior cingulate gyrus activations during the cold pressor test. Neuroimage., 14, 827–36.
Gabriel, M. (1993). Discriminative avoidance learning: A model system. In B. A. Vogt & M. Gabriel (Eds.), Neurobiology of cingulate cortex and limbic thalamus: A comprehensive handbook (pp. 479–523). Boston: Birkhäuser.
Hadjistavropoulos, T., & Craig, K. D. (2002). A theoretical framework for understanding self-report and observational measures of pain: A communications model. Behaviour Research and Therapy, 40, 551–70.
Hadjistavropoulos, T., von Baeyer, C., & Craig, K. D. (2001). Pain assessment in persons with limited ability to communicate. In D. C. Turk & R. Melzack (Eds.), Handbook of pain assessment (2nd ed., pp. 134–49). New York: Guilford.
Hadjistavropoulos, T., VoyerP., Sharpe, D., Verreault, R., & Aubin, M. (2008). Assessing pain in dementia patients with comorbid delirium and depression. Pain Management in Nursing, 9, 48–54.
Hofbauer, R. K., Rainville, P., Duncan, G. H., & Bushnell, M. C. (2001). Cortical representation of the sensory dimension of pain. Journal of Neurophysiology, 86, 402–11.
Izard, C. E. (1993). Four systems for emotion activation: Cognitive and noncognitive processes. Psychological Review, 100, 68–90.
James, W. (1994). The physical bases of emotion: 1894. Psychological Review, 101, 205–10.
Ji, G., Sun, H., Fu, Y., Li, Z., Pais-Vieira, M., Galhardo, V., et al. (2010). Cognitive impairment in pain through amygdala-driven prefrontal cortical deactivation. Journal of Neuroscience, 30, 5451–64.
Kenshalo, D. R., Iwata, K., Sholas, M., & Thomas, D. A. (2000). Response properties and organization of nociceptive neurons in area 1 of monkey primary somatosensory cortex. Journal of Neurophysiology, 84, 719–29.
Kunz, M., Chen, J. I., Lautenbacher, S., Vachon-Presseau, E., & Rainville, P. (2011). Cerebral regulation of facial expressions of pain. Journal of Neuroscience, 31, 8730–38.
Kunz, M., Mylius, V., Scharmann, S., Schepelman, K., & Lautenbacher, S. (2009). Influence of dementia on multiple components of pain. European Journal of Pain, 13, 317–25.
Kunz, M., Mylius, V., Schepelmann, K., & Lautenbacher, S. (2009). Effects of age and mild cognitive impairment on the pain response system. Gerontology, 55(6), 674–82.
Kunz, M., Scharmann, S., Hemmeter, U., Schepelmann, K., & Lautenbacher, S. (2007). The facial expression of pain in patients with dementia. Pain, 133, 221–28.
LeDoux, J. (2007). The amygdala. Current Biology, 17, R868 –R874.
Legrain, V., Iannetti, G. D., Plaghki, L., & Mouraux, A. (2011). The pain matrix reloaded: A salience detection system for the body. Progress in Neurobiology, 93, 111–24.
Melzack, R. (1990). Phantom limbs and the concept of a neuromatrix. Trends in Neurosciences, 13, 88–92.
Melzack, R., & Casey, K. L. (1968). Sensory, motivational, and central control determinants of pain: A new conceptual model. In D. Kenshalo (Ed.), The skin senses (pp. 423–443). Springfield, IL: Thomas.
Melzack, R., & Wall, P. D. (1965). Pain mechanisms: A new theory. Science, 150, 971–78.
Merskey, H., & Spear, F. G. (1967). The concept of pain. Journal of Psychosomatic Research, 11, 59–67.
Metzinger, T. (2000). The subjectivity of subjective experience: A representationalist analysis of the first-person perspective. In T. Metzinger (Ed.), Neural correlates of consciousness: Empirical and conceptual questions (pp. 285–306). Cambridge, MA: MIT Press.
Monconduit, L., Bourgeais, L., Bernard, J. F., Le Bars, D., & Villanueva, L. (1999). Ventromedial thalamic neurons convey nociceptive signals from the whole body surface to the dorsolateral neocortex. Journal of Neuroscience, 19, 9063–72.
Piché, M., Arsenault, M., & Rainville, P. (2010). Dissection of perceptual, motor and autonomic components of brain activity evoked by noxious stimulation. Pain, 149, 453–62.
Ploner, M., Freund, H. J., & Schnitzler, A. (1999). Pain affect without pain sensation in a patient with a postcentral lesion. Pain, 81, 211–14.
Plutchik, R. (1980). A general psychoevolutionary theory of emotion. In R. Plutchik & H. Kellerman (Eds.), Emotion: Theory, research, and experience: Vol. 1. Theories of emotion (pp. 3–33). New York: Academic Press.
Porro, C. A., Cettolo, V., Francescato, M. P., & Baraldi, P. (1998). Temporal and intensity coding of pain in human cortex. Journal of Neurophysiology, 80, 3312–20.
Price, D. D. (1999). Psychological mechanisms of pain and analgesia. Seattle, WA: IASP Press.
Price, D. D. & Barrell, J. J. (1984). Some general laws of human emotion: Interrelationships between intensities of desire, expectation, and emotional feeling. Journal of Personality, 52, 389–409.
Price, D. D., Barrell, J. J., & Gracely, R. H. (1980). A psychophysical analysis of experimental factors that selectively influence the affective dimension of pain. Pain, 8, 137–49.
Rainville, P. (2004). Pain and emotions. In D. D. Price & M. C. Bushnell (Eds.), Psychological methods of pain control: Basic science and clinical perspectives (pp. 117–41). Seattle WA: IASP Press.
Rainville, P., Bao, Q. V., & Chretien, P. (2005). Pain-related emotions modulate experimental pain perception and autonomic responses. Pain, 118, 306–18.
Rainville, P., Carrier, B., Hofbauer, R. K., Bushnell, M. C., & Duncan, G. H. (1999). Dissociation of pain sensory and affective dimensions using hypnotic modulation. Pain, 82, 159–71.
Rainville, P., Duncan, G. H., Price, D. D., Carrier, B., & Bushnell, M. C. (1997). Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science, 277, 968–71.
Rainville, P., Hofbauer, R. K., Paus, T., Duncan, G. H., Bushnell, M. C., & Price, D. D. (1999). Cerebral mechanisms of hypnotic induction and suggestion. Journal of Cognitive Neuroscience, 11, 110–25.
Rhudy, J. L., Williams, A. E., McCabe, K. M., Nguyen, M. A., & Rambo, P. (2005). Affective modulation of nociception at spinal and supraspinal levels. Psychophysiology, 42, 579–87.
Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuiss, S. (2004). The role of the medial frontal cortex in cognitive control. Science, 306, 443–47.
Roy, M., Piche, M., Chen, J. I., Peretz, I., & Rainville, P. (2009). Cerebral and spinal modulation of pain by emotions. Proceedings of the National Academy of Sciences, 106(49), 20900–5.
Sah, P., Faber, E. S., Lopez de, A. M., & Power, J. (2003). The amygdaloid complex: Anatomy and physiology. Physiology Review, 83, 803–34.
Sandrini, G., Serrao, M., Rossi, P., Romaniello, A., Cruccu, G., & Willer, J. C. (2005). The lower limb flexion reflex in humans. Progress in Neurobiology, 77, 353–95.
Sato, A., Sato, Y., & Schmidt, R. F. (1997). The impact of somatosensoty input on autonomic functions. In M. P. Blaustein, H. Grunicke, D. P. Konstanz, G. Schultz, & M. Schweiger (Eds.), Reviews of physiology biochemistry and pharmacology (pp. 1–310). Berlin: Springer-Verlag.
Shackman, A. J., Salomons, T. V., Slagter, H. A., Fox, A. S., Winter, J. J., & Davidson, R. J. (2011). The integration of negative affect, pain and cognitive control in the cingulate cortex. Nature Reviews Neuroscience, 12, 154–67.
Shyu, B. C., Sikes, R. W., Vogt, L. J., & Vogt, B. A. (2010). Nociceptive processing by anterior cingulate pyramidal neurons. Journal of Neurophysiology, 103, 3287–3301.
Simon, D., Craig, K. D., Gosselin, F., Belin, P., & Rainville, P. (2008). Recognition and discrimination of prototypical dynamic expressions of pain and emotions. Pain, 135, 55–64.
Tracey, I., & Mantyh, P. W. (2007). The cerebral signature for pain perception and its modulation. Neuron, 55, 377–91.
Treede, R. D., Kenshalo, D. R., Gracely, R. H., & Jones, A. K. P. (1999). The cortical representation of pain. Pain, 79, 105–11.
Valet, M., Sprenger, T., Boecker, H., Willoch, F., Rummeny, E., Conrad, B., et al. (2004). Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain–an fMRI analysis. Pain, 109, 399–408.
Villanueva, L., & Bourgeais, L. (2009). Systèmes de modulation de la douleur. In D. Bouhassira & B. Calvino (Eds.), Douleurs: Physiologie, physiopathologie et pharmacologie (pp. 30–45). Paris: Arnette.
Villanueva, L., & Fields, H. L. (2004). Endogenous central mechanisms of pain modulation. In L. Villanueva, A. Dickenson, & H. Ollat (Eds.), The pain system in normal and pathological states: A primer for clinicians. Vol. 31: Progress in pain research and managementSeattle: IASP Press.
Villemure, C., Slotnick, B. M., & Bushnell, M. C. (2003). Effects of odors on pain perception: Deciphering the roles of emotion and attention. Pain, 106, 101–8.
Vogt, B. A. (2005). Pain and emotion interactions in subregions of the cingulate gyrus. Nature Reviews Neuroscience, 6, 533–44.
Wager, T. D., Rilling, J. K., Smith, E. E., Sokolik, A., Casey, K. L., Davidson, R. J., et al. (2004). Placebo-induced changes in FMRI in the anticipation and experience of pain. Science, 303, 1162–67.
Watson, A., El-Deredy, W., Iannetti, G. D., Lloyd, D., Tracey, I., Vogt, B. A., et al. (2009). Placebo conditioning and placebo analgesia modulate a common brain network during pain anticipation and perception. Pain, 145, 24–30.
Williams, A. C. (2002). Facial expression of pain: An evolutionary account. Behavioral Brain Science, 25, 439–55.
Willis, W. D., Al-Chaer, E. D., Quast, M. J., & Westlund, K. N. (1999). A visceral pain pathway in the dorsal column of the spinal cord. Proceedings of the National Academy of Sciences, 96, 7675–79.
Willis, W. D. & Westlund, K. N. (1997). Neuroanatomy of the pain system and of the pathways that modulate pain. [Review]Journal of Clinical Neurophysiology, 14, 2–31.