Skip to main content Accessibility help
×
Home

Contents:

Information:

    • You have access Access
    • Open access

  • The Cambridge Handbook of Health Research Regulation
  • Online publication date: June 2021
  • pp 11-224
  • Publisher: Cambridge University Press

Actions:

      • Send chapter to Kindle

        To send this chapter to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

        Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

        Find out more about the Kindle Personal Document Service.

        Available formats
        ×

        Send chapter to Dropbox

        To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

        Available formats
        ×

        Send chapter to Google Drive

        To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

        Available formats
        ×
Export citation

Part I Concepts, Tools, Processes

Section IA Concepts Introduction

Sorbie Annie

This volume commences with chapters that address key concepts that are embedded in health research regulation (HRR). Many of the concepts considered – autonomy, proportionality, the public interest – may feel familiar and could even be described as ‘regulatory buzzwords’. However, although they may be often used, they can also be elusive and ill defined. Here, the contributing authors explore these contours and provide the reader with the lie of the land in these areas. However, the chapters in this section go beyond this. The authors also challenge the operation of these concepts and provide their own views on how they may be deployed in HRR. This is not a ‘definitions’ section: the concepts explored may be used in different ways by authors in the course of the volume. However, the value of exposing these to scrutiny at the outset is twofold. First, this orientates the reader (whether they be a researcher, regulator, or engaged citizen) in the context of contemporary HRR and sets the scene for these familiar concepts to be approached with a critical eye. Second, this reveals the range of perspectives that may be brought to bear on these shared concepts in HRR, thus promoting productive interdisciplinary engagement and discourse in this and subsequent sections of this volume.

The section opens with Rogers’ chapter on Vulnerability. Rogers positions vulnerability as a widely accepted and relevant concept in HRR, but one that is also challenging to conceptualise and define. She engages with the difficulties that have arisen in conceptualising vulnerability, reconciling universal and special notions of vulnerability, and identifying the distinct duties and obligations that are triggered. In particular, she points to newer analytic approaches that conceptualise vulnerability as relational and dynamic, and identifies multiple potential sources of vulnerability, thus offering a more nuanced way of thinking about protections against the risks of research-related harm and wrongs. Stoljar’s chapter on Autonomy also addresses a pervasive concept in HRR. Stoljar challenges the individualistic conception of autonomy implicit in the current health research ethics guidelines and outlines a contrasting ‘relational’ approach to autonomy. Stoljar posits that the social conditions that a person inhabits, including their available options and interpersonal contexts, all affect the ability to make autonomous decisions. She identifies some of the implications of this for health research ethics, including the relationship between autonomy and vulnerability, and the claim that informed consent is sufficient for accordingly due respect to autonomy.

A similar interconnectedness can be seen between the next two chapters in this section. Schaefer’s chapter considers Proportionality in the context of HRR. He approaches this in terms of a justificatory relationship and underlines that, while a necessary part of responsible HRR, assessing proportionality is no easy task. In particular, it involves the weighing of different values that are non-commensurate and often non-quantifiable. Moving forward, Schaefer suggests several procedural approaches that can help improve the reliability and legitimacy of those assessments. Coleman further addresses risk–benefit analysis later in this volume (Chapter 13). Schaefer’s consideration of how to integrate the social value of research into proportionality is also complemented by van Delden and van der Graaf’s chapter that takes Social Value as its focus. The authors define the social value of an intervention as the value that it could eventually have on the well-being of groups of patients and/or society. However, they note, too, that to state a requirement for social value is one thing; to actually evaluate the social value of a research project is another. Overall, they find that social value has matured from an attractive but elusive idea into something that has to be assessed, evaluated and optimised, and can be used to address some of the justice issues in healthcare.

Three chapters follow that speak to the role of the individual and the collective in contemporary HRR. These begin with Kieslich and Prainsack’s chapter on Solidarity. This builds on existing and emerging research to explore the analytical and normative roles solidarity can play when designing HRR regimes. Kieslich and Prainsack illustrate their argument by reference to the European Union regulatory regime for research on rare diseases and orphan drugs. Through this discussion, the authors show how the concept of solidarity can be used to reframe the regulation of research from a market failure problem, which needs to be addressed through financial incentives, to a societal challenge in which the nature of barriers is not just financial. Next, Sorbie considers the Public Interest in HRR. This chapter provides an introduction to this elusive concept and considers two key ways that the public interest is constructed in HRR, namely as a legal device and through empirical evidence of the views of publics. Both conceptualisations are analysed with reference to the key challenges and opportunities that they present before a holistic concept of the public interest in HRR is proposed and consideration given to how this may be operationalised in practice. Townend’s examination on Privacy completes this trio of chapters. Here, he examines privacy as a well-established concept that has become a mainstay of good practice in research, yet also one that remains nebulous in character. Townend offers an explanation of why privacy is a difficult concept to express, how the law approaches the concept, and how it might be explored as a broader normative concept that can be operationalised by researchers. In the course of their analyses, Sorbie and Townend both consider matters at the intersection of governance and public involvement. Readers who wish to know more about the latter in HRR are directed to Aitken and Cunningham-Burley’s chapter, which specifically examines Forms of Engagement (Chapter 11) and to Burgess’ consideration of Mobilizing Public Expertise in Health Research Regulation (Chapter 25) later in this volume.

The final two chapters of the section consider key concepts specifically in their institutional and political contexts. Kerasidou’s chapter on Trustworthy Institutions in Global Health Research Collaborations delineates the differences between trust and trustworthiness, and argues that institutions committed to advancing the aims of global health should aim to promote fair and trusting collaborations. More specifically, she proposes that being trustworthy requires more than just the observation of rules or the incorporation of moral principles in policies and structures; it also demands attention to the relational aspect of trust. Finally, this section concludes as it started: with consideration of vulnerability. In Brassington’s chapter on Vulnerabilities and Power: The Political Side of Health Research, he argues that there is a political dimension to research, and that accounts of health research regulation that ignore political relations between stakeholders are therefore incomplete. He concludes that research promises us a way to address human vulnerabilities, but it may exacerbate others in the process and that the relationship between researcher and participant can only really be understood when its own inherent political dynamic is acknowledged too.

Each of the chapters in this section illustrate that HRR provides a dynamic area of study where even well-established concepts may be in various ways disputed and unsettled. In examining these dynamics many of the authors also address the relationship between the individual and the collective in HRR. As these and subsequent chapters show, this tension at the heart of HRR is accentuated by the drive towards data-driven and population-level biomedical research. Finally, many authors call for further work to deepen both how these concepts are understood in context and how they are operationalised in the health research endeavour. A response to this can be found in the pages that follow.

1 Vulnerability

Wendy A. Rogers
1.1 Introduction

Vulnerability is widely accepted as a relevant concept in human research regulation. Reflecting this, influential international research ethics guidelines require identification of, and protections for, participants who are deemed vulnerable.Footnote 1 Nonetheless, vulnerability is challenging to conceptualise and define, with ongoing disputes about the nature and extent of moral obligations to the vulnerable. This chapter maps the history of vulnerability in human research ethics guidelines and explores current debates regarding the role of vulnerability in guiding ethical deliberations about research participation.

1.2 Vulnerability in Research Ethics Guidelines

Concerns about vulnerability are implied rather than explicitly mentioned in some of the first formal research ethics guidelines such as the Guidelines for Human Experimentation (the Guidelines) issued by the German government in 1931, and the Nuremberg Code (the Code).Footnote 2 These early documents were concerned about experimentation on non-consenting individuals, especially those susceptible to exploitation due to various hardships. Both emphasised the importance of informed consent. The Code required the decision of the potential participant to be fully informed and ‘without the intervention of any element of force, fraud, deceit, duress, over-reaching, or other ulterior form of constraint or coercion’.Footnote 3 Similarly, the Guidelines prohibited exploiting social hardships to secure research participants, as to do so would be ‘incompatible with the principles of medical ethics’.Footnote 4 Without explicit use of the term vulnerability, these documents pinpointed concerns about exploitation and whether voluntary informed consent could protect participants suffering hardships. In subsequent guidelines, these concerns are conceptualised as indicators of vulnerability.

Vulnerability is first explicitly identified as a characteristic of individuals and groups who thereby require special protections in the 1979 Belmont Report (the Report). The Report intended to provide a comprehensive framework for resolving ethical problems arising from human research.Footnote 5 Its three principles – respect for persons, beneficence and justice – offer protection to all research participants without exception. In addition to these universal protections, the Report identified three areas where participants may be especially vulnerable. The first, echoing the 1931 Guidelines, concerned the voluntariness of consent in situations where ordinarily acceptable inducements may become undue if the subject is especially vulnerable.Footnote 6 The second required increased scrutiny of risks and benefits for research involving vulnerable populations, arguing that their involvement is more or less appropriate depending upon the nature and magnitude of risks, the anticipated benefits and the condition of the population involved.Footnote 7 The third concerned the potential injustice of recruiting participants ‘solely for administrative convenience, or because they are easy to manipulate as a result of their illness or socioeconomic condition’.Footnote 8 Here the Report referred to ‘racial minorities, the economically disadvantaged, the very sick, and the institutionalized’ whose ready availability may lead to their exploitation.

Thus the Report characterised the vulnerable as individuals and groups with potentially limited capacity to give consent and/or those liable to exploitation for various reasons. It required greater justifications for the inclusion of vulnerable participants, and identified exclusion altogether from research as one way of protecting the vulnerable.

Subsequent research ethics guidelines follow the Report in linking vulnerability to consent, exploitation and special protections. For example, the Declaration on Bioethics and Human Rights stipulates the following:

In applying and advancing scientific knowledge, medical practice and associated technologies, human vulnerability should be taken into account. Individuals and groups of special vulnerability should be protected and the personal integrity of such individuals respected.Footnote 9

The Declaration of Helsinki requires ‘specifically considered protection’ for all vulnerable individuals and groups.Footnote 10 Likewise, the current Council for International Organizations of Medical Sciences (CIOMS) guidelines invoke ‘specific protections’:

When vulnerable individuals and groups are considered for recruitment in research, researchers and research ethics committees must ensure that specific protections are in place to safeguard the rights and welfare of these individuals and groups in the conduct of the research.Footnote 11

This brief survey of research ethics guidance demonstrates that for nearly ninety years there have been concerns that some research participants are more vulnerable than others, and that vulnerable participants require special considerations. Despite the agreement that vulnerable participants require something more than routine ethical consideration, there is little consensus as to what characteristics make some participants more vulnerable than others and whether ‘special consideration’ is the appropriate moral response to vulnerability.

1.3 Vulnerability: An Ambiguous Concept in HRR

There is an ambiguity about vulnerability running through the heart of research ethics. Prima facie, research ethics guidance provides protections for all participants who are potentially exposed to research-related harms such as deception, coercion, injury, misuse of their data and other harms. Requirements such as informed consent and balancing benefits and risks aim to mitigate this vulnerability. Yet this universal vulnerability to the potential harms of research is not explicitly named. Instead, the category of ‘special’ vulnerability attributes vulnerability to groups or individuals such as those identified in the Belmont Report: ‘racial minorities, the economically disadvantaged, the very sick, and the institutionalized’.Footnote 12 This ‘special’ vulnerability approach reflects ambivalence about overtly acknowledging universal vulnerability and simultaneous recognition that some research participants do bear greater risk of harms than others. Ambivalence about the concept of vulnerability can be traced back to competing philosophical accounts.

The universal account takes vulnerability to be a type of fragility or susceptibility to suffering, linked to human embodiment. According to Fineman, vulnerability is an ontological necessity of our humanity, an ‘inevitable, enduring aspect of the human condition’.Footnote 13 Understanding vulnerability as a universal feature reflects the shared human capacity for experiencing pain, frailty and other harms of existence and the inevitability of death for all humans. The notion of universal vulnerability underpins ethical concern for all research participants. The requirement for informed consent arises because all participants are potentially vulnerable to deception as they lack relevant skills to distinguish experimentation from accepted treatment. Similarly, requirements for pain relief in pertinent protocols reflect universal vulnerability to suffering pain. But universal vulnerability is not explicitly identified in research ethics guidelines. Instead, there is an assumed ‘normal’ research participant for whom standard ethical protections are adequate. This baseline normal research participant is characterised by Luna as ‘mature, moderately well-educated, clear thinking, literate, [and] self-supporting’.Footnote 14 Vulnerable participants are identified against this implicit norm.

In contrast to universal vulnerability, accounts of special vulnerability claim that vulnerability is essentially specific and relational: individuals are vulnerable to particular agents regarding particular threats to their interests.Footnote 15 Although everyone has interests that may be threatened, some individuals or groups have little or no capacity to protect themselves. On this account, vulnerable persons have a reduced capacity to safeguard their interests relative to others. Whereas the universal account stresses our common embodied humanity and equal susceptibility to suffering, the special vulnerability account emphasises the ways in which various inequalities make some individuals (‘the vulnerable’) especially susceptible to harm or exploitation by others.Footnote 16

Within research ethics, the notion of special vulnerability is dominant. However, despite widespread requirements for special protections for the vulnerable, vulnerability is rarely defined in research ethics guidance. Bracken-Roche and others found that only three of eleven national and international guidelines contained definitions of vulnerability.Footnote 17 Both CIOMS and the Canadian Tri-Council Policy Statement define vulnerability in terms of decreased ability to protect one’s own interests, secondary to intra-personal factors (e.g. reduced capacity to give informed consent) or contextual factors (e.g. limited access to social goods including rights, opportunities and power). The third guideline, the International Conference on Harmonisation – Good Clinical Practice guideline, does not define vulnerability per se, but defines vulnerable subjects in a glossary entry as those who may be unduly influenced either by expectations of benefit, or due to their subordinate place in a relevant hierarchy.Footnote 18

The common approach in these and other guidelines is to rely upon lists of individuals or groups with characteristics that are taken to be indicators of vulnerability. The eleven guidelines analysed by Bracken-Roche and others list thirty-two characteristics signifying vulnerability. Individual indicators include being a prisoner, homeless person, woman, economically disadvantaged person, person lacking in political or social power, refugee, neonate and so forth. Identified vulnerable groups include very sick persons, children, minors or young persons, pregnant or breastfeeding women, the elderly, persons with mental illnesses, persons with limited capacity to consent and others. This dominant approach of labelling vulnerable participants has been subject to various critiques.

1.4 Problems with the Labelling Approach to Vulnerability in Research

The aim of labelling individuals or groups as vulnerable is to trigger special protections over and above those offered to all research participants, to prevent or decrease the risk of harms triggered by the vulnerability in question. Nevertheless, this approach is problematic as it leads to stereotyping, discrimination and unwarranted exclusion from research. Critics have argued that the labelling approach is both too narrow and too broad.Footnote 19

One effect of the labelling approach is to focus narrowly on questions about capacity, and whether or not vulnerable individuals are able to give competent, informed consent for research participation.Footnote 20 This results in ethical review that attempts to identify all possible factors that might render consent less than fully valid, such as cognitive impairment or coercive circumstances. For individuals who lack capacity to provide valid consent, the proposed remedies for this vulnerability are proxy consent or exclusion from research. However, conceptualising vulnerability primarily in terms of incapacity to provide informed consent is ethically inadequate.

First, this approach fails to address the full range of moral issues raised by vulnerability, such as susceptibility to exploitation.Footnote 21 Some research participants who are capable of providing informed consent may, nonetheless, be vulnerable to exploitation, due to poverty, power imbalances in the researcher–participant relationship or other circumstances. For example, pregnant women may be vulnerable to exploitation regarding participation in research aimed at benefitting the fetus. In this situation, pro-natalist pressures may unduly exacerbate women’s understandable concerns for foetal well-being, thereby creating opportunities for exploitation.Footnote 22 Attention to informed consent processes will not necessarily resolve this kind of exploitation. Nor will it protect those who are vulnerable due to a lack of basic human rights.Footnote 23 For example, better information about a research protocol fails to mitigate participants’ vulnerability to coercion from local power brokers who stand to profit from the research.

Second, the narrow approach ‘can divert attention from features of the research itself, the institutional environment, or the social and economic context that can put participants in harm’s way’.Footnote 24 Informed consent does not provide protections against dangerous protocols, researchers with conflicts of interest or dysfunctional institutions, all of which make participants vulnerable by increasing their risk of harm. External factors such as these contributed to the deaths of Ellen Roche, a healthy volunteer who died in an asthma research trial,Footnote 25 and Dan Markingham, who died in an anti-psychotic medication trial.Footnote 26 These participants were made vulnerable by deficiencies in the manufacturing standards of the inhalant, poor standards in the research protocol review process by the institutional review board, inadequate oversight, and significant conflicts of interest at researcher and institutional levels. These factors affect the safety of all participants rather than reflecting specific vulnerabilities of these particular participants.

A third problem with a narrow focus arising from the labelling approach is that concentrating on informed consent offers few options for mitigating vulnerability. For individuals who lack capacity – such as unconscious persons, babies, young children or individuals with severe cognitive deficits – it may not be possible to develop valid consent processes, leaving the alternatives of proxy consent or exclusion from research. Exclusion from research results in inadequate information about therapeutics for affected individuals and groups.Footnote 27 Rather than exposing a small number of individuals to specific risks within a regulated clinical trial, exclusion from research increases risks for all members of excluded groups who then must rely on off-label prescribing of therapies with unknown effects for their patient cohort.Footnote 28

Despite the labelling approach to vulnerability being criticised for being too narrow, a second critique claims the opposite: that an over-inclusive approach to identifying vulnerability leads to virtually everyone being labelled as vulnerable.Footnote 29 Lists compiled from research ethics guidelines by Bracken-Roche and others and Hurst leave few who are not classified as vulnerable.Footnote 30 This apparently over-inclusive approach to vulnerability labelling renders the notion of vulnerability ineffectual for two reasons. First, despite its breadth, there is no recognition of the features that might underpin a universal conception of vulnerability; the focus remains on special vulnerability. Second, the over-inclusiveness of the labelling limits the utility of invoking protections for special vulnerability, because the context-specific needs of individuals or groups are obscured rather than identified. Vulnerability cannot be a useful marker for providing extra protections if all research participants are deemed vulnerable. The concept becomes so broad as to be meaningless, and certainly impractical for mandating specific responses.Footnote 31

Critics of the over-inclusive labelling of vulnerability note that this approach can lead to stereotyping, discrimination and failure to consider the specifics of each case. Stereotyping occurs when whole categories of individuals are labelled vulnerable, in contrast to the rest of the – presumably invulnerable – population. Labelling has a homogenising effect as all members of the group are assumed to be equally vulnerable. But it is unreasonable both to divide the general population into exclusive vulnerable and non-vulnerable categories, and to obliterate relevant differences between those labelled vulnerable. The impacts on individuals of factors associated with special vulnerability such as educational disadvantage, cognitive impairment or dependent relationships vary enormously. For example, young people under sixteen years are usually labelled vulnerable as they are held incapable of giving valid informed consent. However, the capacity to understand complex information and make considered decisions is highly variable in adolescents; some are capable of consenting and some are not. In addition, vulnerability is not a dichotomous state such that individuals are either vulnerable or not. Rather, vulnerability occurs on a spectrum, with different levels or degrees. But this distinction is lost when labels are applied: regarding vulnerability, ‘you are either in or you are out’.Footnote 32

Once individuals or groups are labelled vulnerable, this can be a source of discrimination, used to justify unwarranted and unjust paternalistic policies.Footnote 33 Such discrimination is evident regarding pregnant women, who have historically been labelled vulnerable and excluded from research notwithstanding their evident capacity to give informed consent. Routine exclusion of pregnant women from research undermines their autonomy by removing the opportunity to make decisions about research participation. Further, exclusion of pregnant women from research is harmful as it results in a lack of information about safe and effective treatments in pregnancy, especially when pregnant women who are given untested treatments mistakenly believe they are receiving a therapeutic intervention.Footnote 34 Exclusion from research is especially problematic where access to treatment is premised on evidence of the safety and efficacy of that treatment. Where groups are systematically excluded from research, the evidence base is correspondingly meagre and their treatment options limited.Footnote 35

Given these problems with the labelling approach to vulnerability in research ethics, I now turn to analytic approaches to conceptualising vulnerability.

1.5 Analytic Approaches to Defining Vulnerability

Analytic approaches to vulnerability seek to explain the concept in ways that foster understanding of what vulnerability is, and what moral responses are owed to the vulnerable. One analytic approach to conceptualising vulnerability identifies characteristics that serve as criteria for vulnerability,Footnote 36 while a second examines what is owed to the vulnerable.Footnote 37 More recently, Luna has proposed the metaphor of layers to explain multiple forms of vulnerability,Footnote 38 while Lange and others focus on sources of vulnerability in their taxonomy.Footnote 39

Kipnis takes vulnerability to be ‘a certain precariousness’ that leaves the individual open to being harmed or taken advantage of by researchers. Rather than labelling, he asks researchers to consider participants’ circumstances as sources of vulnerability. His taxonomy focuses on circumstances – medical, cognitive, deferential, juridic, allocational, infrastructural and social – that threaten the validity of consent.Footnote 40 Similarly, Rogers and Ballantyne identify extrinsic and intrinsic – to the individual – sources of vulnerability that render participants unable to safeguard their own interests.Footnote 41 On their account, extrinsic vulnerability arises from power inequalities in the researcher–participant relationship.

Nickel argues that in addition to consent considerations, vulnerability is a justification for special protections in research for two fairness-related reasons. The first concerns the unfair burden of research participation imposed on disadvantaged or dependent groups who lack the power to refuse participation. The second concerns the unfair distribution of research benefits, especially those arising from exclusion from research. Consent-based and justice-based reasons for special protections can be mutually reinforcing, as, for example, members of dependent groups may be targeted for inclusion in research because they have limited ability to refuse participation, but the research may not address problems relevant to the groups to which they belong. In considering what is owed to those who are especially vulnerable on these grounds, Nickel appeals to the principle of equal respect, asking researchers to engage in empathic consideration of the circumstances of the vulnerable to better understand their viewpoint.Footnote 42

Luna proposes the metaphor of ‘layers of vulnerability as an alternative to labelling. She argues that this relational and dynamic conception of vulnerability avoids the stereotyping and essentialism of the labelling approach. Her account is relational in that it identifies each layer of an individual’s vulnerability by closely examining the context in which she is situated, and dynamic because it recognises that layers of vulnerability may come and go as the context changes. Since Luna’s account assumes that vulnerability is dynamic and inessential, it does not stereotype or stigmatise individuals when describing them as vulnerable, while the complexity of a person’s situation can be recognised through considering multiple layers of vulnerability.Footnote 43 More recently, Luna specifies that layers of vulnerability may be related to ‘physical problems, consent, dependency, exploitation, [and] socioeconomic situations’, and that these layers should be understood as dispositions for harm or exploitation. Finally, she introduces the notion of cascade vulnerabilities that can trigger a series of events with harmful consequences.Footnote 44

Lange and others propose a taxonomy of vulnerability.Footnote 45 Their taxonomy aims to reconcile universal and particular conceptions of vulnerability by postulating inherent and situational sources of vulnerability.Footnote 46 Inherent sources include human corporeality, our affective and social natures and neediness, and our dependence on others. These sources of vulnerability are ineliminable features of the human condition. Inherent sources of vulnerability produce variable risk of harm or wrongs depending on age, health, gender and disability, as well as individuals’ capacities for resilience and the presence of social supports. Situational sources of vulnerability are context specific and include personal, social, political, economic or environmental features affecting individuals or social groups. As they are context specific, situational sources of vulnerability may be persistent or fluctuate over time. Situational vulnerability has a sub-category of pathogenic vulnerability. Pathogenic vulnerability refers to vulnerability arising from dysfunctional relationships characterised by prejudice, abuse, neglect or disrespect, or from political situations characterised by injustice, persecution or political violence. In addition, pathogenic vulnerabilities arise when policies designed to protect against existing vulnerabilities have the perverse effect of exacerbating existing, or generating new, vulnerabilities. On this account, the exclusion of pregnant women from research creates the pathogenic vulnerability experienced by ill pregnant women for whose conditions there is inadequate evidence about safe and effective treatments. These three types of vulnerability may co-exist, overlap and be occurrent (immediate and present) or dispositional (latent or background).

Like Kipnis’s approach, this taxonomy provides a systematic way to identify existing and potential sources of vulnerability in order to put in place mitigating strategies. By identifying different sources of vulnerability, researchers are required to attend to the wider context of the research as well as to the characteristics of participants. Vulnerability considerations are not limited to consent, exploitation, or unduly circumscribed safety assessments, but must take account of a full range of harms that research participation may involve. As well as protecting against harms, Lange and others postulate a positive duty to foster participants’ autonomy that is more onerous than seeking informed consent or avoiding unjust paternalism.Footnote 47 On their account, the duty to respect autonomy requires engaging with and furthering the interests of participants such that research participation actively supports autonomy and promotes resilience. Finally, the notion of pathogenic vulnerability grounds a duty to ensure that well-intended extra protections do not exacerbate existing or create new vulnerabilities.

1.6 What Work Can the Concept of Vulnerability Do?

To be useful in research ethics, the concept of vulnerability should draw attention to a set of concerns that are distinct from other moral concerns, and which are identifiable in non-stigmatising or stereotyping ways. The first step is to settle on a definition of vulnerability that encompasses both the universal and special conceptualisations, and is not implicitly comparative regarding some unstated norm of invulnerability. That is, we need a definition that acknowledges a universal capacity to be harmed or wronged in various ways related to our embodiment, shared needs and relationality, but that also recognises that the likelihood of those harms and wrongs does not fall equally on all individuals due to varying capacities and circumstances. Based on this understanding, vulnerability in research can be thought of as a disposition to, or risk of, suffering harms or wrongs arising from a range of inherent and situational factors. As these factors will independently vary across individuals and groups and change over time, vulnerability ascriptions must be specific, contextualised and reviewed.

The question remains as to whether vulnerability raises its own moral concerns, or is merely a marker for existing harms or wrongs. Hurst adopts the latter view, defining vulnerable research participants as those who are especially likely to incur an already defined research-related wrong. On her account, vulnerability does not generate new moral obligations, but rather serves as a heuristic to draw attention to existing obligations. The point of drawing attention to vulnerability is to flag that special steps may be necessary to fulfil existing research obligations for those who are especially vulnerable.Footnote 48 However, this does not seem to be a very satisfactory approach as it effectively renders the concept of vulnerability redundant. Despite the difficulty of defining vulnerability, the concept is valuable in highlighting morally salient features of our humanity that are central to everyday practices and notions of obligation.Footnote 49 The concept of vulnerability triggers us to think empathetically and humanely about others in a holistic way; to consider their situation, their strengths and weaknesses, and their liability to harm. These are important moral considerations that can readily be obscured by a procedural focus on informed consent or balancing research benefits and burdens.

In the context of research, researchers have a duty to consider the vulnerability of participants in a systematic and comprehensive way. This includes not only identifying specific risks of harm that may arise from experimental interventions, but also investigating the interactions and potentially cumulative effects of different sources or layers of vulnerability. In this process, researchers should be aware of the dangers of stereotyping and discrimination and actively seek to avoid labelling groups or individuals in essentialist ways. In addition, there is a need to consider the potential for protections in research to have counter-intuitive effects and create their own pathogenic vulnerabilities. Often, these may be more visible to participants than researchers, creating an obligation for meaningful consultation with participants and their communities. As being vulnerable implies a lack of power in some regard, this creates a duty for researchers to foster and support autonomy to the extent possible. This is more onerous than respecting autonomous decisions, as it requires investigation on the part of researchers and more comprehensive actions in terms of capacity building.

1.7 Conclusion

The recognition that vulnerable research participants should be protected is longstanding. However, difficulties have arisen in conceptualising vulnerability, reconciling universal and special notions of vulnerability, and identifying distinct duties and obligations triggered by vulnerability. The dominant approach of labelling vulnerable participants and groups is subject to increasing critique, because it can lead to stereotyping, discrimination and exclusion, and fail to be action-guiding. Newer analytic approaches conceptualise vulnerability as relational and dynamic, and identify multiple potential sources of vulnerability. These approaches offer a more nuanced way of thinking about vulnerability and protections against the risks of research-related harm and wrongs. Further work is needed to bridge the gap between these newer conceptualisations of vulnerability and practical guidance for research.

1 D. Bracken-Roche et al., ‘The Concept of “Vulnerability” in Research Ethics: An In-Depth Analysis of Policies and Guidelines’ (2017) Health Research Policy and Systems, 15(8), 118.

2 R. B. Ghooi, ‘The Nuremberg Code – A Critique’ (2011) Perspectives in Clinical Research, 2(2), 7276.

3 ‘The Nuremberg Code’, in Trials of War Criminals before the Nuremberg Military Tribunals under Control Council Law No. 10, Volume 2, (Washington, DC: US Government Printing Office, 1949), pp. 181–182.

4 Cited in Ghooi, ‘The Nuremberg Code – A Critique’, 74.

5 National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research, ‘Belmont Report’ (Department of Health, Education and Welfare, 1979).

9 United Nations Educational, Scientific and Cultural Organization, ‘Universal Declaration on Bioethics and Human Rights’ (UNESCO, 2005), Art. 8.

10 World Medical Association, ‘Declaration of Helsinki – Ethical Principles for Medical Research Involving Human Subjects’ (World Medical Association, 2013).

11 CIOMS, ‘International Ethical Guidelines for Health-Related Research Involving Humans’ (Council for International Organizations of Medical Sciences, 2016), Guideline 15.

12 National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research, ‘Belmont Report’, 10.

13 M. A. Fineman, ‘The Vulnerable Subject: Anchoring Equality in the Human Condition’ (2008) Yale Journal of Law & Feminism, 20(1), 8.

14 F. Luna, ‘Identifying and Evaluating Layers of Vulnerability – A Way Forward’ (2018) Developing World Bioethics, 19(2), 88.

15 R. E. Goodin, Protecting the Vulnerable: A Reanalysis of Our Social Responsibilities (Chicago: University of Chicago Press, 1985).

16 W. Rogers et al., ‘Vulnerability’ in Bruce Jennings (ed.), Bioethics, 4th Edition (Farmington Hills, MI: McMillan Reference, 2014), pp. 31493153.

17 Bracken-Roche et al., ‘The Concept of “Vulnerability” in Research Ethics’, 3.

18 Footnote Ibid., 4–5.

19 C. Levine et al., ‘The Limitations of “Vulnerability” as a Protection for Human Research Participants’ (2004) American Journal of Bioethics, 4(3), 4449; P. J. Nickel, ‘Vulnerable Populations in Research: The Case of the Seriously Ill’ (2006) Theoretical Medicine and Bioethics, 27(30), 245264; W. Rogers, ‘Vulnerability and Bioethics’ in C. Mackenzie et al. (eds), Vulnerability: New Essays in Ethics and Feminist Philosophy (New York: Oxford University Press, 2014), pp. 6087.

20 P. Bielby, Competence and Vulnerability in Biomedical Research (New York: Springer, 2008).

21 R. Macklin, ‘Bioethics, Vulnerability and Protection’ (2003) Bioethics, 17(5–6), 472486.

22 A. Ballantyne and W. Rogers, ‘Pregnancy, Vulnerability and the Risk of Exploitation in Clinical Research’, in F. Baylis and A. Ballantyne (eds), Missed Trials: Clinical Research Involving Pregnant Women (Switzerland: Springer, 2016), pp. 139159.

23 D. Zion et al., ‘The Declaration of Helsinki, CIOMS and the Ethics of Research on Vulnerable Populations’ (2000) Nature Medicine, 6(6), 615.

24 Levine et al., ‘The Limitations of “Vulnerability”’, 46.

25 R. Steinbrook, ‘Protecting Research Subjects: The Crisis at Johns Hopkins’ (2002) New England Journal of Medicine, 346(90), 716720.

26 C. Elliott, ‘Institutional Pathology and the Death of Dan Markingson’ (2017) Accountability in Research, 24(2), 6579.

27 W. Rogers and A. Ballantyne, ‘Justice in Health Research: What Is the Role of Evidence-Based Medicine?’ (2009) Perspectives in Biology and Medicine, 52(20), 188202.

28 R. Dresser, ‘Wanted. Single, White Male for Medical Research’ (1992) The Hastings Center Report, 22(1), 2429.

29 F. Luna, ‘Elucidating the Concept of Vulnerability: Layers not Labels’ (2009) International Journal of Feminist Approaches to Bioethics, 2(1), 121139.

30 Bracken-Roche et al., ‘The Concept of “Vulnerability”’, 1–18; S. A. Hurst, ‘Vulnerability in Research and Healthcare; Describing the Elephant in the Room?’ (2008) Bioethics, 22(40), 191202.

31 See e.g. Levine et al., ‘The Limitations of “Vulnerability”’, 46; Luna, ‘Elucidating the Concept of Vulnerability’, 127.

32 Luna, ‘Identifying and Evaluating Layers of Vulnerability’, 87.

33 S. Dodds, ‘Depending on Care: Recognition of Vulnerability and the Social Contribution of Care Provision’ (2007) Bioethics, 21(90), 500510; A. Ho, ‘The Individualist Model of Autonomy and the Challenge of Disability’ (2008) Journal of Bioethical Inquiry, 5(2–3), 193207.

34 F. Baylis and R. MacQuarrie, ‘Why Physicians Should Want Pregnant Women Included in Clinical Trials’, in F. Baylis and A. Ballantyne (eds), Missed Trials: Clinical Research Involving Pregnant Women (Switzerland: Springer, 2016), p. 21.

35 W. Rogers, ‘Evidence-Based Medicine and Justice: A Framework for Looking at the Impact of EBM on Vulnerable or Disadvantaged Groups’ (2004) Journal of Medical Ethics, 30(20), 141145.

36 K. Kipnis, ‘Vulnerability in Research Subjects: A Bioethical Taxonomy’, in National Bioethics Advisory Commission (ed.), Report on Ethical and Policy Issues in Research Involving Human Participants Volume II (Bethesda: National Bioethics Advisory Commission, 2006), pp. G113; W. Rogers and A. Ballantyne, ‘Special Populations: Vulnerability and Protection’ (2008) RECIIS: Electronic Journal of Communication, Information and Innovation in Health, 2(supplement 1), S30S40.

37 Nickel, ‘Vulnerable Populations in Research’, 245–264.

38 Luna, ‘Elucidating the Concept of Vulnerability’, 121–139.

39 M. Meeke Lange et al., ‘Vulnerability in Research Ethics: A Way Forward’ (2013) Bioethics, 27(6), 333340.

40 Kipnis, ‘Vulnerability in Research Subjects’, ch 7.

41 Rogers and Ballantyne, ‘Special Populations’, S30–S40.

42 Nickel, ‘Vulnerable Populations in Research’, 245–264.

43 Luna, ‘Elucidating the Concept of Vulnerability’, 121–139.

44 Luna, ‘Identifying and Evaluating Layers of Vulnerability’, 90.

45 Meeke Lange et al., ‘Vulnerability in Research Ethics’, 336.

46 C. Mackenzie et al., ‘Introduction’, in C. Mackenzie et al. (eds), Vulnerability: New Essays in Ethics and Feminist Philosophy (New York: Oxford University Press), pp. 1–29.

47 Meeke Lange et al., ‘Vulnerability in Research Ethics’, 337.

48 Hurst, ‘Vulnerability in Research and Healthcare’, 195–196.

49 C. Mackenzie, ‘Vulnerability, Needs and Moral Obligation’, in C. Straehle (ed.), Vulnerability, Autonomy and Applied Ethics (New York: Routledge, 2017), pp. 83100.

2 Autonomy Relational Conceptions

Natalie Stoljar
2.1 Introduction

This chapter argues that the conception of autonomy implicit in the current health research ethics guidelines is an individualistic one. On this model, people are autonomous when they voluntarily exercise their deliberative capacities to make choices based on their values. They can fail to be autonomous either for psychological reasons, when their deliberative capacities are impaired; or for epistemic reasons, when they do not have access to all the information that is relevant to a decision. The chapter outlines a contrasting ‘relational’ approach to autonomy. On the relational model, people can fail to be autonomous for social reasons. The social conditions that a person inhabits, including their available options, and the interpersonal context – such as family relationships and social expectations – all affect the ability to make autonomous decisions. The chapter also identifies some of the implications of the relational model for health research ethics. It examines two issues implicit in the guidelines: the relationship between autonomy and vulnerability, and the claim that informed consent is sufficient for autonomy.

2.2 Autonomy in Health Research Ethics Guidelines

Autonomy is a one of the fundamental ethical principles identified in documents that provide ethical guidelines for health research using human subjects. Section 9 of the Declaration of Helsinki states that ‘[i]t is the duty of physicians who are involved in medical research to protect the life, health, dignity, integrity, right to self-determination, privacy, and confidentiality of personal information of research subjects’.Footnote 1 The Belmont Report outlines three fundamental ethical principles: respect for persons, beneficence and justice. Respect for persons requires that ‘individuals should be treated as autonomous agents’ and that ‘[a]n autonomous person is an individual capable of deliberation about personal goals and of acting under the direction of such deliberation’.Footnote 2 These documents propose explicitly or implicitly that the principle of respect for autonomy can by satisfied by obtaining informed consent. Section 25 of the Declaration of Helsinki states that ‘no individual capable of giving informed consent may be enrolled in a research study unless he or she freely agrees’.Footnote 3 The Belmont Report provides that respect for persons requires that ‘subjects be given the opportunity to choose what shall or shall not happen to them. This opportunity is provided when adequate standards for informed consent are satisfied’.Footnote 4 And the Government of Canada guidelines state that ‘[i]ndividuals are generally presumed to have the capacity and right to make free and informed decisions. Respect for persons thus means respecting the exercise of individual consent’.Footnote 5

As has been often noted, these ethical codes were initially formulated in response to notorious examples of exploitation and autonomy-denial of vulnerable people in medical research, such as the Nazi medical experiments and the Tuskegee syphilis study of the US Public Health Service. The latter took place from 1932 to 1972 to ‘record the natural history of syphilis’. Researchers recruited 600 Black men – sharecroppers who had not received medical care before – of whom 399 had syphilis and 201 did not. The men consented to participate in exchange for free medical care but were never informed about the true purpose of the study – they were told they were receiving medical treatment for ‘bad blood’. They did not receive penicillin when it became available in 1947, nor were they offered the opportunity to leave the study.Footnote 6 The ethical guidelines aim to protect such vulnerable populations. The Belmont Report states that ‘[c]ertain groups, such as racial minorities, the economically disadvantaged, the very sick, and the institutionalized may continually be sought as research subjects, owing to their ready availability in settings where research is conducted. Given their dependent status and their frequently compromised capacity for free consent, they should be protected against the danger of being involved in research’.Footnote 7 The document also associates vulnerability with a lack of autonomy: ‘Respect for human dignity entails high ethical obligations towards vulnerable persons – to those whose diminished competence and/or decision-making capacity make them vulnerable’.Footnote 8

The ethical guidelines therefore raise three important questions. First, what is the understanding of autonomy implicit in the guidelines? Second, is the ‘autonomy of the vulnerable’Footnote 9 possible, and, if so, how does vulnerability intersect with autonomy? Third, what is the connection between informed consent and autonomy? The next section claims that the conception of autonomy implicit in the guidelines is an individualistic one on which it is sufficient for autonomous decision-making that people have deliberative capacities and exercise them in appropriate ways. However, the individualistic model is limited both in its conception of autonomy and its recommendations regarding the ethical obligations of health researchers. I therefore outline a contrasting ‘relational’ model of autonomy that has been developed over the last several decades by feminist philosophers and others.Footnote 10 The final sections examine the implications of relational autonomy for the notions of vulnerability and informed consent. The relational model suggests that the ethical obligations of health researchers to respect autonomy are more demanding than the requirement to secure informed consent.

2.3 The Individualistic Conception of Autonomy

Autonomy is the ability of people to ‘fashion’ their own destiny through ‘successive decisions throughout their lives’.Footnote 11 The challenge is to identify the conditions that are required to secure this ability and to promote its exercise in particular cases. The philosophical debate about autonomy offers both individualistic and a variety of relational answers. On a standard individualistic view, the conditions of autonomy are purely internal or psychological: autonomy corresponds to a capacity for rational deliberation. Gerald Dworkin argues that a person is globally autonomous when they have a higher-order capacity for critical reflection. A particular decision is locally autonomous when the capacity is exercised to evaluate, endorse or repudiate first-order preferences.Footnote 12 This view assumes that most people are rationally competent agents who engage in critical reflection and generate endorsed or ‘authentic’ decisions.Footnote 13 People are nonautonomous only when critical reflection is defective – when the capacity for rational deliberation is undermined by a psychological impairment such as being under the influence of drugs or alcohol, hypnosis, brainwashing or similar forms of psychological manipulation, or pathological psychological conditions, like delusions, that interfere with mental competency. The individualistic conception of autonomy has been highly influential and has led many later authors to adopt variants of Dworkin’s approach.Footnote 14

The health research ethics guidelines do not explicitly elaborate a notion of autonomy. The Declaration of Helsinki refers to respecting a ‘right to self-determination’.Footnote 15 The Government of Canada Guidelines state that ‘individuals are generally presumed to have the capacity and right to make free and informed decisions’.Footnote 16 Only the Belmont Report adopts the individualistic model explicitly, stating that ‘[a]n autonomous person is an individual capable of deliberation about personal goals and of acting under the direction of such deliberation. To respect autonomy is to give weight to autonomous persons’ considered opinions …’Footnote 17 However, all the guidelines refer to informed consent as the ethical requirement that will secure subjects’ ‘free choice’ or autonomy. This implies that, for individuals who are ‘capable of deliberation’, the only additional thing needed for autonomy are optimal epistemic conditions in which to deliberate. It is reasonable to assume, therefore, that the health research guidelines do not go beyond the individualistic model, and that the conditions that undermine autonomy are limited to the psychological (impaired cognitive capacities) or the epistemic (inadequate information). On this model, ethical obligations are also limited to ensuring that subjects are mentally competent and have all relevant information. However, this narrow account of ethical obligation does not fully explain the ethical failures of the research in cases such as the Tuskegee study. There is no reason to think that the Tuskegee subjects were mentally incompetent or lacked autonomy due to cognitive impairment. The individualistic model – and the guidelines – imply that these subjects could, in principle, have made an informed decision to participate in the study and therefore that the obligation to respect their autonomy could have been discharged. This model fails to address the social context of choice and is both an implausible characterisation of autonomy and an impoverished account of the researchers’ ethical obligations. I now turn to the relational model of autonomy to address these problems.

2.4 Relational Autonomy

The starting point of relational approaches to autonomy is the observation that people are not disembodied rational subjects who, absent psychological impediments, function as fully autonomous agents. Rather, autonomy is an ability that develops and is exercised in a social context. Social relationships, as well as social and historical conditions – such as gender socialisation – foster or impede autonomy.Footnote 18 In short, the social conditions that a person inhabits, the interpersonal context of family and community relationships, as well as norms and interpersonal expectations, can all promote or undermine the ability to make autonomous decisions.

Relational autonomy is a popular framework in clinical ethicsFootnote 19 but so far has received little attention in health research ethics. One exception is offered by Edward S. Dove et al., who advocate a relational approach to understanding consent to placental sampling in pregnant women.Footnote 20 Some women request to consult their partners before providing consent to placental sampling. The authors propose that such requests are better accommodated within a relational model than an individualistic model because the former acknowledges the impact of social relationships on agency and hence recognises that ‘joint decision-making [could] be built into the consent process’.Footnote 21 This illustration of an application of the relational model is quite limited, however. First, it seems to conflate joint decision-making with relational autonomy. Joint decision-making implies that the author of a decision is a collective (the woman and her partner), whereas the relational model aims to characterise individual autonomy that takes into account the decision-maker’s social context. Second, the potential of the relational model, both to identify social conditions that hamper individual autonomy, as well as to identify strategies to promote autonomy, is considerably richer than suggested here. There is a complex set of factors elaborated by relational theories that potentially affect subjects’ autonomy and hence should be considered in the context of health research ethics. In what follows, I sketch three varieties of relational approach.

The first set of views argues that although autonomy is primarily a psychological capacity, social conditions play a significant causal role in its development. Marilyn Friedman offers a psychological test of autonomy on which being autonomy requires ‘self-reflective affirmation’ with respect to one’s preferences and values.Footnote 22 She emphasises, however, that family relationships serve to either promote or hamper the development of the critical reflection that allows people to engage in self-reflective affirmation.Footnote 23 Similarly, Diana Tietjens Meyers argues that a person has ‘autonomy competency’ when she exercises a ‘repertoire of skills’ of critical reflection to engage in ‘self-discovery, self-definition and self-direction’.Footnote 24 Social conditions, particularly lack of education or oppressive socialisation, can affect whether or not such skills develop in the first place, erode them even if they do develop or fail to promote a person’s exercise of these skills. For instance, gendered expectations might deter the development or exercise of autonomy skills in girls but promote it in boys. Boys are more likely to be encouraged to debate their points of view and adopt an attitude of ‘authority over their own voice’. For Meyers, well-honed autonomy competency can also counter oppressive socialisation. She comments that autonomy skills ‘endow women with the capacity to fashion self-portraits and self-narratives in their own voices and to lead their own lives’.Footnote 25 Meyers’s account is relational because it recognises the many ways in which deliberation is itself moulded by socialisation. She also identifies a rich array of deliberative skills that are required for autonomy competency including those of introspection, imagination, communication and memory.Footnote 26 These include emotional, bodily and interpersonal components and hence, on Meyers’s approach, relationality is built into critical reflection itself.

A second category of relational views claims that the presence of certain external options is a necessary condition of autonomy. Joseph Raz argues that autonomy – and hence a flourishing life – will be thwarted if a person lacks a sufficient range of meaningful external options.Footnote 27 For instance, a ‘hounded woman’ on a desert island, who is pursued by a carnivorous wild animal that is hunting her down – and whose every move is determined by the need to protect herself from the beast – cannot be autonomous, even if her powers of critical reflection are fully intact. Marina Oshana also advocates an externalist approach, on which autonomy is incompatible with external conditions that interfere with the ‘de facto power and authority’ that is necessary for people to direct their own lives.Footnote 28 For example, when young African American men are routinely subjected to police profiling or arbitrary stop-and-search policies, this is autonomy-undermining because it unjustifiably constrains their options and diminishes their power to direct the course of their daily lives. Therefore, on externalist views, autonomy is not only a matter of genuine self-affirmation or of exercising skills of critical reflection; it also requires meaningful external options and the absence of severely constraining external conditions.

Finally, there is a category of relational approaches that focuses on the importance for autonomy of self-regarding attitudes, such as self-trust and self-esteem. Carolyn McLeod identifies the role of self-trust – an ‘attitude of optimism about our own competence and moral integrity’Footnote 29 – in autonomy through the example of ‘Anna’, who suffered a miscarriage at six weeks’ gestation and afterwards felt considerable emotional turmoil. McLeod analyses Anna’s sense of incompetence to articulate her emotions as in part a result of others’ lack of sympathy for her grief and corresponding failure to reinforce her feelings: ‘[O]ften women and their partners are pressured not to grieve after miscarriage because people tend not to view the fetus’s death as an event that warrants grief’.Footnote 30 Comments such as ‘it was a blessing in disguise’ or ‘it could have been worse; you could have lost a baby’ fail to ‘give uptake to [women’s] feelings’.Footnote 31 Self-regarding attitudes – people’s sense of their own competence, sense of self-worth and self-trust – are thus particularly sensitive to interpersonal conditions and the attitudes of others.

Catriona Mackenzie has extended this proposal, arguing that self-regarding attitudes such as self-trust are constitutive components of what she calls the ‘normative authority’ required for autonomy.Footnote 32 Mackenzie elaborates contrasting examples from the clinical context of decisions to withdraw life-preserving medical treatment. Ms B. was a forty-three-year-old single woman who had had a career in social work in a hospital before her illness. Ms B. suffered from a spinal condition that left her paralyzed from the neck down. After an attempt to improve the condition through surgery had failed, she requested that her ventilator be switched off. She was fully aware of all treatment options and thoughtful and articulate about her decision to have treatment withdrawn.Footnote 33 Mackenzie claims that she ‘clearly regarded herself as a moral equal’ and that ‘she was motivated by an attitude of self-worth; that is, by a sense that her life should be meaningful, worthwhile, and valuable, and by a conviction that it could no longer continue to be so given her medical condition’.Footnote 34 Contrast Mrs H., who suffered an aggressive form of bone cancer that required amputation of a leg below the knee. Her husband left her as a result of her disability. Mackenzie comments that ‘she does not have the kind of strongly developed sense of basic self-confidence that might enable her to envisage a different future for herself than the one she had anticipated; and she does not have a sense of her life as worth living in its own right, independently of her relation to her husband’.Footnote 35 By hypothesis, Mrs H.’s capacity for self-trust and self-esteem was damaged by both her socialisation – Mrs H. was influenced by cultural norms and gender stereotypes that seemed to suppress her sense of self-assurance – as well as gendered relationships within her family – her husband left her when she was no longer able to occupy the traditional role of a supportive wife. Mackenzie argues that self-regarding attitudes are not just the outcomes of the social context; they are also ‘intrinsically relational’ because they are ‘enmeshed in interpersonal relationships and social structures of mutual recognition and it is for this reason that our autonomy can be impaired by failures of recognition’.Footnote 36

The different relational conceptions of autonomy that I have just outlined convey the complexity of the social–relational factors that potentially affect whether subjects of health research will be autonomous or not. In the next two sections, I outline the implications of the relational model for vulnerability and informed consent. I suggest that the relational model generates more demanding ethical obligations on health researchers than those derived from the individualistic model.

2.5 Relational Autonomy and Vulnerability

Relational conceptions of autonomy help to illuminate the connection between autonomy and vulnerability (see Rogers, Chapter 1 of this volume). Recall that the Belmont Report says that vulnerable persons are ‘those whose diminished competence and/or decision-making capacity make them vulnerable’.Footnote 37 Vulnerability is here being characterised as (individualistic) non-autonomy, namely as non-autonomy due to (psychologically) diminished competence. This suggests that vulnerability and autonomy are incompatible and that therefore that it is unethical for vulnerable agents to be the subjects of healthcare research. However, rather than treating vulnerability and autonomy as always opposed, the relational model potentially provides a more nuanced account of how to evaluate and ultimately promote the autonomy of members of vulnerable groups.

Theorists of vulnerability have observed that vulnerability can be inherent or situational.Footnote 38 Certain vulnerable groups, such as pregnant women, are vulnerable due to intrinsic, bodily aspects of being human. Others, such as the subjects of the Tuskegee study, are situationally vulnerable. As impoverished Black sharecroppers in the American South who had never received adequate education or medical care, these subjects were situationally vulnerable. Poverty and racist discrimination afforded them few real options and disposed them to manipulation by the medical personnel conducting the study. The situational vulnerability of subjects of the Tuskegee study generates global non-autonomy. Even if such subjects have the deliberative competence to make informed, locally autonomous decisions, they lacked minimally adequate options, and could not direct the course of their lives. Is health research using subjects who are situationally vulnerable and globally non-autonomous always ethically indefensible? Mackenzie disputes this conclusion. Vulnerability and autonomy are not always opposed, because ‘ethical responses to vulnerability should be guided by the value of autonomy … to counter the sense of powerlessness and loss of agency that is often associated with vulnerability … and to counter the risks of objectionable paternalism’.Footnote 39 If she is right, it would not be impossible to conduct ethical studies using subjects who are situationally vulnerable, but the obligation to respect autonomy would be demanding in such cases. Researchers would have to actively ameliorate subjects’ autonomy by, e.g. ensuring that participation in the research itself provides meaningful options and fosters positive communication to promote subjects’ self-trust and sense of self-worth.

The situation is different for groups that are defined as vulnerable due to their inherent characteristics, such as pregnant women. It has been pointed out that the assumption that there is homogeneity among members of vulnerable groups is problematic (see Brassington, Chapter 9 and Rogers, Chapter 1 in this volume). Labelling a group a ‘vulnerable population’ can lead to ‘unfettered protectionism’ with respect to health research on this population, which in turn can have adverse consequences for their health.Footnote 40 For instance, there is no effective malaria drug that can be used by pregnant women, thus leading to unnecessarily high rates of death from the disease.Footnote 41 The relational model of autonomy challenges the assumed homogeneity of groups that are characterised by inherent vulnerabilities. Although the conditions causing situational vulnerability often coincide with those that undermine autonomy, this is not the case for inherent vulnerability. Individual women do not have diminished mental competence due to pregnancy; nor do social conditions render pregnant women as a group globally non-autonomous. From the perspective of relational autonomy, there is no impediment to ethical research using pregnant women merely due to the inherent vulnerability of pregnancy.

2.6 Relational Autonomy and Informed Consent

The ethical guidelines mostly treat informed consent and autonomy as interchangeable and suggest that securing informed consent is both necessary and sufficient to respect autonomy. The relational model challenges both assumptions.Footnote 42 On the relational model, it is possible to respect and promote autonomy without obtaining informed consent. Consider children or people with a cognitive disability who cannot provide genuine informed consent. Relational conceptions of autonomy imply that there are many ways in which autonomy can be fostered, such as providing meaningful options and reinforcing self-regarding attitudes of self-confidence, self-trust and self-worth. The ethical obligation of respect for relational autonomy is therefore distinct from the requirement to obtain informed consent. If health research on children or people with cognitive disabilities were envisioned, it may be necessary to secure informed consent from a parent or guardian. But this would not imply that the ethical obligation of researchers to respect the autonomy of subjects themselves has been discharged. Researchers would have an additional obligation to foster the relational autonomy of the subjects of the research.

The relational model also questions the assumption that informed consent is sufficient for autonomy.Footnote 43 The obligation to obtain informed consent requires health researchers to provide relevant information and an opportunity for subjects to weigh up costs and benefits on the basis of the information. This obligation is not onerous, as McLeod comments vis-à-vis informed consent in clinical contexts: ‘[r]arely does significant communication about a patient’s options occur’ besides either recommending the procedure, or in cases in which a recommendation is not possible, ‘[saying] to the patient that she has to choose based of her beliefs and values’.Footnote 44 As we have seen, an informed decision is not always an autonomous one. The Tuskegee subjects did not suffer cognitive impairments, so in principle they had the capacity to evaluate information and decide to participate in the study. On the relational model however, this decision is unlikely to be even locally autonomous. The Tuskegee subjects lacked recognition by others of their status as moral equals; they likely also lacked self-trust or a sense of themselves as the equals of the researchers conducting the study. If so, even informed decisions would not count as autonomous. The relational model implies therefore that health researchers have additional ethical obligations than simply to obtain informed consent. Consider again the example of placental sampling. Dove et al. suggest that requests by some women to consult their partners indicate a form of relational rather than individualistic decision-making. This may be true, but it would be wrong to assume that the requirement to respect relational autonomy would be discharged by providing subjects an opportunity to consult family members. Indeed, it has been argued that respecting relational autonomy implies quite stringent obligations, for instance an epistemic obligation to understand the woman’s subjective point of view.Footnote 45 For instance, in the placental sampling case, will consulting a partner foster the woman’s autonomy, or does it indicate a disposition to defer to a male partner’s wishes due to lack of self-trust or self-worth? (Recall the case of Mrs H. above.) In general, respecting relational autonomy requires the provision of meaningful options – including the option to say no – and an environment that promotes rather than undermines the necessary competencies and self-regarding attitudes.

I have argued that securing informed consent, as understood on the individualistic model, is insufficient to respect relational autonomy. However, could the obligation to secure informed consent itself be revised in ways congenial to the relational approach? Guideline 9 of the 2016 International Ethical Guidelines for Health-Related Research Involving Humans states that informed consent should be a ‘two-way communicative process’, and that persons obtaining the consent should ensure that subjects comprehend the relevant information. For example, the information must be in ‘plain language understandable by the applicant’, and ‘the researchers must make themselves available to answer questions’.Footnote 46 These latest guidelines therefore adopt some of the lessons of relational autonomy. They focus attention on the ways on which the availability of researchers to answer questions could facilitate a better-informed process and hence on the effects of interpersonal attitudes on individuals’ decision-making. Yet they do not fully articulate the potential for understanding informed consent in relational terms. One promising avenue of research is the framework of ‘epistemic injustice’, which argues that people can suffer injustice due to unjustifiable disregard for their status as full epistemic agents.Footnote 47 For example, due to their social subordination, the epistemic agency of the Tuskegee subjects was ignored and there was no attempt to secure informed consent. Epistemic injustice can also occur in cases in which the need for informed consent is recognised. Indeed, it may be especially likely to occur in the context of health research due to the privileged epistemic position that researchers occupy as experts in the research field. As José Medina has argued, having privileged status – epistemic or otherwise – tends to make one more likely to display epistemic vices such as epistemic arrogance, or the expectation of ‘not being called into question in one’s opinions, that is having an undisputed cognitive authority’.Footnote 48 Such epistemic vices potentially will interfere with obtaining appropriate consent. Attention to the relational context in characterising informed consent reinforces the conclusion of previous sections that the ethical obligations of researchers who study human subjects are more demanding than set out in the current guidelines. In addition to the obligation to foster the social and interpersonal conditions that promote autonomy, they may have special epistemic obligations, namely to cultivate epistemic virtue and attempt to eliminate epistemic vice.

2.7 Conclusion

This chapter has argued that that the current guidelines for health research ethics are implicitly committed to an individualistic conception of autonomy. This is an implausible conception because it does not recognise ways in which people’s capacities for autonomy depend on social conditions, family and community relationships, and interpersonal attitudes. The chapter outlined a competing relational model of autonomy and argued that the ethical obligations derived from the relational model are more stringent than those derived from the individualistic conception.

1 World Medical Association, ‘WMA Declaration of Helsinki – Ethical Principles for Medical Research Involving Human Subjects’, (World Medical Association, 1964). My emphasis.

2 Department of Health, Education, and Welfare, ‘The Belmont Reports. Ethical Principles and Guidelines for the Protection of Human Subjects of Research’, (US Department of Health and Human Services, 1979). My emphasis.

3 WMA, ‘Declaration of Helsinki’.

4 HHS, ‘Belmont Report’.

6 ‘The Tuskegee Timeline’, (CDC); www.cdc.gov.tuskegee/timeline.htm; E. Nix, ‘Tuskegee Experiment: The Infamous Syphilis Study’, (History, 16 May 2017), www.history.com/news/the-infamous-40-year-tuskegee-study.

7 HHS, ‘Belmont Report’.

9 T. F. Owonikoko, ‘Upholding the Principles of Autonomy, Beneficence, and Justice in Phase I Clinical Trials’, (2013) Oncologist, 18(3), 242244, 242.

10 J. Nedelsky, ‘Reconceiving Autonomy: Sources, Thoughts and Possibilities’, (1989) Yale Journal of Law and Feminism, 1(1), 736; C. Mackenzie et al. (eds), Relational Autonomy Feminist Perspectives on Autonomy, Agency and the Social Self (New York: Oxford University Press, 2000); N. Stoljar, ‘Feminist Perspectives on Autonomy’, (The Stanford Encyclopedia of Philosophy, 11 December 2018), www.plato.stanford.edu/archives/win2018/entries/feminism-autonomy/

11 J. Raz, The Morality of Freedom (Oxford: Oxford University Press, 1986), p. 369.

12 G. Dworkin, The Theory and Practice of Autonomy (Cambridge: Cambridge University Press, 1988).

13 The dominant view of autonomy in bioethics, due to Tom Beauchamp and James Childress, is similar, although their conception of autonomy requires that autonomous decisions are intentional not authentic: e.g. T. L. Beauchamp and J. F. Childress, Principles of Biomedical Ethics, 7th Edition (New York: Oxford University Press, 2012), p. 203. As Beauchamp puts it, ‘This account of autonomy is designed to be coherent with the premise that everyday choices of generally competent persons are autonomous. The account is based on autonomous action in terms of normal choosers who act (1) intentionally, (2) with understanding, and (3) without controlling influences’. T. L. Beauchamp, ‘Autonomy and Consent,’ in F. Miller and A. Wertheimer (eds), The Ethics of Consent: Theory and Practice (New York: Oxford University Press, 2010), p. 65.

14 For instance, John Christman specifies that autonomy requires both psychological competency and authenticity. Competency is critical reflection that is free from ‘distorting factors’ and authenticity requires what he calls ‘hypothetical non-alienation’. See J. Christman, The Politics of Persons. Individual Autonomy and Socio-historical Selves (Cambridge: Cambridge University Press, 2009), pp. 155156. Christman’s criterion of autonomy is weaker than Dworkin’s as it does not require active endorsement at all. It may be so weak as to have limited use in the health research context.

15 WMA, ‘Declaration of Helsinki’.

16 Government of Canada, ‘Guidelines’.

17 HHS, ‘Belmont Report’.

18 Nedelsky, ‘Reconceiving Autonomy’, 12; D. Tietjens Meyers, Self, Society and Personal Choice (New York: Columbia University Press, 1989).

19 E.g. J. K. Walter and L. Friedman Ross, ‘Relational Autonomy: Moving beyond the Limits of Isolated Individualism’, (2014) Pediatrics, 133 (Supplement 1), S16S23.

20 E. S. Dove et al., ‘Beyond Individualism: Is There a Place for Relational Autonomy in Clinical Practice and Research?’, (2017) Clinical Ethics, 12(3), 150165, 157.

21 Footnote Ibid., 158.

22 M. Friedman, Autonomy, Gender, Politics (New York: Oxford University Press, 2003), p. 6.

23 M. Friedman, ‘Autonomy and Social Relationships: Rethinking the Feminist Critique’ in D. T. Meyers (ed.), Feminists Rethink the Self (Boulder, CO: Westview, 1997), pp. 4061.

24 D. Tietjens Meyers, ‘Decentralizing Autonomy. Five Faces of Selfhood’ in J. Christman and J. Anderson (eds), Autonomy and the Challenges of Liberalism: New Essays (Cambridge: Cambridge University Press, 2005), p. 49.

25 D. Tietjens MeyersGender in the Mirror: Cultural Imagery and Women’s Agency (New York: Oxford University Press, 2002), p. 32.

26 E.g. Meyers, Gender in the Mirror, p. 20.

27 Raz, The Morality of Freedom, p. 273.

28 M. Oshana, Personal Autonomy in Society (Aldershot: Ashgate Publishing, 2006), p. 2.

29 C. McLeod, Self-Trust and Reproductive Autonomy (Cambridge, MA: MIT Press, 2002), p.6.

30 Footnote Ibid., p. 53.

31 Footnote Ibid., p. 55.

32 C. Mackenzie, ‘Relational Autonomy, Normative Authority and Perfectionism’, (2008) Journal of Social Philosophy, 39(4), 512533. More recently, Mackenzie has called this the ‘self-authorization’ dimension of autonomy, which she distinguishes from both the self-government (or internalist) dimension and the self-determination (or externalist) dimension: C. Mackenzie, ‘Three Dimensions of Autonomy. A Relational Analysis’ in A. Veltman and M. Piper (eds), Autonomy, Oppression and Gender (New York: Oxford University Press, 2014), pp. 1542. However, in earlier work, normative authority was taken to be a spelling out of self-government.

33 Mackenzie, ‘Normative Authority’, pp. 514–515.

34 Footnote Ibid., p. 525.

36 Footnote Ibid., p. 526.

37 HHS, ‘Belmont Report’.

38 C. Mackenzie et al., ‘Introduction: What Is Vulnerability, and Why Does It Matter for Moral Theory?’ in C. Mackenzie et al. (eds), Vulnerability. New Essays in Ethics and Feminist Philosophy (New York: Oxford University Press, 2014), p. 7.

39 C. Mackenzie, ‘The Importance of Relational Autonomy and Capabilities for an Ethics of Vulnerability’ in C. Mackenzie et al. (eds), Vulnerability. New Essays in Ethics and Feminist Philosophy (New York: Oxford University Press, 2014), p. 45.

40 M. O. Little et al., ‘Research with Pregnant Women. A Feminist Challenge’ in L. D’Agincourt-Canning and C. Ells (eds), Ethical Issues in Women’s Health Care (New York: Oxford University Press, 2019), pp. 281282.

41 Footnote Ibid., p. 280.

42 James S. Taylor also argues that securing informed consent is not necessary to promote autonomy. It should not be jettisoned however, because it promotes the value of well-being: J. S. Taylor, ‘Autonomy and Informed Consent: A Much Misunderstood Relationship’, (2004) The Journal of Value Inquiry, 38(3), 383391.

43 N. Stoljar, ‘Informed Consent and Relational Conceptions of Autonomy’, (2011) Journal of Medicine and Philosophy, 36(4), 375384.

44 McLeod, Self-Trust, pp. 134–135.

45 Catriona Mackenzie outlines these obligations in the clinical context: Mackenzie, ‘Normative Authority’, p. 528.

46 Council for International Organization of Medical Sciences (CIOMS), International Ethical Guidelines for Health-Related Research Involving Humans, 4th Edition, (Geneva: CIOMS Publications, 2016).

47 M. Fricker, Epistemic Injustice: Power and the Ethics of Knowing (Oxford: Clarendon Press, 2007).

48 J. Medina, The Epistemology of Resistance (Oxford: Oxford University Press, 2012), pp. 3132.

3 Proportionality in Health Research Regulation

Owen Schaefer
3.1 Introduction

Proportionality in health research regulation can, at its broadest level, be understood as an attempt to balance two considerations that sometimes compete: the protection of individuals affected by research – especially, but not limited to, human subjects – and the promotion of socially valuable research. This chapter will explore the concept of proportionality through three sections: First, a clarification on what I mean by proportionality in this context and why it is important; second, an exploration of how particularly challenging it is to assess proportionality; and third, a proposal for a procedural approach to proportionality that may assist with those challenges. In particular, I will propose that adopting a facilitative attitude, undertaking rigorous justification, ensuring transparency and engaging with relevant stakeholders may be effective procedural means of overcoming the challenges of proportionality.Footnote 1

3.2 What Is Proportionality?

The term ‘proportionality’ has several meanings even within the context of health research regulations. We can roughly distinguish between the first-order or study-level sense of the term, and second-order or policy-level sense.

First-order proportionality refers to the benefits of a study – inclusive of benefits to the subjects as well as society as a whole – being proportionate to its risks and burdens. It is interchangeable with ‘favourable risk-benefit ratio’ as found in the classic article ‘What makes clinical research ethical?’,Footnote 2 and a variety of authors have followed suit.Footnote 3 On this understanding, the benefits of a given study need to be of sufficient strength or magnitude to justify the risks individuals are exposed to. Research Ethics Committees (RECs), Institutional Review Boards (IRBs) or equivalent are routinely tasked with making such assessments on a case-by-case basis for human subjects research.

I will set aside assessment of first-order proportionality in this chapter, as risk–benefit ratios will be covered elsewhere in this volume.Footnote 4 Instead, I will focus on second-order proportionality in health research, which operates primarily at the policy level (inclusive of national and institutional policies).

Second-order proportionality refers to whether the burdens of a given rule or policy governing research are proportionate to its benefits. The burdens and benefits can further be delineated along two axes: effects on the process of research including monetary/staffing costs, researchers’ time, efficiency and scientific validity; and the effect on protection afforded to individuals affected by research (including, but not limited to, human subjects). As will be discussed below, this is not only limited to physical effects, but extends to other impacts such as the wrongdoing of privacy violations.

Proportionality assessments then, will involve evaluating the benefits of a regulation in terms of both protection and promotion, and weighing those against the burdens, also in terms of protection and promotion. While we might typically expect research regulations to impose burdens in terms of process while affording benefits in terms of protections, we should keep in mind that regulations can also have beneficial effects on processes, and deleterious effects on protections, as seen in Table 3.1.

Table 3.1 Matrix of regulations’ potential effects on research

Process (monetary/staffing costs, researchers’ time, efficiency, and scientific validity)Protection (relating to the interests of human subjects or other individuals directly affected by research)
Benefits (positive effects)e.g. streamlining research reviewe.g. data security protocols to protect confidentiality of subject data
Burdens (negative effects)e.g. substantial time from researchers to ensure compliancee.g. retaining sensitive study data for years, increasing risk of breach

Like first-order proportionality, there is a justificatory relationship: the benefits of a rule or policy must be sufficient to justify the burdens imposed. But unlike first-order proportionality, second-order proportionality is not evaluated on a case-by-case basis. Rather, it concerns the total effect a given policy has on the research enterprise. It is the responsibility of policymakers – including regulators and institutional leaders – along with institutional bodies like RECs and IRBs, to ensure that their policies are proportionate in this way.

Still, context will be important in assessing the proportionality of a given policy. Rules will have different impacts on different institutions, fields of study, countries and cultures. For example, a rule requiring written informed consent from subjects – which ensures consistent provision of information and ease of auditing – may be quite proportionate in societies with high literacy. But in societies with low literacy, the requirement would lead to the exclusion of many subjects, potentially endangering the scientific validity and depriving already-marginalised groups of potentially beneficial interventions. This could tip the rule from being proportionate to being disproportionate.

3.3 Proportionality of Review and Proportionality of Harms

Discussions around second-order proportionality typically focus on two related aspects: proportionality of review, and proportionality of harms. Proportionate review involves tailoring the degree of scrutiny to the amount of risk subjects may be exposed to.Footnote 5 Proportionality of harms defines those risks in terms of probability of physical or psychosocial harms.

In regard to proportionality of review, low-risk research may be reviewed under expedited or exempted pathways, where only one or two members of a REC are directly involved in assessing and approving a study. Higher-risk research would instead go to a full board.

Full board reviews take more time, potentially reducing the efficiency of research with potential social benefits. However, they also are more likely to pick up on potential ethical failings, due to both the larger number of eyes on a proposal, and the greater diversity of expertise brought to bear on it. This will be more proportionate for studies with higher risks to subjects, and so in need of closer attention. For low-risk studies, there may not be much reason to apply that extra scrutiny, as the marginal benefit to subjects of correcting a failing is relatively small. At the same time, the study will still consume resources, which may be separate grounds for some scrutiny.Footnote 6

However, ethics review is just one component of research oversight. Many policies governing health research operate using different mechanisms, including rules that bind researchers directly, regardless of the scrutiny applied. These include policies delineating the contents of informed consent, confidentiality protections, documentation and authorisation. All these requirements have the potential to slow down research or increase its costs, and so must be justified in terms of the benefits they afford. Stratifying the stringency of a wider variety of rules is more common in Europe, while US regulations only stratify the review process.Footnote 7

Additionally, approaches centred around proportionality of harms capture only part of the justifications for rules governing health research. The four principles approach can help illustrate this. Beauchamp and Childress identified four central mid-level ethical principles that underpin bioethics in general, and research ethics in particular: beneficence, non-maleficence, respect for autonomy and justice.Footnote 8

Beneficence in this context relates to the impetus to ensure that socially beneficial research is conducted in an efficient manner; inefficiencies resulting from over-regulation increase the overall cost of research, in turn reducing the amount of research – and thus social benefits generated – that can be conducted on a given budget. Non-maleficence refers to the potential harms of research mentioned above. On the above understanding, proportionality would primarily involve balancing beneficence – in terms of promoting valuable research – against non-maleficence (avoiding harms caused by research).

This leaves out autonomy and justice, which are also relevant to proportionality assessments. Consider the following examples of informed consent – as an illustration of respect for autonomy – and subject selection (illustrating justice concerns).

Informed consent may in part be aimed at harm mitigation, so subjects can avoid participating in trials whose risks are unacceptable to them personally. But it also aims at respecting the ability of subjects to govern their own lives – here, to ensure that participating in a study is in accordance with their values. This includes risks, but may also relate to other factors such as how much they identify with the aims of the study, trust researchers, or believe it will produce social benefits.Footnote 9

Fair subject selection might also have a risk-mitigation aim, insofar as subjects particularly vulnerable to harm from a study may be excluded. But this must also be balanced by justice considerations in excluding certain groups from a study. A case in point is the routine exclusion of pregnant women from research. This is done in the name of non-maleficence, as fetuses are frequently thought to be at higher risk of harm from experimental interventions. But the result is a lack of evidence for the safety of a wide variety of drugs on pregnant women, forcing them into an uncomfortable dilemma: accept substandard care with a more proven safety record, or go for proven interventions that have an uncertain risk to their children. As such, a rule meant to protect pregnant women arguably perpetuates injustices against them.Footnote 10

Assessments of proportionality should go beyond benefits and harms to incorporate considerations of justice and respect for persons. These considerations may factor in on both sides of the proportionality equation: the burden of regulation may be necessary to prevent an injustice and promote autonomy, or – as with the case of preventing research with pregnant women – a regulation’s burdens may be shown to be unjustifiable by virtue of the injustice and disrespect that it promulgates.

3.4 The Challenge of Social Value

From the preceding discussion, it should already be evident that assessments of proportionality of a given policy governing health research will be quite complex. Further challenges emerge upon closer analysis, one of which is how to integrate the social value of research into proportionality assessments.

Up until this point, it has been assumed that greater efficiency, lowered cost and improved scientific validity in health research are unquestionably valuable. This is predicated on a potentially contestable notion – that the outputs of research have substantial social value. If policies slow down research, then in turn society’s access to valuable outputs – more effective treatments, better prevention of disease, mitigation of symptoms and side-effects, etc. – will slow down. Increased costs mean less research can be done, and thereby fewer valuable outputs are produced. Further, detriments to scientific validity – such as limitations on the use of placebo-controlled trials – may undermine the robustness of those outputs.

It is often held that all health research must contribute to social value in order to be ethically justified.Footnote 11 For present purposes, it is sufficient to note that if a given study really has no social value, proportionality is irrelevant – it should not be permitted in the first place.

Meeting the minimal threshold of social value masks the larger, much more intractable issue of assessing the magnitude of that social value. This magnitude is important in proportionality assessments to get an understanding of how problematic a given inefficiency or other detriment really is. For low social value research, barriers to research may more easily be outweighed by ensuring protections for subjects; vice-versa for high social value research.

But there is no reliable formula for quantifying the social value of a given study. The results of all studies are by nature uncertain – if we knew the results ahead of time, there would be no need to engage in a study in the first place. Much health research is not directly translatable; it instead builds a base of understanding that over time, in combination with other studies, will eventually lead to improved practice down the road. It is also unclear how we should judge the impact of health research. Some measures like Quality-Adjusted Life Years are relevant here, but these have been disputed as too abstracted a way from patient experiences and values,Footnote 12 and being potentially discriminatory.Footnote 13

Still, some reasonable estimates of possible social benefits of a given study must be possible. This is the routine task of agencies that disburse grants for research, after all. Moreover, research regulation can itself play a role in improving the social value of a study. For example, beyond risk assessment, a REC/IRB review of scientific validity and value can play a role in promoting sound knowledge generation from studies.Footnote 14

3.5 Complexities of Analysis

The evaluation problem is compounded at the policy level, where broad categories of research are being considered, rather than individual studies. Furthermore, the social value of research is just one piece of a proportionality assessment. We need to ascertain not only the social value of the research, but the extent to which a given policy will detrimentally impact this research. While it is routine for policymakers and academics to perform economic impacts of regulations, these analyses have been questioned in terms of their rigor and real-world validity.Footnote 15 In the research context, a full analysis would have to take into account the extent to which increased cost of research would crowd out further socially valuable studies, assuming total budgets for research are independent of regulatory policy.

There are similar uncertainties and complexities in relation to assessing protections. Only a few policies will be relatively easy to assess: prohibitions of activities that would almost certainly harm or wrong participants. Failure to obtain informed consent from competent adults for interventional research may be an example, insofar as it would be a clear violation of autonomy.

But often, harms or wrongs are probabilistic, with the probabilities themselves unknown or uncertain. Policies may only reduce the likelihood of such harms or wrongs, rather than prevent them entirely. For example, a requirement that researchers provide their CVs to review boards has some use – ethics board members can ensure that they have the relevant qualifications to carry out the study procedures. At the same time, it would be difficult to articulate exactly how much harm (qua adverse outcomes) is actually prevented by such a policy. In theory, one could perform a comparative analysis of researchers with different qualifications and assess correlations with adverse study outcomes. But such analyses have not been done for the wide array of subfields and procedures that ethics committees may encounter, so those setting policies on the matter must instead rely on personal judgment.

Finally, there is the question of how to bridge the two sides of proportionality, namely, burdens and benefits. That is, how to determine if a given burden on research is justified by the benefits it affords? A potential approach is to leverage decision theory, where the gains and losses to individuals’ well-being from a regulation are quantified and aggregated, and a determination is made as to whether a given regulation or policy overall improves expected utility.Footnote 16

Here, incommensurability is a particular issue. Even if one side or the other can be somehow defined and explicated, the values on either are likely not commensurate – they are not easily compared and weighed up against each other. Perhaps the burden of requiring informed consent for some secondary data research can be quantified in terms of the increased cost, delays and potential bias of only including those who would consent. But those measures are of an entirely different nature from the autonomy interests of individuals to maintain control over data about them, one of the main values being protected by informed consent requirements. Unfortunately, again, there is no formula to make such assessments, and a good deal of individual judgment on the part of policymakers is necessary.

3.6 Procedural Approaches to Proportionality Assessments

There is an old joke that philosophers like to kick up dirt in front of their eyes, then complain they can’t see. The above may appear to be like so much dirt, pointing out all the difficulties in doing a proper proportionality assessment of health research regulations. So, at this point, I will be somewhat more constructive and propose some ways that proportionality assessments can be made more reliable and legitimate.

The following will primarily be procedural proposals. That is, they are not explications for how to determine whether a given regulation is proportionate. Rather, they are a series of structures and systems governing the process of assessing proportionality that should have two desirable features: they will improve the reliability of proportionality assessments, by prompting systems that are better able to assess whether a given rule’s protections really justify the burdens imposed; and they will help engender legitimacy in those assessments, by adopting systems that can earn the confidence of stakeholders – including researchers and participants – in the proportionality of rules that are ultimately produced.

At the most general level, it is important for those involved in regulation to have a facilitative attitude towards proportionality. A view that their role is solely to protect subjects may engender the perception that they are there to get in the way of valuable research.Footnote 17 This will not only engender hostility towards regulations and regulators but is also fundamentally mistaken. It ignores the crucial consideration of proportionality; to ensure that any burdens are adequately justified by the benefits they bring about. As a result, proportionality requires consideration of both the positive and negative sides of the research enterprise.

A more useful way for regulators to frame their role would be as facilitators of responsible research. This is not to say that they are there to make research easier than it might otherwise be; almost any regulations will have some costs in terms of efficiency, expense or validity, and regulators should be up front about that. However, enforcing reasonable rules that are proportionate to the burdens they accrue is a means to ensure that the research that does occur is responsible in terms of the benefits to those affected. The term ‘facilitation’ gives explicit emphasis on the need to ensure that the regulations are as minimally intrusive as necessary to achieve a given protective aim.

This framing has both inward-facing and outward-facing benefits. Looking inwards, regulators are reminded of the need to consider burdens of regulation along with benefits, and the balancing effort between the two in the proportionality assessment. This will help avoid blatantly one-sided approaches to regulation. Also, looking outwards, expressing this attitude in engagement with stakeholders can help assure them that their interests are being adequately accounted for. Such engagement is not merely limited to top-down communication of regulatory decisions, but active engagement as will be discussed further below.

A related procedural approach is actually doing the work of a proportionality assessment – that is, providing rigorous justification of a rule or policy’s proportionality. It may be tempting to give up in the face of the uncertainties and ambiguities discussed. Nevertheless, responsible regulation must proceed. Ignoring proportionality can lead to one-sided policies, which either produce overly protective regimes with unacceptably burden research, or overly permissive regimes that do not adequately provide protections out of fear of inhibiting research.

And it will be work, indeed. When a given rule is under consideration, a non-trivial amount of research and analysis will be needed. Is there evidence on the magnitude of the harms or wrongs being prevented? What about the effectiveness of the proposed rule? And on the flip side, what effects will it have on the research enterprise? What are the quantifiable and non-quantifiable costs? Finally, when all those considerations are taken into account, can the regulation’s protective effects truly justify the burdens imposed? And if not, can it be refined so that it does?

The final justificatory step may be the most uncertain and challenging. In some ways, it is an ethical or normative question relating to the values promoted and inhibited by a given policy. Regulators are not typically trained in philosophical analysis that may assist here, but some features of decision-making can be highlighted. These include articulation of the competing values at stake; scrutiny of any empirical evidence adduced; consistency between different judgments; clarity in terms of the reasons a given rule is justified, or not.

There is not space to elaborate here on such analytical tools. Indeed, no single article could adequately do so. Instead, it may be that regulators – or at least, some individuals in the regulatory process – should receive training in these analytical tools. As it stands, many relevant degrees like Masters of Public Policy or Masters of Public Administration do not routinely integrate such analytical training into their curriculums, focusing instead on social sciences. Reform of these curriculums might help boost competence in performing proportionality assessments. Alternative educational systems should also be considered, such as short courses, blended learning modules and ad hoc training workshops that may be more practicable for working professionals.

Especially because of the difficulty of making proportionality assessments, transparency in justificatory analyses will be crucial. Transparency here refers to some public promulgation of the reasoning process behind the decision that is reached. This would not only be easily accessed by stakeholders, but promulgated to relevant stakeholder groups so they are aware it exists in the first place.

Almost any rule will involve some trade-offs between protection of individuals and minimising burdens on research. As such, criticism from some affected stakeholders is inevitable. Having the reasoning and evaluation of a proportionality assessment will not eliminate that criticism, but it can go some way towards blunting suspicion that such an assessment was one-sided or ignored their concerns.

Moreover, there is good reason to suppose that stakeholders are owed this sort of transparency. For researchers, regulations have coercive force – failure to abide by them will result in penalties, whether criminal, civil, or – in the case of instructional policies – professional. It is a matter of respect to those individuals who are liable to such punishments that the reasoning process behind the rules is laid out in full. Other individuals like research subjects have a different relationship with regulations; while regulations do not directly bind them, they are carried out in their name. And if a regulator decides against enacting a given protective rule, that regulator is deciding to permit a certain degree of risk of harm to accrue to participants or others. Those affected individuals deserve to know the reasoning process behind this decision, as they may well be harmed by it.Footnote 18

Another benefit of transparency is that it can prompt regulators to ensure their reasoning is truly defensible. Behind closed doors, there may be a temptation to wave away concerns that are too difficult or complex. By making their reasoning public, they are compelled to seriously reckon with all the considerations that stakeholders may find relevant. If not, they will be open to – legitimate – scrutiny and critique for inadequate analysis that will undermine confidence in the rules that are put forth.

Promulgation of reasoning and justification from regulators to stakeholders is important, but limited insofar as it is top-down and one-way. A more thoroughgoing and robust way to ensure adequate consideration of competing interests and earn public trust in proportionality assessments is to directly engage with those groups, to allow the co-creation of rules and collaborate assessment of the thorny issue of proportionality.

There are a myriad of ways that stakeholders can be engaged in proportionality assessments. For more details on approaches to and justifications for public engagement, see Aitken and Cunningham-Burley, Chapter 11 in this volume (on public engagement and access), and Burgess, Chapter 25 in this volume, (on public engagement and health research regulation).

These approaches are especially valuable for complex and uncertain issues like proportionality assessments. A small group of regulators may have parochial approaches or biased analyses that can be avoided by the involvement of a larger body of stakeholders. It may also relieve some of the pressure to make such complex judgments on their own, by soliciting assistance from a wider group.

This engagement should not be seen as one-off, or only occurring prior to rulemaking. A truly proportional approach to regulation must recognise the potential fallibility of initial judgments, and the fact that the situation on the ground may change. Protections previously seen as adequate could become threatened. For example, DNA profiles have recently been shown to be re-identifiable, which means previous protections merely stripping names and other extraneous information from such profiles are no longer sufficient to guarantee anonymity.Footnote 19 Previously burdensome compliance can be made easier by new technologies, as arguably occurred with the advent of digital compilation of ethics review documents allowing for more rapid collation and assessment.

For this reason, engagement should be a continual process, with the proportionality of a given rule periodically up for review and re-evaluation. Regulators may not be equipped to maintain such active review, so instead being open to updates and comments from stakeholders may be optimal. This both relieves regulators of some burden to keep regulations’ proportionality up to date, and ensures stakeholders have a continued ability to positively impact the rules that affect them.

To be sure, there are limitations on how much engagement can do. It was noted earlier that regulators may need additional training to adequately undertake proportionality assessments. This would already be practically difficult with regulators; with broader stakeholder groups, it is probably impossible. As such, there may be some limit on the extent to which co-creation is achievable for matters as complex as proportionality assessments. Still, we should not allow the perfect to be the enemy of the good; engagement has substantial value, as explained, that can supplement the deep analysis that regulators are responsible for.

3.7 Conclusion

In this chapter, I have explored the notion of proportionality in the context of health research regulation. Proportionality was defined in terms of a justificatory relationship: the benefits afforded by a given rule must serve to justify the burdens imposed by it. Assessing proportionality is no easy task; it is beset by uncertainties and challenges of analysis at a variety of levels, and involves weighing of different values – relating to beneficence, non-maleficence, justice and autonomy – that are non-commensurate and often non-quantifiable. The task of proportionality assessment is not impossible, however. Indeed, it is a necessary part of responsible regulation of health research. I have suggested several procedural approaches that can help improve the reliability and legitimacy of those assessments: a facilitative attitude; rigorous justificatory analysis; transparency in reasoning; and engagement in decision-making. These procedures recognise that we cannot formulaically produce an answer as to whether a given regulation is proportionate, and judgement is required. Hopefully, the contents of this chapter – in conjunction with the other material in this volume – can go some way to assisting those involved in regulation in understanding the nature, importance and practice of proportionality assessments.

1 This chapter focuses on proportionality in human subjects research, though the analysis below should be applicable to other contexts as well (such as animal or basic science research).

2 E. J. Emanuel et al., ‘What Makes Clinical Research Ethical?’, (2000) JAMA, 283(20), 2701.

3 G. de Wert, ‘Human Embryonic Stem Cells: Research, Ethics and Policy’, (2003) Human Reproduction, 18(4), 672682; G. Pennings, ESHRE Task Force on Ethics and Law Including, G. de Wert et al., ‘ESHRE Task Force on Ethics and Law 12: Oocyte Donation for Non-Reproductive Purposes’, (2007) Human Reproduction, 22(5), 12101213; F. G. Miller and S. Joffe, ‘Limits to Research Risks’, (2009) Journal of Medical Ethics, 35(7), 445449; G. Hermerén, ‘The Principle of Proportionality Revisited: Interpretations and Applications’, (2012) Medicine, Health Care and Philosophy, 15(4), 373382.

4 See Coleman, Chapter 13 in this volume.

5 Canadian Institutes of Health Research, Natural Sciences and Engineering Research Council of Canada, and Social Sciences and Humanities Research Council of Canada, ‘Tri-Council Policy Statement: Ethical Conduct for Research Involving Humans’, (2018); NHS Health Research Authority, ‘Proportionate Review: Information and Guidance for Applicants’.

6 See Coleman, Chapter 13 in this volume for more discussion of efforts to streamline ethics review in this way.

7 A. Rid, ‘How Should We Regulate Risk in Biomedical Research? An Ethical Analysis of Recent Policy Proposals and Initiatives’, (2014) Health Policy, 117(3), 409420.

8 T. L. Beauchamp and J. F. Childress, Principles of Biomedical Ethics, 7th Edition (Oxford University Press, 2013).

9 N. Hallowell et al., ‘An Investigation of Patients’ Motivations for Their Participation in Genetics-Related Research’, (2010) Journal of Medical Ethics, 36(1), 3745.

10 F. Baylis and A. Ballantyne, ‘Missed Trials, Future Opportunities’, in F. Baylis and A Ballantyne (eds), Clinical Trials Involving Pregnant Women: Missed Trials (Switzerland: Springer, 2016), pp. 113.

11 Emanuel et al., ‘What Makes Clinical Research Ethical?’; Council for International Organizations of Medical Sciences and World Health Organization, ‘International Ethical Guidelines for Health-Related Research Involving Humans’, (CIOMS, 2016). See also Van Delden and Van der Graaf, Chapter 4 in this volume.

12 P. J. Neumann and J. T. Cohen, ‘QALYs in 2018—Advantages and Concerns’, (2018) JAMA, 319(24), 2473.

13 B. Davies, ‘Bursting Bubbles? QALYs and Discrimination’, (2019) Utilitas, 31(2), 191202.

14 A. Binik and S. P. Hey, ‘A Framework for Assessing Scientific Merit in Ethical Review of Clinical Research’, (2019) Ethics & Human Research, 41(2), 213.

15 R. W. Hahn and P. C. Tetlock, ‘Has Economic Analysis Improved Regulatory Decisions?’, (2008) Journal of Economic Perspectives, 22(1), 6784.

16 R. D. C. Bernabe et al., ‘Decision Theory and the Evaluation of Risks and Benefits of Clinical Trials’, (2012) Drug Discovery Today, 17(23–24), 12631269.

17 S. Pinker, ‘The Moral Imperative for Bioethics’, Boston Globe (1 August 2015).

18 N. Daniels, ‘Accountability for Reasonableness’, (2000) BMJ, 321(7272), 13001301.

19 Y. Erlich et al., ‘Identity Inference of Genomic Data Using Long-Range Familial Searches’, (2018) Science, 362(6415), 690694.

4 Social Value

Johannes J. M. van Delden and Rieke van der Graaf
4.1 Introduction

This chapter starts from the assumption that science is a matter of co-creation. To open up science to democracy means that we have to think about the social value of research, which in itself we cannot leave to science to evaluate. This raises detailed questions around patient and public involvement (PPI) in deciding which research to perform, and about how to handle conflicts between individual and public interests. These are addressed elsewhere in this volume.Footnote 1

In this chapter we focus on social value in health-related research involving humans, including data driven research. We first describe the background to the concept of social value and its meaning. Then we examine the concept itself and define the social value of an intervention as the value that an intervention could eventually have on the well-being of groups of patients and/or society. We also discuss some of the open issues in the scholarly debate about the concept of social value.

We find that to state a requirement for social value is one thing; to actually evaluate the social value of a research project in a Research Ethics Committee (REC) is another. We therefore elaborate on how the requirement of social value can be applied. We argue, first, that it is important to have this requirement as a separate condition. To increase systematisation, we further discuss how social value can be assessed in the steps that together constitute the risk-benefit task of RECs.

Returning to our opening statement, we argue that the addition of the requirement of social value can be seen as a consequence of a change in the sociology of science. It illustrates the move away from a science–internal understanding of scientific validity into an inclusive understanding of social value. Accepting social value as a requirement for research to be evaluated by a REC means that social value has matured from an attractive but illusive idea into something that has to be assessed, evaluated and optimised and can be used to address some of the justice issues in healthcare.

4.2 Social Value in the 2016 CIOMS Guidelines

Social value is a key principle in the 2016 version of the International Ethical Guidelines for Health-related Research prepared by the Council for International Organizations of Medical Sciences (CIOMS) in collaboration with the World Health Organization (WHO). The account of social value in this chapter has been largely influenced by the wording in the 2016 CIOMS Guidelines. Its very first guideline reads:

The ethical justification for undertaking health-related research involving humans is its scientific and social value: the prospect of generating the knowledge and the means necessary to protect and promote people’s health. Patients, health professionals, researchers, policy-makers, public health officials, pharmaceutical companies and others rely on the results of research for activities and decisions that impact individual and public health, welfare, and the use of limited resources. Therefore, researchers, sponsors, research ethics committees, and health authorities, must ensure that proposed studies are scientifically sound, build on an adequate prior knowledge base, and are likely to generate valuable information.

Although scientific and social value are the fundamental justification for undertaking research, researchers, sponsors, research ethics committees and health authorities have a moral obligation to ensure that all research is carried out in ways that uphold human rights, and respect, protect, and are fair to study participants and the communities in which the research is conducted. Scientific and social value cannot legitimate subjecting study participants or host communities to mistreatment, or injustice.Footnote 2

The entry of the requirement of social value in the 2016 CIOMS International Ethical Guidelines for Health-related Research involving humans was certainly not unprecedented. Many scholars trace its origins back to the Nuremberg Code of 1947, which states that ‘The experiment should be such as to yield fruitful results for the good of society’.Footnote 3 Also, it is commonly understood that the social value of a research project may be part of the evaluation of risks and benefits of such a project.Footnote 4 The concept also plays a key role in the Belmont Report, the World Medical Association’s Declaration of Helsinki, and the Common Rule. Furthermore, social value is considered to be of relevance when international collaborators are conducting health research in resource-limited settings. The concept also plays a key role in frameworks for research ethics, such as the ‘7- principle-framework’ of Emanuel and colleaguesFootnote 5 and the component analysis framework of Weijer and Miller.Footnote 6

4.3 Social Value as Indication for a Change in Sociology of Science

The addition of social value to the 2016 CIOMS International Ethical Guidelines at this point in history can be understood as part of a broader movement within the sociology of science, which describes how people come to accept certain scientific statements. Elements of this movement can also be seen in other guidelines within the 2016 CIOMS Guidelines, such as those on Community Engagement (7) and Public Accountability for Health-related Research (24). A first example of this broader movement within the sociology of science is the current critique of science and scientific knowledge.Footnote 7 Part of the critique concerns the replicability of research results, which in some areas is disturbingly low. Another part concerns the way in which scientists are evaluated: in many areas of science this is done, at least until recently, by looking at the number of articles produced and/or the number of times an article is cited – e.g. combined into the Hirsch-index – creating an incentive to produce enormous quantities of papers. But the most important critique – also implied in the former point – is that science appears to be concerned more with producing science as such, than with furthering socially valuable goals through research. The term ‘research waste’ was coined to describe the result of this way of doing research.

In response, we currently see programmes such as the EU programme on Responsible Research and Innovation, movements such as that for Open Science – which is certainly about more than just open access publishing – and Science in Transition.Footnote 8 These programmes try to reinvent the sociology of science in order to enable it to perform the tasks society has entrusted to scientists. They also encourage the involvement of all stakeholders in the production of science, including patients and publics, in order to increase the relevance of research results. Present-day problems in society are simply too complex to think we can solve them without cooperating across borders. Science cannot continue to take its own interests as primary, instead of living up to its societal task. Science needs to earn and deserve a so-called social licence for research.Footnote 9 PPI in research is an essential means to mitigate concerns on research waste.

There are a number of reasons why we need PPI in research – as addressed in more detail elsewhere in this volume.Footnote 10 First, this is because research is about all of us! And nothing should be done ‘about us, without us’. We therefore need a model in which patients consider themselves as partners in a trustworthy system, not just passive sources of information. Second, the purpose of patient involvement is ultimately to improve our health. By this we do not mean through individual healthcare. Rather, we suggest that this can come about by ensuring that those who conduct research projects ask the right questions, use the right endpoints, make the right choices and effectively implement their findings. This illustrates the efficiency argument as applied to input from patients – and wider publics – who are similarly motivated to find answers to health and disease-related questions. It is believed that this will help science to become more socially valuable and thus to reduce research waste.

These developments also point to important questions in the area of the philosophy of science. It is common to think that science produces facts that are independent of public preferences. Shouldn’t science inform democratic decision-making rather than being influenced by it? What is left of scientific independence if we allow PPI in research? It is generally understood why democracies need science, but why would science need democracy?Footnote 11

To answer these questions we turn to Science and Technology Studies (STS) where several schools of thought can be discerned. The first (1900–1960) was a positivistic one: it was believed that science was a way of knowledge-making and that its knowledge was absolute and universalistic.Footnote 12 The correctness of scientific research needed no social explanation, it was simply true. What needed explanation was how false beliefs were mistakenly taken to be correct, typically by pointing at prejudice, bias and so on. This is what Nowotny calls Mode 1 research.Footnote 13 Although this view is no longer supported by social science, it remains the common-sense view of many scientists and the public. One needs only to watch an episode of CSI to see how a forensic scientist reveals ‘the truth’ about the case.

The second school of thought (1960–2000) started when others took the work of Kuhn and other researchers to show that scientific truth is best seen as an outcome of negotiation and agreement located within social groups. Science is a human activity subject to all the strengths and flaws of humans. Nowotny speaks about Mode 2 research in which interaction between science and society is taken as a starting point and science has become a matter of co-creation.Footnote 14 Science needed to be democratised. This second school illuminated the constructivist side of science, in order to deconstruct science, but did less to provide an alternative.Footnote 15 A risk of this type of thinking is that this may produce the kind of relativism in which scientific claims have become ‘just another opinion’ and alternative facts are as good as any other account.

To counter this, the third school (after 2000) emphasises that we do not need to end up in relativism, and that there are more arguments in favour of some claims about states of the world than there are for others. Textbook science is not perfect, and remains open to revision, but is more reliable than primary research, because we have more reasons to accept the claims in a textbook than in primary research. In ethics, the Rawlsian understanding of ethical claims as provisional fixed points captures the same idea: claims are always open to revision (hence ‘provisional’) but we have good reasons to accept them (hence ‘fixed’). It is important to note that the last school of thought accepts the rationale established by the former, but tries to make the next, constructive step.

We think that the addition of the requirement of social value into the CIOMS Guidelines can be seen as a consequence of this change in the sociology of science. It clearly illustrates the move away from a science–internal understanding of scientific validity into an inclusive understanding of social value. It sends the message that science needs to be cognisant of its societal role and should explain how it aims to fulfil that role. That message is reinforced by guidelines on community consultation and public accountability. Placing social value as a requirement in a list of conditions to be evaluated by a REC means that social value has matured from an attractive but illusive idea into something that has to be assessed, evaluated and optimised. In other words: social value has gained ‘teeth’.

4.4 Meaning of Social Value

We will now zoom in on the meaning of the concept ‘social value’ itself. According to Wendler and Rid, the standard view on social value is that ‘it is an ethical requirement for the vast majority of clinical studies’.Footnote 16 They also argue that there is ‘strong support’ that social value of research is important ‘for protecting participants who cannot consent, preventing inappropriate research that poses high net risks, and promoting appropriate investigator behaviour’Footnote 17 (see also below).

Here is the description of the meaning of the term social value according to the 2016 CIOMS Guidelines:

Social value refers to the importance of the information that a study is likely to produce. Information can be important because of its direct relevance for understanding or intervening on a significant health problem or because of its expected contribution to research likely to promote individual or public health. The importance of such information can vary depending on the significance of the health need, the novelty and expected merits of the approach, the merits of alternative means of addressing the problem, and other considerations.Footnote 18

We next examine separately the concepts of value and social value. We understand value to mean the potential of a study to improve health, broadly construed as biological, psychological or social well-being.Footnote 19 Health value can be categorised along two dimensions: immediate versus future health value, and the population that receives this value.Footnote 20 It is also important to note that social value is attributed both to information that has direct relevance in promoting health, and to the contribution this information may have for subsequent valuable research.

The concept ‘value’ has been scrutinised in many different research fields such as sociology and philosophy. However, little agreement exists on how ‘value’ should be defined. Consensus does exist on the fact that values arise out of human experience. Whereas the term ‘benefit’ refers to an advantage or profit gained from something, the concept of value refers to the regard that something is held to deserve. The latter is thus a relational concept; both the object to be valued, and an evaluator are necessary preconditions for value to exist.Footnote 21

Turning next to ‘social value’, this functions in two main ways in our everyday use. First, social value can be seen as values shared by a community of individuals; they are values held by society and are contrasted with individual (non-shared) values. By social value, we refer to socially collective beliefs and systems of beliefs that operate as guiding principles in life. Second, besides values of society, the concept can also be used to refer to values for society. Here, social value is an assigned predicate or property of an object, and, in our case, of health-related research.Footnote 22 This implies that we have to assess the importance of the information in terms of the nature and magnitude of the expected improvement an intervention – as assessed in the study – is expected to have on society. Note that benefit for the individual research participant would be called a direct benefit. Social value is not about rewarding careers for scientists, employment for citizens or a sense of fulfilment for participants.Footnote 23

We conclude that the social value of an intervention encompasses the value that an intervention could eventually have on the well-being of groups of patients and/or society. In case of early phase trials, this value may lie in the distant future; in those cases, RECs may also assess the ability of trials to promote progression to later stages of research in which successful clinical translation becomes more likely.

It is important to note that the CIOMS guideline on social value also explicitly talks about what social value cannot do, as follows:

Although scientific and social value are the fundamental justification for undertaking research, researchers, sponsors, research ethics committees and health authorities have a moral obligation to ensure that all research is carried out in ways that uphold human rights, and respect, protect, and are fair to study participants and the communities in which the research is conducted. Scientific and social value cannot legitimate subjecting study participants or host communities to mistreatment, or injustice.Footnote 24

This provision is a reformulation in human rights language of the so-called primacy principle. This is the ethical principle stating that the individual shall have priority over science, found, for instance, in guideline 8 of the 2013 Declaration of Helsinki: ‘While the primary purpose of medical research is to generate new knowledge, this goal can never take precedence over the rights and interests of individual research subjects’.Footnote 25 There is an ongoing debate about the tenability of this primacy principleFootnote 26 which deserves a separate discussion.

4.5 Social Value in Scholarly Debate

Whereas the merits of the social value requirement have been largely uncontested, over the past few years the concept of social value has received increasing scholarly attention. Among others, the journal Bioethics launched a Special Issue (2017, 31(2)) on social value. Also Danielle Wenner’sFootnote 27 analysis of social value in the Hastings Center Report led to several responses.Footnote 28 The attention has not only led to improved understanding of the meaning and scope of social value but also to more critique. Next, we will consider some of the key points from this ongoing debate.

Traditionally, social value has been located in the context of clinical research, but more recently the concept has also been introduced in health systems research and into the global health ethics debate.Footnote 29 Whereas the concept, as discussed above, in clinical research focuses on the knowledge to be gained for society in general, in public and global health ethics the requirement seems to have a different role. For instance, according to Nicola Barsdorf and Joseph Millum, social value should be seen as ‘a function of expected benefits of the research and the priorities that beneficiaries deserve’.Footnote 30 Social value then also becomes a means to address questions of priority setting,Footnote 31 promotion of health equity and addressing health inequality.Footnote 32 At the same time, in the context of health systems research, some argue that its social value can also be justified ‘in pragmatic systems rather than linked only to priority setting’.Footnote 33

Further discussion centres on whether the concept of social value should be located in the traditional account of research ethics that has a focus on clinical trials and observational research. According to Wendler and Rid, there are eight reasons that ‘taken together provide strong support’ that social value must be obtained in the context of clinical research: (1) to protect participants who cannot consent; (2) to ensure the acceptability of high-risk research with competent adults; (3) to maintain researcher integrity; (4) to avoid participant deception; (5) to safeguard against exploitation; (6) to exercise stewardship of public resources; (7) to promote public trust; and (8) support for clinical research.Footnote 34 Others, like Wenner,Footnote 35 WertheimerFootnote 36 and Resnik,Footnote 37 ground the social value requirement in other principles and outside of the traditional scope of research ethics. According to Wenner, the current view on research ethics is primarily about protection. Instead, she believes it should be grounded in justice-based considerations. She argues that certain developments in research, such as the inclusion of pregnant women, cannot be understood only from a protectionist view towards research subjects but has to be explained from underlying issues of justice.Footnote 38

Whereas some, like Wertheimer and Resnik, argue that studies must have ‘significant’ social value, Wendler and RidFootnote 39 argue that studies should have ‘sufficient’ social value. The first group of authors expresses concern that without the qualification of significance, the concept becomes too weak, whereas Wendler and Rid argue that their understanding is also able to distinguish between studies with and without social value. Whether a study has sufficient social value should always be determined in relation to the risks of research. In some cases participants may face significant risks. However, if there is no social value to be gained, they argue that the study should not be approved even if participants consent to participation. At the same time, if the social value is limited but the risks are minimal as well, they argue it is not unethical to offer participation.

4.6 Application

In the preceding analysis we have considered both what the term social value means and the discussions that it has sparked. As such, we can now go on to look at its role in the set of requirements for acceptance of a research protocol. First, we would like to point to the importance of having this as a separate requirement. It could be argued that the social value of a research project is already being taken into account in the classical requirement in research ethics to have a favourable balance of benefits over risks and burdens. The 2013 version of the Declaration of Helsinki for instance reads: ‘Medical research involving human subjects may only be conducted if the importance of the objective outweighs the risks and burdens to the research subjects’.Footnote 40 One could conclude from this that it would not be necessary to have a separate guideline on social value. However, the problem with including social value in this so-called risk/benefit ratio is that in research projects without risks or burdens, a lack of anticipated benefit would not be sufficient grounds for a REC to deny approval of the project. If one thinks that the main aim of research ethics guidelines is to protect the individual, then one might be satisfied. If one takes a broader view and includes justice among the ethical principles that are relevant to such a deliberation, then allowing a project without benefit is unacceptable from a societal perspective. Projects still use time, money and energy in addition to contributing to more research waste. Therefore we argue that it is necessary to have social value as a separate requirement.

Some might object on the basis that social value cannot be a necessary requirement for research to be ethical since certain medical discoveries have been made by coincidence, and that requiring social value may limit medical advancement. However, accidental findings cannot be planned, nor does requiring social value mean that we will no longer find accidental findings by restricting clinical research to interventions with expected social value.

Having made the preceding claim, we now turn to the role of RECs, which are currently tasked with judging whether a favourable risk-benefit balance is achieved to ultimately decide whether a research project can proceed. This judgement has to be systematic, transparent and grounded in evidence. Evaluating the social value of a particular research project can be seen as part of this task. To increase systematisation we draw upon insights from decision-theory and propose that the risk-benefit tasks are divided into the following steps: (1) analysis; (2) evaluation; (3) treatment; and (4) decision-making.Footnote 41

4.6.1 Benefit Analysis

It is the primary responsibility and expertise of investigators to map and characterise benefits, including the social value of research. However, evaluators should be able to judge whether they agree with the reasoning that supports the presented characterisation of benefits.Footnote 42 To map benefits, we divide these into direct, collateral and aspirational benefits.Footnote 43 Social value can be regarded as one of the aspirational benefits. We further divide social value into: (1) the direct social value of the intervention; (2) the progressive value; and (3) the translational value of a trial.

In characterising the social value of an intervention we draw upon the proposal by Habets and colleagues.Footnote 44 They argue that at least three steps should be followed. First, the nature and magnitude of efficacy of the intervention studied in humans has to be critically assessed. Second, the anticipated clinical improvement in actual patients should be assessed, assuming that the intervention is efficacious. This means that it has to be asked whether treatment effects are meaningful, both from a medical and individual perspective, and that they have to be weighed against factors that may hamper beneficial effects, such as adverse effects and ease of use. Third, the nature and magnitude of the anticipated improvement on the well-being of patients, individuals in society and society should be evaluated. This assessment is contextual: the social value of the intervention is the expected improvement relative to other considerations, such as treatment alternatives, number of patients and costs etc. Ultimately, determining what has social value constitutes a moral judgment.Footnote 45

To characterise progressive valueFootnote 46 we argue that at least two elements should be evaluated: (1) whether there is a reasonable probability that an intervention could progress to the next stages of research at all; and (2) whether the trial is designed such that the yielded results can contribute to progression to the next stage of research (typically Phase II). The assessment of estimated efficacy can contribute to the assessment of both elements. Evaluators should therefore judge whether they find the estimated efficacy as presented by investigators to be substantive.

For trials to have translational value they should be hypothesis-driven. Preclinical and reference class evidence form the basis for the generation of hypotheses and the context for the subsequent interpretation of both positive and negative findings.Footnote 47 For instance, if a positive result in animals is followed by a negative result in humans, this difference can lead to further explorations of this difference and/or which modifications to the intervention have to be made to overcome translational hurdles. Furthermore, the determination and evaluation of reference class evidence helps researchers to put their findings in a broader context and to communicate their findings to other areas of research. Evaluators should thus judge whether investigators base their hypotheses on a solid assessment of preclinical and reference class evidence.Footnote 48

4.6.2 Benefit Evaluation

We contend that investigators and evaluators should be transparent about the weight they ascribe to the different types of benefits (and harms). Progressive and translational value are not necessarily mutually exclusive, however, they may require a different trial design.Footnote 49 Therefore, it should be made explicit how a trade-off between different types of benefits and harms are made.

4.6.3 Benefit Treatment

After benefit assessment, RECs need to judge whether measures need to be implemented to modify – and ideally to maximise – benefits. The following measures can be taken to enhance the translational value of a trial. If hypotheses are insufficiently supported by evidence, investigators can be prompted to conduct additional preclinical testing. Alternatively, evaluators can demand more thorough gathering and assessment of existing preclinical and reference class evidence. Methods of PPI can show whether or not patient-relevant outcome measures have been used. Furthermore, open sharing of the assessed preclinical and reference class evidence can enhance the collateral value of a trial. Additionally, amendments to the trial design can spur the translational value.

4.6.4 Decision-Making

Finally, RECs have to decide whether benefits truly outweigh the risks. The three steps of benefit analysis, evaluation and treatment contribute to the transparency of decision-making. It has been claimed that it matters whether the research is funded with public money or not. We disagree: even when privately funded, we can see no justification for burdening participants with research that has no social value.

4.7 Conclusion

The term ‘social value’ strikes the necessary balance between scientific advancement, equitably responding to human conditions and realising the human right to health. The requirement of social value bridges the gap between conducting commendable science and making a contribution to the health of the populations where health research is being carried out. The concept of social value is the ethical justification for doing health research involving humans.

1 See Burgess, Chapter 25, and Aitken and Cunningham-Burley, Chapter 11, in this volume.

2 Council for International Organizations of Medical Sciences, ‘International Ethical Guidelines for Health-related Research involving Humans’, (CIOMS, 2016), 1.

3 The Nuremberg Code (1947), (1996) British Medical Journal, 313, 1448.

4 See Coleman, Chapter 13 in this volume.

5 E. J. Emanuel et al., ‘What Makes Clinical Research Ethical?’, (2000) JAMA, 283(20), 27012711.

6 C. Weijer, ‘When Are Research Risks Reasonable in Relation to Anticipated Benefits?’, (2004) Nature Medicine, 10(6), 570573; A. Binik and S. P. Hey, ‘A Framework for Assessing Scientific Merit in Ethical Review of Clinical Research’, (2019) Ethics & Human Research, 41(2), 213.

7 D. Moher et al., ‘Increasing Value and Reducing Waste in Biomedical Research: Who’s Listening?’, (2016) Lancet, 387(10027), 15731586.

8 F. Miedema, Science 3.0 (Amsterdam University Press, 2010).

9 P. Carter et al., ‘The Social Licence for Research: Why care.data Ran into Trouble’, (2015) Journal of Medical Ethics, 40(5), 404409.

10 See Burgess, Chapter 25, and Aitken and Cunningham-Burley, Chapter 11, in this volume.

11 H. Collins et al., Why Democracies Need Science (Cambridge: Polity, 2017).

13 H. Nowotny et al., Rethinking Science (Cambridge: Polity, 2001).

15 Collins et al., Why Democracies Need Science.

16 D. Wendler and A. Rid, ‘In Defense of a Social Value Requirement for Clinical Research’, (2017) Bioethics, 31(2), 7786, 77.

17 Footnote Ibid., 86.

18 CIOMS, ‘International Ethical Guidelines’, 1.

19 D. J. Casarett and J. D. Moreno, ‘A Taxonomy of Value in Clinical Research’, (2002) IRB: Ethics & Human Research, 24(6), 16; C. Grady, ‘Thinking Further about Value: Commentary on “A Taxonomy of Value in Clinical Research”’, (2002) IRB: Ethics & Human Research, 24(6), 78.

20 Casarett and Moreno, ‘A Taxonomy of Value’.

21 M. Habets et al., ‘The Social Value of Clinical Research’, (2014) BMC Medical Ethics, 15, 66.

23 Wendler and Rid, ‘In Defense of a Social Value Requirement’.

24 CIOMS, ‘International Ethical Guidelines’, 1.

25 World Medical Association, ‘Declaration of Helsinki – Ethical Principles for Medical Research Involving Human Subjects’, (WMA, 2013).

26 G. Helgesson and S. Eriksson, ‘The Moral Primacy of the Human Being: A Reply to Parker’, (2011) Journal of Medical Ethics, 37(1), 5657.

27 D. M. Wenner, ‘The Social Value Requirement in Research: From the Transactional to the Basic Structure Model of Stakeholder Obligations’, (2018) The Hastings Center Report, 48(6), 2532.

28 D. Wendler, ‘Locating the Source(s) of the Social Value Requirement(s)’, (2018) The Hastings Center Report, 48(6), 3335; D. B. Resnik, ‘Difficulties with Applying a Strong Social Value Requirement to Clinical Research’, (2018) The Hastings Center Report, 48(6), 3537; F. S. Holzer, ‘Rawls and Social Value in Research’, (2019) The Hastings Center Report, 49(2), 47.

29 A. Rid and S. K. Shah, ‘Substantiating the Social Value Requirement for Research: An Introduction’, (2017) Bioethics, 31(2), 7276; Wenner, ‘The Social Value Requirement’.

30 N. Barsdorf and J. Millum, ‘The Social Value of Health Research and the Worst Off’, (2017) Bioethics, 31(2), 105115, 105.

31 Rid and Shah, ‘Substantiating the Social Value Requirement’.

32 D. Wassenaar and A. Rattani, ‘What Makes Health Systems Research in Developing Countries Ethical? Application of the Emanuel Framework for Clinical Research to Health Systems Research’, (2016) Developing World Bioethics, 16(3), 133139.

33 Wassenaar and Rattani, ‘What Makes Health Systems Research in Developing Countries Ethical?’, 136.

34 Wendler and Rid, ‘In Defense of a Social Value Requirement’.

35 Wenner, ‘The Social Value Requirement’.

36 A. Wertheimer, ‘The Social Value Requirement Reconsidered. The Social Value Requirement Reconsidered’, (2015), Bioethics, 29(5), 301308.

37 Resnik, ‘Difficulties with Applying a Strong Social Value Requirement’.

38 Wenner, ‘The Social Value Requirement’.

39 Wendler and Rid, ‘In Defense of a Social Value Requirement’.

40 The Declaration of Helsinki (2013).

41 R. Bernabe et al., ‘The Risk-Benefit Task of Research Ethics Committees: An Evaluation of Current Approaches and the Need to Incorporate Decision Studies Methods’, (2012) BMC Medical Ethics, 13(1), 6.

42 Ibid.

43 N. King, ‘Defining and Describing Benefits Appropriately in Clinical Trials’, (2000) The Journal of Law, Medicine, and Ethics, 28(4), 332343.

44 M. Habets et al., ‘The Unique Status of First-in-Human Studies: Strengthening the Social Value Requirement’, (2016) Drug Discovery Today, 22(2), 471475.

45 S. Boers, ‘Organoid Technology. An Identification and Evaluation of the Ethical Challenges’, PhD thesis (Utrecht University, 2019).

46 J. Kimmelman, Gene Transfer and the Ethics of First-in-Human Research (Cambridge University Press, 2009).

47 Kimmelman, Gene Transfer.

48 Boers, ‘Organoid Technology’.

49 Kimmelman, Gene Transfer.

5 Solidarity in Health Research Regulation

Katharina Kieslich and Barbara Prainsack
5.1 Introduction

This chapter explores the analytical and normative roles that solidarity can play when designing health research regulation (HRR) regimes. It provides an introduction to the meanings and practical applications of solidarity, followed by a description of the role solidarity plays in HRR, especially in fostering practices of mutual support between patient organisations and between countries. We illustrate our argument in a case study of HRR, namely the European Union (EU) regulatory regime for research on rare diseases and orphan drugs. The current regime aims to decrease barriers to research on orphan drugs by creating, predominantly financial, incentives for research institutions to take on the perceived increased risks in this area. We show how the concept of solidarity can be used to reframe the purpose of regulation of research on orphan drugs from a market failure problem to a societal challenge in which the nature of barriers is not just financial. This has specific implications for the types of policy instruments chosen to address the problem. Solidarity can be used to highlight the political, social, economic and research value of supporting research on rare diseases and orphan drugs.

5.2 The Meaning of Solidarity

The concept of solidarity underpins many social and healthcare systems in Europe.Footnote 1 While it could be argued that solidarity – in the form of policies and institutional structures facilitating mutual support, with special emphasis on supporting the vulnerable – has come under pressure with the spread of nativist and other sectarian political ideologies, there are also forceful counter-movements under way. These include people standing up with and for others,Footnote 2 may it be newcomers to our society, victims of wars and natural disasters or people who suffer from our economic and political system. As such, it is fair to say that solidarity is seen by many as having a lot to offer to how we frame and address societal challenges.

What is solidarity? At first sight, it might seem an elusive concept. For decades, solidarity has been used to justify a wide variety of policies and practices ranging from vaccination programmes to biobanks to the penalisation of undesirable behaviours. Another reason for the elusiveness of solidarity lies in the practical and embodied nature of solidarity. Solidarity is, first and foremost, a relational practice: its full meaning unfolds only when it is enacted, in concrete practice, by – at least one – giver and a receiver, and its nature cannot be exhaustively captured by language. For the same reason that poetry, art or nature are so much more powerful in conveying the meaning of love or friendship, words alone struggle to convey the full meaning of solidarity.

Acknowledging that part of the meaning of solidarity resides in its embodied- and enactedness does not mean, however, that we cannot spell out what makes solidarity different from other types of prosocial practice. Building upon a long history of scholarship on solidarity we have, in our own work, proposed that solidarity is best understood as a practice that reflects a person’s – or persons’ – commitments to support others with whom the person(s) recognise(s) similarity in a relevant respect.Footnote 3 The similarities with others that people recognise are, however, not ‘objectively’ existing properties, but they are characteristics that we have learned to attribute to ourselves and to others. The first step in this process is that we use categories that have been developed to sort people in different groups, such as separating them into women and men, children and adults, Jews, Buddhists and Muslims, or Koreans and Croatians. While these categories clearly have an expression in material reality, such as the correspondence of national labels with specific territories, or – in the case of children and adults, even stages in human biology – these categories are not merely material. To whom the label of ‘Korean’ or ‘Croatian’ is applied has not been stable in history but it has depended on changing territorial rule, changing understandings of nationality and different perspectives on who can legitimately claim belonging to such a label. Similarly, the notions of children and adults are not clearly delineated in biology in the sense that every person neatly fits into one or the other category. In this way, the categories that we use to describe characteristics that we and others hold are lenses through which we have learned to see reality.

For solidarity this means that when a woman supports another person because she recognises her as a fellow woman, then ‘being a woman’ is the ‘similarity in a relevant respect’ that gives rise to solidaristic action – despite the fact that the two people in question are many more things than women. They may be different in almost every other way. In this sense, the recognition of similarities in a relevant respect is a subjective process – I recognise something in you that you may not recognise in yourself because you have not learned to see it. At the same time it concerns shared social meaning – as societies have shared conventions about how they classify people.

Solidarity happens when people are guided in their practices by the similarities they recognise with each other, despite everything that sets them apart. It is the similarities, and not the differences, that give rise to action in the sense that they prompt people to do something to support somebody else. This ‘doing something’ could consist of something big – such as donating an organ – or something small, such as offering somebody a seat on a bus.

In sum, what makes solidarity different from other pro-social practice is the symmetry between people in the moment of enacting solidarity. This symmetry is not an essentialist ontological statement that glosses over claimed or ascribed differences and structural inequalities. Instead, it is the description of a relational state in the moment of enacting solidarity. In this way, solidarity is distinct from other pro-social supportive behaviours such as cooperation and charity, for example. The notion of cooperation describes pro-social supportive behaviour without saying anything about how and why people engage in it. The notion of charity describes an asymmetrical interaction between a stronger entity giving something and a weaker entity receiving something. In contrast, solidarity refers to entities that are different in many respects but make the thing they share in common the feature upon which they act: I do something for you because I recognise you as a fellow woman, a co-worker who struggles to make ends meet, as I do, or a fellow human in need of help.

5.3 The Three Tiers of Solidarity: Applicability and Adjustments in the Context of Health Research Regulation

Having defined solidarity as practices that reflect commitments to support others with whom a person – or persons – recognise(s) similarities in a relevant respect, in previous work one of us identified three main tiers of solidarity, capturing the societal levels where solidaristic practice takes place.Footnote 4 Tier 1 is the interpersonal level where solidarity is practised between two or more people without that practice having become more widespread. An example from the field of health research would be a person with diabetes signing up to a biobank researching the disease because she wants to support others with similar health problems.

If this practice were to become more widespread, so that it became common or even normal behaviour within a group, then we speak of solidarity at Tier 2 solidarity, which is solidarity at the group level. The group within which solidarity is practised could be a pre-existing group – such as a self-help group around diabetes where it becomes normal practice, for example, to also volunteer for disease research – or a group that is created through the solidaristic practice itself. An example for the latter would be a patients’ rights organisation created in response to the effects of harmful medical practices such as the blood contamination scandal in the 1970s and 1980s in the United Kingdom (UK).

If solidaristic practices become so commonplace that they are reflected in legal, administrative or bureaucratic norms, then we speak of Tier 3 solidarity. This is the ‘hardest’ form of solidarity because it has coagulated into enforceable norms. Tier 3 solidarity could be seen to contradict the idea held by many scholars in the field that solidarity cannot be demanded, but only appealed to.Footnote 5 In this understanding, contractual and legal obligations are incompatible with solidarity. While we agree with these authors that solidarity is typically a more informal, voluntary ‘glue’ between the bricks of formal institutional arrangements, we also believe solidarity to be a toothless, if not empty, concept if it cannot also denote practices that are so deeply engrained in society that they become legally enforceable in some cases.

Ruud ter Meulen and colleagues very helpfully distinguish between solidarity as a community value and solidarity as a system value:Footnote 6 the latter can contain articulations of solidarity in formal, often legal arrangements. The key here is to consider enforceable – and thus not always voluntary – solidarity in conjunction with more informal, voluntary forms of solidarity, and not see them as isolated from one another. An example would be tax or contribution-based financing of universal healthcare where those with higher incomes contribute more than others.

A problem arises when legally enforceable solidarity is still in place while the actual practices that used to underpin them are breaking away. This is becoming apparent at the moment in many countries where certain features of welfare states, such as transfer payments in the form of as child allowances or income support for those considered undeserving, have come under attack. The argument is often that the people benefitting from this are ‘free riders’ as they have not contributed towards the system that they are now using – perhaps because they are new immigrants or people who have never been in paid employment. What is happening here is that the basis for solidaristic practice – namely the ‘recognition of similarity in a similar respect’ (see above) – is breaking away. The people who are receiving financial support, or benefitting from a solidaristic healthcare system, are no longer seen as belonging to ‘us’ – because of something that they supposedly did, or failed to do, or because they do not have the same passport as we do.

While it will often be the case that solidarity prescribed at Tier 3, in the form of legal, contractual, bureaucratic and administrative norms, will have evolved out of solidarity practised at group (Tier 2) and interpersonal (Tier 1) levels, the reverse is not necessarily true: interpersonal solidarity can, but does not necessarily, scale upwards. The ‘higher’ the level of solidarity, the more important reciprocity becomes. Here we refer not to direct reciprocity, where one gives something in return for something else – this would be a business transaction instead of solidaristic practice – but indirect, systemic reciprocity. Institutional arrangements of solidarity work best when people give because they want to support others, but they also know that when they are in need they will be supported as well.

5.4 Solidarity in Health Research Regulation

How do the aforementioned conceptualisations of solidarity apply to HRR regimes? The first aspect we need to acknowledge is that HRR regimes are complex and varied. There is no such thing as one regime that applies to all areas of HRR, but rather there are multiple and sometimes overlapping legal and ethical requirements that need to be fulfilled by those planning, funding, supporting and undertaking research. HRR is a multidisciplinary endeavour that involves different actors such as policymakers, researchers, health professionals, industry and patients. HRR also spans a large variety of ‘objects’ that are regulated, such as data, tissue, embryos, devices or clinical trials.Footnote 7 This means that it occupies regulatory spaces beyond health, such as in data regulation, research financing, in fostering innovation and in the obligation to protect research recruitees.

At the start of this chapter we suggested that solidarity can be thought of as ‘enacted commitments to accept costs to assist others with whom a person or persons recognise similarity in one relevant respect’.Footnote 8 Thus the question arises: what are the shared practices that reflect a commitment to carry costs – emotional, financial, societal – in HRR, and what are the similarities that give rise to these practices? The two tiers of solidarity most relevant in HRR are Tiers 2 and 3. Tier 2, or group solidarity, is reflected, for example, in the way patients, patient groups and other stakeholders advocate for, inform about, and partake in research endeavours and regulatory steps to make them happen. The question of who partakes in research is not just important for methodological reasons but is also connected to the concept of solidarity. It is considered good scientific practice to carry out research in the populations for whom an intervention is intended, but there may be instances in which it is justified to conduct research in populations other than the intended beneficiaries. According to the Council for International Organizations of Medical Sciences (CIOMS) and the World Health Organization (WHO) such instances are ‘important demonstration[s] of solidarity with burdened populations’,Footnote 9 for example in 2014 when Ebola vaccines were tested in communities not affected by the Ebola outbreak.

The costs and the similarities that are at the heart of these – predominantly clinical – research practices are comparatively easy to identify. The costs commonly consist of individuals giving up their time to become research participants or to become involved in a patient advocacy group. They accept the burden of cumbersome regulatory steps to partake in research, such as navigating consent forms, risk assessments, data ownership and other issues. The similarity that motivates people to assist others despite the costs they incur is often the experience of suffering from a particular disease or the acknowledgement that we, as members of society or those close to us, all run the potential risk of illness in the future. It is a recognition that temporary sacrifices can result in long-term gains from the generation of new knowledge about health conditions and treatments.

A feature that distinguishes HRR from other areas of policy, regulatory and societal processes is that group solidarity is often not just confined to a small group of patients who are afflicted by the same illness. Rather, other members of the public – so-called healthy recruits – partake in the solidaristic practice of research and are directly affected by the associated regulatory procedures. The underlying ‘similarity in a relevant respect’ that, in Prainsack and Buyx’s definition of solidarity gives rise to solidaristic practice, is then typically a broad sense of human vulnerability that we all have in common. In other words, the nature of Tier 2 solidarity in HRR is not necessarily restricted to suffering from the same illness, but it can arise from the recognition that in a universally funded healthcare system, we all carry a commitment to carry costs because we all carry the risk that we might one day become ill.

To explore how Tier 3 solidarity, or institutional solidarity, is reflected in HRR, we trace the logic that forms the basis for understanding HRR through the lens of solidarity. The logic runs something like this: A solidaristically financed healthcare system is built on the principles of fair access to healthcare, protection against financial risks due to illness and quality. Ensuring access, provision and high-quality healthcare requires efforts to advance knowledge through research. Implicitly entailed in the social contract between governments, citizens and residents is the acceptance that mandatory financial contributions – i.e. costs – in the form of taxes or health insurance contributions will not only be used for the day-to-day provision of services but also for the fostering of research activities. With this implicit acceptance of carrying costs collectively comes a recognition that the health research area needs to be regulated to safeguard against unethical, harmful, and wasteful practices, and to foster innovation. This recognition translates into public policies that regulate the field.

But there are also regulatory burdens arising from such public policies that might negatively affect solidarisic practices in HRR. For example, the cumbersome, and often time-intensive, process of giving consent for a research participant’s data to be used for research purposes might deter some people from taking part in a study, especially if the use of the data is not explained or communicated clearly. Moreover, the predominant lens through which data ownership – in a moral and in a legal sense – is currently viewed is that of the rights of individuals, who, in turn, are conceptualised as bounded and independent entities.Footnote 10 This view is problematic because it fails to acknowledge the deeply engrained relational characteristics of data. This is so because the meaning of most data only unfolds once the data is interpreted in relation to other data, and that this meaning is often relevant for a wider range of people than only the person from whom they came. Currently, this relational nature of data is not reflected in most data governance frameworks in the health domain; even those frameworks that give people more control over how their data is used typically give this control to individuals. Instruments of collective control and shared ownership of personal data are rare. The ‘individualisation’ of data governance sits squarely within a system that relies on people’s willingness to make data about themselves available for research. It is a missed opportunity for showing how control and use of data can reflect both personal and collective interests and rights.

5.5 Solidarity in Research on Rare Diseases and Orphan Drugs

An example of how solidarity can be used to change the way we approach a policy problem in HRR can be found in rare diseases and orphan drugs research. The European Commission (EC) defines a rare disease as ‘any disease affecting fewer than 5 people in 10,000 in the EU’.Footnote 11 It estimates that there are approximately 5,000–8,000 rare diseases in the world. The challenge around rare diseases is that the comparatively small numbers of people affected by them translate into the neglect or the unavailability of diagnoses and treatment options. It can be explained by drawing on the notion of issue characteristics, famously developed by political scientist Theodore Lowi.Footnote 12 Lowi posited that different types of policies – e.g. regulatory, distributive or redistributive policies – give rise to different policymaking or decision-making processes through which distinct patterns of political and societal relationships and behaviours emerge. Just as the categories we use to describe characteristics that we hold – women and men, adults and children, Koreans or Croatians – we can use categories to describe characteristics that policies or policy fields hold. For example, the depiction of European healthcare and welfare systems as solidaristic has arisen from their embeddedness in redistributive policies that allow the state to redistribute taxes and other welfare contributions in the pursuit of policy goals. Different types of policies give rise to different forms of state action, but also to different types of public participation, or even political controversy and contestation. The latter is what we frequently observe when a change in redistributive policies is suggested. Following Lowi’s rationale, the key to understanding patterns of behaviours, in this case the lack of attention given to rare diseases, is to identify the characteristics of the issues to which they give rise. The more complex the regulatory or policy area, the more difficult it is to develop policy solutions.

The issue characteristics for rare diseases are complex. We know relatively little about the factors and processes that underlie these diseases. This stems from a lack of basic research into rare diseasesFootnote 13 which is mostly due to a lack of available funding for research that a relatively small number of people suffer from. From a public policy perspective, the question of how and if to prioritise research for rare diseases is an intrinsically complex issue because of the low numbers of patients and the high costs for research and treatment. It begs the (redistributive) policy question how spending a large proportion of overall research or healthcare budgets on a few patients can be justified if the opportunity costs are such that other patients may lose out as a result. The low patient numbers also result in difficulties in the design of clinical trials that meet the evidentiary hurdles of most regulatory agencies in Europe.Footnote 14

Solidarity offers a lens through which these difficult questions surrounding research on rare diseases can be reframed. Patients suffering from rare diseases are characteristically vulnerable (please see Rogers’ Chapter 1 in this volume for more detail on the concept of vulnerability). Their vulnerability results from the severity and the chronicity of their conditions, the inadequate access to appropriate diagnoses and treatment options, societal isolation and a lack of representation of their interests.Footnote 15 Coming back to the importance of Tier 3 solidarity in HRR (the institutional and legal level), the solidaristic principles upon which healthcare systems in Europe rest suggest a duty to care for society’s most vulnerable members, which patients with rare diseases undoubtedly are. Policies or regulations to support research and service provision for patients with rare diseases can therefore be viewed as solidaristic practices.

However, despite initiatives such as the introduction of Regulation (EC) 141/2000 on orphan medical products, access to adequate services and research for patients is still falling short of expectations. Following Lowi’s approach, as outlined above, we can observe that the more complicated the issues to which a regulatory or policy area give rise, the less policymakers are inclined to act because of the perceived lack of policy options. This might also explain why the challenges around fostering research activity on rare diseases are predominantly framed as a regulatory policy problem rather than a distributive or redistributive one. Interestingly, the perceived lack of policy options and responses corresponds with a flourishing of solidaristic practices below the level of public policy that span borders and countries at the EU level. For example, there seems to be an emerging recognition of ‘similarity in a relevant respect’ among EU countries in the sense that the issue characteristics of rare diseases are such that no country can stem the challenge of protecting vulnerable patients suffering from rare diseases on its own. Here, Tier 2 solidarity does not just apply to the level of interaction and collaboration among patient groups, but also to the level of cooperation between nation states. The similarity is the recognition that all countries face the same challenge in finding adequate research and treatments on rare diseases – the policy problem – and that countries are similar in their failure to find policy solutions. This can lead to the fostering of solidaristic practices such as the EC’s advocacy for a European Platform on Rare Diseases Registration that would bring together patient registries and databases to encourage and simplify clinical research in the area.

An unresolved question in the application of a solidarity-based approach to the field of HRR is the role of industry, especially in fostering or hindering solidaristic practices. It is frequently argued that pharmaceutical manufacturers do not invest enough resources into the research and development of rare diseases and orphan drugs because the small patient numbers lead to a low return on investment (RoI).Footnote 16 The response of EU member states has been to create incentives through policy instruments such as fee waivers for regulatory procedures or a 10-year market exclusivity for authorised products.Footnote 17 The introduction of such measures in the Regulation (EC) 141/2000 on orphan medical products has increased the number of orphan drugs being authorised. But is it also a sign that pharmaceutical industries are engaging in solidaristic practices to benefit some of the most vulnerable patients?

We argue that it is not. We must assume that pharmaceutical companies are motivated by the incentives offered through this regulation rather than a recognition of similarity with entities that seek to promote public benefit, or with people suffering from illness. The perception that some people, as taxpayers or patients, are expected to contribute to supporting others who suffer from rare diseases, while some corporate actors do the bare minimum required by law, may have a significant negative effect on the people of other actors to contribute. This may be exacerbated by the payment by corporations of hefty dividends to their shareholders. Institutionalised solidarity requires some level of reciprocity – the understanding that each actor makes a contribution adequate to their nature and ability. As a result, if large multinational companies are seen to get away with ‘picking the raisins’ this is a serious impediment to solidarity.

In a field that is still very dependent on the investment of pharmaceutical companies into drug research, resolving this challenge of asymmetry is not easy to rectify in the short term. Its solution would require legislation that forces companies to cut their profits and support rare disease patients in more significant ways than they are doing at present. A for-profit company cannot reasonably be expected to be motivated by the desire to help people; it is to be expected, and justified, that they put profits first. This is why it is the role and responsibility of legislators to ensure that companies are contributing their fair share. This is not only a necessity for moral and ethical reasons, but also to avoid the hollowing out of solidaristic practices among people who may, as argued above, be deterred by the expectation to accept costs to help others, while others are making huge profits.

The concept of solidarity can and should be used to reframe the regulation of research on orphan drugs from a market failure problem that requires financial incentives, to a societal problem that requires more than market measures. This will require a reframing of the issue as a redistributive policy problem rather than a purely regulatory one, in the hope that this will instigate political debates, as well as patient and public participation that would help bring the challenges of research on rare diseases and orphan diseases more to the centre of the policy process. Using the concept of solidarity to help reframe the policy issue has the potential to draw it out of the comparatively confined policy spaces it currently occupies. This helps to illuminate its political and public salience. The joined-up working of patient groups for rare diseases and the mutual efforts of EU member states – also as regulators that impose rules of fair play on pharmaceutical companies – are needed to facilitate – and where they already exist, stabilise – solidaristic practices. To make these practices more powerful and meaningful, priority-setting mechanisms for the prioritisation of research funding need to be developed,Footnote 18 and more public money should be invested, especially into basic research, in an effort to decrease the dependence on the pharmaceutical industry.

5.6 Conclusion

In this chapter, we have used research on rare diseases and orphan drugs to highlight the application of solidarity to HRR. It is an example of a space where solidaristic practices are already taking place, but also illustrates that there is room for improvement. Solidarity is an integral part of health research, and it is enacted every time a person takes part in a clinical trial or other research because they want to support the creation of public benefits. Regulation is important to ensure that research is carried out in an ethical manner, but, equally, it is important that decision-makers who define the regulatory spaces for HRR recognise the need to support solidaristic practices rather than undermine them through overly cumbersome bureaucratic hurdles to enrol in research.

Acknowledgements

We are grateful to Alena Buyx for helpful discussions on an earlier version of this manuscript. The usual disclaimer applies.

1 K. Kieslich, ‘Social Values and Health Priority Setting in Germany’, (2012) Journal of Health Organization and Management, 26(3), 374383; L. D. Brown and D. P. Chinitz, ‘Saltman on Solidarity’, (2015) Israel Journal of Health Policy Research, 4(27), 15; R. Saltman, ‘Health Sector Solidarity: A Core European Value but with Broadly Varying Content’, (2015) Israel Journal of Health Policy Research, 4(5), 17; R. ter Meulen, Solidarity and Justice in Health and Social Care in Europe, (Springer, 2001).

2 A. Dawson and B. Jennings, ‘The Place of Solidarity in Public Health Ethics’, (2012) Public Health Reviews, 34(1), 6579.

3 B. Prainsack and A. Buyx, ‘Solidarity: Reflections on an Emerging Concept in Bioethics’, (Nuffield Council on Bioethics, 2011); B. Prainsack and A. Buyx, Solidarity in Biomedicine and Beyond (Cambridge University Press, 2017).

4 Prainsack and Buyx, ‘Solidarity: Reflections’; Prainsack and Buyx, Solidarity in Biomedicine and Beyond.

5 J. Dean, Solidarity with Strangers: Feminism after Identity Politics (Berkeley: University of California Press, 1996), p. 12;

6 ter Meulen, Solidary in Health and Social Care, p. 11.

7 G. Laurie, ‘Liminality and the Limits of Law in Health Research Regulation: What Are We Missing in the Spaces In-Between?’, (2016) Medical Law Review, 25(1), 4772.

8 Prainsack and Buyx, Solidarity in Biomedicine and Beyond, p. 43.

9 Council for International Organizations of Medical Sciences, and World Health Organization, ‘International Ethical Guidelines for Health-related Research Involving Humans’, (CIOMS, 2016).

10 B. Prainsack, ‘Research for Personalised Medicine: Time for Solidarity’, (2017) Medicine and Law, 36(1), 8798.

11 European Commission, ‘Rare Diseases’, (European Commission, 2018), www.ec.europa.eu/health/non_communicable_diseases/rare_diseases_en

12 T. J. Lowi, ‘American Business, Public Policy, Case-Studies and Political Theory’, (1964) World Politics, 16(4), 677715.

13 EURORDIS-Rare Diseases Europe, ‘EURORDIS’ Position on Rare Disease Research’, (EURORDIS, 2010), www.eurordis.org/sites/default/files/EURORDIS_Rapport_Research_2012.pdf

17 European Commission, ‘Rare Diseases’.

18 C. Gericke et al., ‘Ethical Issues in Funding Orphan Drug Research and Development’, (2005) Journal of Medical Ethics, 31(3), 164168.

6 The Public Interest

Annie Sorbie
6.1 Introduction

This chapter provides an introduction to the concept of ‘the public interest’ in health research regulation (HRR). It considers two key ways that the public interest is constructed in HRR: namely as a legal device and through empirical evidence of the views of publics. To appreciate the scope of this concept, the public interest is set in its broader context, i.e. beyond HRR, highlighting that, historically, it has been a contested concept that is difficult to define in the abstract. Next, the public interest is situated within HRR, paying attention first to how it features in the HRR legal landscape and then how this is constructed through the views of publics (with specific reference to the use of identifiable health data for research). Both conceptualisations are analysed with reference to the key challenges and opportunities that they present before a holistic concept of the public interest in HRR is proposed and consideration given to how this may be operationalised in practice.

6.2 The Public Interest: A Contested Concept

Although the public interest is fully embedded in HRR, it is by no means exclusive to this context. The following brief consideration of wider perspectives on this contested concept point to persistent debates not only on what the public interest ‘is’, but also to tensions as to how this concept should be understood. Appeals have been made variously to the values it invokes, the process it requires, and/or the views of (some or all) of ‘society’ at large that it reflects.Footnote 1

Political and social scientists, philosophers and lawyers, among other disciplines, have contemplated this elusive concept without reaching consensus on its meaning or usefulness. During a period of scholarly interest in the public interest in post-World War II America, it was both lauded as ‘a central concept of a civilised polity’Footnote 2 and dismissed as a concept so vague and ambiguous that it is no more than a rhetorical device.Footnote 3 This ambivalence can be seen in Sorauf’s work in which, despite his scepticism, he initially concedes a ‘modest conception’ of the public interest that is rooted in ‘our interest in the democratic method and its settlement of conflict by orderly rules and procedures’.Footnote 4 He recognises too the potential function of the public interest as a ‘hair shirt’ that serves as ‘an uncomfortable and persistent reminder of the unorganized and unrepresented (or underrepresented) interests of politics’.Footnote 5 Over time, however, his position hardens and becomes more negative. He later posits that the public interest promotes ‘oversimplification’, as it purports to “solve” the dilemmas of … pluralism’.Footnote 6 Turning to the regulatory role of the public interest, Feintuck also points to a continued reluctance to define the public interest beyond what ‘will vary according to time, place and the specific values held by a particular society’.Footnote 7 He characterises the public interest as an ‘empty vessel’ and argues for an account that looks ‘to the fundamental value laden, democratic imperatives that underlie society: human dignity, parity of esteem, and the ability to participate actively in society’.Footnote 8

Whether the public interest is best understood modestly as a procedural mechanism, ambitiously as protecting fundamental values in society including those that may otherwise be overlooked, or in utilitarian terms as the views of the majority, there is little doubt that this is a contested concept that is ‘much used but ill defined’.Footnote 9 This chapter proposes that while there is need for further conceptual clarity here, there is also value to be found in such contestation and flexibility.

6.3 Appeals to the Public Interest in HRR

In HRR, the concept of the public interest is embedded in law and in policy, often as a counterpoint to individual interests. In medical research involving human subjects – including research on identifiable human tissue and data – consideration of the relationship between individual and public interests can be traced back to the original Declaration of Helsinki.Footnote 10 More recently, the legal mandate of the Health Research Authority (HRA) in the United Kingdom, as set out in the Care Act 2014, prescribes twin objectives to protect and promote the interests of both individual participants (and potential participants) and the interests of wider publics in safe and ethical health and social care research.Footnote 11

However, reflecting the broader literature on public interest, Taylor notes in his consideration of genetic data and the law, that the public interest remains a ‘notoriously uncertain idea’.Footnote 12 This chapter proceeds with an account of two key ways in which the concept of the public interest appears in HRR (with a focus on the use of identifiable health data for research), as constructed in law and through publics’ views. It considers the key challenges and opportunities presented by the public interest in each framing. Having identified the benefits and shortcomings of each, a holistic concept of the public interest is proposed, the relationship between the public interest as constructed within and beyond the law is examined, and consideration is given to how, in a more concrete way, public interest might be operationalised in HRR practice.

6.4 The Public Interest as Legal Device

When health research is conducted on identifiable personal data, the public interest is a striking feature of the legal landscape. For example, in the realm of data protection, the public interest forms one of the routes to the lawful processing of personal data in health and social care research. Thus, the General Data Protection RegulationFootnote 13 (GDPR) provides a lawful basis to process personal data where this is a ‘task in the public interest’.Footnote 14 Health Research Authority (HRA) guidance confirms that, for the purposes of the GDPR, this is the appropriate legal basis that should be used by public authorities, such as NHS bodies or universities, in order to process data for health and social care research.Footnote 15 In UK law, the Data Protection Act 2018Footnote 16 (DPA 2018) purports to add further detail to the interpretation of ‘a task in the public interest’, although concerns have been raised that the drafting of this legislation does little to add clarity to how this concept should be understood in practice.Footnote 17 A late addition to the Explanatory Note to the Act indicates, by way of an example, that ‘a university undertaking processing of personal data necessary for medical research purposes in the public interest should be able to rely on [a task in the public interest]’Footnote 18, thus providing some guidance on the context, if not the content, of the public interest in these circumstances.

Two other prominent features of the health data legal landscape are: (i) the common law duty of confidentiality and (ii) the legislative regime which established the predecessor body to the HRA’s Confidentiality Advisory Group (CAG). The common law duty of confidentiality provides that where confidential information is imparted to another person, in circumstances giving rise to an obligation of confidentiality, this must not be disclosed without consent or justification.Footnote 19 One such justification is where disclosure is ‘in the public interest’. This duty, and its exceptions, apply not only in the context of the traditional doctor/patient relationship, but also where it is proposed that the information in question may be used for purposes beyond direct care, such as for health or social care research. The interpretation of this duty of confidentiality (and, importantly for this chapter, the meaning of the public interest) has emerged as a result of decisions made on the facts of cases that have come before the courts. These judgements indicate, for example, that there is not only a personal interest in an individual’s confidentiality being maintained, but also a wider public interest in doing so in order that patients (in general) are not discouraged from consulting with healthcare practitioners.Footnote 20 Case law, in relation to whether disclosure of deceased patients’ records to a public inquiry was in the public interest,Footnote 21 recognises that the public interest (which was distinguished from ‘what the public found interesting’)Footnote 22 is multifaceted and can encompass both individual and collective interests. These include interests in: disclosure, maintaining the patient’s confidentiality and maintaining confidence in the institutions under investigation.Footnote 23

As with the legislation, there is no fixed definition of the public interest in case law; where this lies must be decided on the individual facts of each scenario. This perception of a lack of certainty led to concerns from some clinicians that routine activities, such as providing information to registries that collect and analyse data on specific diseases, might be vulnerable to challenge in the absence of specific consent.Footnote 24 These worries about the legality of such practices, among other matters, led to the enactment of legislation in England and Wales in 2001 that forms another key feature of the data sharing landscape, namely the establishment of the predecessor to the CAG. In summary, this legislation allows the Secretary of State for Health to make regulations to explicitly ‘set aside’ the common law duty of confidentiality for defined medical purposes, including medical research, where this is ‘in the interests of improving patient care, or in the public interest’. These powers are now found in Section 251 of the NHS Act 2006 (as enabled by the Health Service (Control of Patient Information) Regulations 2002) and referred to colloquially as ‘s251 support’. In sum: where seeking consent is neither possible nor practical, researchers can obtain s251 support to use confidential patient information for medical research by make an application to the HRA’s CAG. The effect of such an application is that, if granted, the researcher need not be concerned whether (in the admittedly unlikely event of litigation) a court would agree that their use of identifiable patient information without consent was indeed in the public interest.

In common with the broader literature on the public interest, the preceding whistle-stop tour of the public interest in law reveals anxieties around how this concept is interpreted in practice. It also speaks to the strengths and limitations of a narrow legal construction of the public interest decided on a case-by-case basis, but for which precedents can be established over time. These are explored further in the passages that follow.

We return first to Taylor’s description of the public interest as a ‘notoriously uncertain idea’.Footnote 25 It is of note that Parliamentary debate on the DPA 2018Footnote 26 on this topic resurrected many of the concerns around the public interest that had arisen some fifteen years previously, at the time of the promulgation of the CAG regime. These included the potential for the public interest to be interpreted widely to deliver ‘sweeping powers’.Footnote 27 Nonetheless the CAG regime, which was first proposed as a temporary solution as the NHS geared up to apply a ‘consent or anonymise’ binary to its use of health data, has become an example of good governance and established itself as part of the data sharing landscape.Footnote 28 This can be attributed, in part, to a growing recognition from stakeholders in HRR – including researchers and publics – that consent is not necessarily the ‘magic bullet’ to legitimise HRR governance that it might once have been presumed to be. For example, Wellcome’s research, as commissioned from Ipsos MORI, on public attitudes to commercial access to health data for research purposes found that, when considering data uses, ‘a strong case for public benefit is the most important factor for many people: without it, data use by any organisation is rarely acceptable’.Footnote 29 This tends to suggest that while concerns about the uncertainty of the application of the public interest in HRR persist, it is a concept that also, in some ways, benefits from its inherent flexibility and its ability to adapt to changing interests over time.

A further critique that arises from this legal construction of the public interest is that this looks inwards to derive its legitimacy from its institutional origins and is disconnected from actual publics’ views. For example, in the case of legislation – such as the DPA 2018 and the legislation underpinning the CAG regime – legitimacy comes from Parliament. Notwithstanding, the public interest in (legal) text tells us little about its context. Even when amplified by its Explanatory Note, the DPA 2018 does not elaborate on the legitimate content of the public interest in HRR.

Turning to case law, the public interest is conceptualised by the courts on the facts of each case, following precedents in previous decisions. This inward-looking legal construction of the public interest is consistent with the long established ‘intellectual tradition’Footnote 30 within the law of invoking fictional persons to provide a barometer of what ‘reasonable’ members of the public would expect in any given situation. The paradigm is the fictional ‘man on the Clapham Omnibus’,Footnote 31 who in English law is deployed to represent the reasonable person. Elsewhere in the law, other fictional reference points include the ‘right-thinking member of society’ (in defamation law) or even the ‘officious bystander’ (in contract law).Footnote 32 It has thus been confirmed by the Supreme Court that: ‘The spokesman of the fair and reasonable man, who represents after all no more than the anthropomorphic conception of justice, is and must be the court itself’.Footnote 33 This underlines why the law historically has not been centrally concerned with empirical evidence of the views of actual members of the public when it deploys the legal notion of the public interest in civil law cases.

However, this legal self-referential conception of the public interest in HRR is increasingly under pressure, as exemplified by the high-profile failure of care.data. As described more fully in this volume by Burgess (Chapter 25), this was an NHS England initiative that sought to make patient data available for specified purposes, including audit and research, in a format that was stripped of identifiable information. However, following widespread concerns about the scheme – including around its transparency and oversight – the programme closed in 2016.Footnote 34 Here, a legal framework was in place to facilitate data sharing but, as argued by Carter et al.,Footnote 35 the social licence to do so was not. This failure underlines the message that ‘legal authority does not necessarily command social legitimacy’.Footnote 36 It follows that where the law alone is unable to fully legitimise and animate the public interest, something else must fill this void. The following section suggests that a richer relationship between this legal concept and the views of publics could be a worthy candidate.

6.5 The Public Interest as the Views of Actual Publics

The potential benefits of responsible access to health data by researchers, as well as the perils of getting this wrong, have led to a renewed focus on the public acceptability of data sharing initiatives and a growing body of literature that explores public attitudes towards sharing health data for research purposes.Footnote 37 Aitken et al. note the desire of stakeholders in HRR to optimise the use of existing data in health research and: ‘the recognition of the importance of ensuring that data uses align with public interests or preferences’.Footnote 38 This commitment to using patient data responsibly is shared by funders, as exemplified by Wellcome’s ‘Understanding Patient Data’ initiative, which works to champion responsible uses of data and improve stakeholder engagement around how and why data is used for care and research.Footnote 39

Consider too the call in HRR for more and better public and patient involvement (PPI). The National Institute for Health Research (NIHR) recently issued ‘Standards for Public Involvement in Research’, which provide ‘a framework for reflecting on and improving the purpose, quality and consistency of public involvement in research’.Footnote 40 In particular, Standard 6 on Governance states that ‘[w]e involve the public in our governance and leadership so that our decisions promote and protect the public interest’. Here, the role of publics is positioned not only as shaping and supporting research, but also as a means of legitimising HRR and grounding the broader public interest.

This approach has the benefit of being anchored to actual publics’ views, something that is lacking from the narrow legal account set out above. In this way, it has the potential to provide at least some of the social legitimacy that was lacking in care.data. However, public engagement activities also attract criticisms of exclusivity and tokenism,Footnote 41 raising ‘questions of representativeness, articulation, impacts and outcomes’.Footnote 42 Thus, to simply equate these outputs with ‘the public interest’ more broadly also runs the risk of reinforcing underlying inequalities in the delivery of a majoritarian account of the concept. Reports of instances of ‘personal lobbying by volunteers for pet causes’Footnote 43 point to the dangers of ‘assuming that the perspectives of a small number of involved patients necessarily reflect the perspectives of a larger patient community’.Footnote 44 Indeed, McCoy et al.’s analysis of the recent NIHR ‘Standards for Public Involvement’ suggests that ‘it is simplistic to assume that including public representatives on governance and leadership bodies will necessarily promote the public interest’.Footnote 45 They highlight the likelihood that the interests of differing ‘publics’ will, in any event, diverge, and call for more attention to be paid to who is being asked to contribute, at what stage in a research project, and for what purpose.

This is not, of course, to discount the important contributions that can be made to shaping and delivering responsible HRR through the thoughtful involvement of patients and wider publics.Footnote 46 However, whereas it is advanced above that the law alone is not enough to legitimise the public interest, this analysis also suggests that an additive approach to publics’ views in HRR is also insufficient to provide a lasting and justifiable account of this concept. Something more is required.

6.6 The Public Interest: A Holistic Concept

Taken together, the preceding examples illustrate the prevalence of the public interest in HRR and how this concept may be constructed both through the law and through the views of publics. On the one hand, the tendency of the law to approach the public interest as a legal test draws the criticism that this narrow notion of what purports to be in the public interest is wholly disconnected from the views of publics and can lack social legitimacy. On the other, to claim that the public interest can simply be extrapolated from the outputs of public involvement work is equally problematic. Nonetheless, despite this disjuncture, common themes emerge and, in this section, two further contributions to the debate on the role of the public interest are offered. The first is a proposal for a holistic concept of the public interest that is able to account for a plurality of interests and views. The second is that, despite the apparent impasse, legal and empirical notions of the public interest are not mutually exclusive. It is argued that these do bear upon one another and that if the public interest is to be effectively deployed in HRR, this relationship should be both acknowledged and made more overt.

The first proposal is to recognise that both the legal and empirical constructions of the public interest call for a conception of the public interest that is able to account for a range of diverse interests. In law, the potential for this approach is evident in an arc of case law that emphasises that the public interest is a multifaceted and flexible concept that is able to account for both individual and collective interests, including wider publics and institutional stakeholders. Similarly, the analysis above suggests that the value of public involvement is optimised when attention is paid to the multiple interests of differing patients and publics, including who is being asked to contribute, when, and for what purpose. This also tracks a move in HRR literature away from a narrow account of the public interest that pits individual interests against collective benefits. For example, Rid describes this ‘pluralistic conception of public interest’ as an account that is capable of recognising that multiple interests are in play.Footnote 47 Taylor’s work also proposes that individual and public interests need not be balanced against one another, but rather that the need for legitimacy requires that each should account for each other.Footnote 48 Together, this forms the basis for a holistic concept of the public interest in HRR that is able to account for multiple interests and views. This approach does not, in the words of Sorauf, aim to ‘solve’ pluralism. Quite the opposite: it embraces the messy realities and subjectivities, both of the law, as broadly conceived, and of outputs from public involvement activities.Footnote 49

The second contribution is to suggest that, despite the messiness, these accounts are not mutually exclusive and do, in fact, bear upon one another (though this relationship is far from clear). For example, I suggested earlier that shifting public views on health data sharing (and a move away from a ‘consent or anonymise’ binary) have contributed to the longevity of the CAG, which was originally proposed only as a temporary measure. Similarly, I have referred to how lobbying from the HRR community during the promulgation of the DPA 2018 led to an amendment of the Explanatory Note to clarify that ‘a task in the public interest’ is an appropriate route for public authorities such as universities to use when processing health data for research purposes. Lessons from care.data exemplify the importance of ‘social licence’ to the success of otherwise legal data sharing initiatives. In turn, there is an on-going need for deeper understanding of public acceptability to realise the potential of new and novel uses of health data.Footnote 50 Given the impetus to deliver clear and transparent governance of health data, it is proposed that this this relationship ought to be both acknowledged and made more overt, in order that it may be exposed to debate in HRR. Three concrete suggestions are made in this regard. The first is that the public interest, along with other concepts that operate at the intersection of public involvement and governance in HRR, should be examined to identify their potential to bridge the divide between the outputs from public engagement and the implementation of these in practice. The second is that initiatives such as CAG, where there is ‘evidence’ of the public interest being given effect to facilitate responsible HRR, should be further mobilised. The third is that instances where appeals to the public interest are made in HRR should be captured and articulated publicly, in order to promote transparency and accountability around how and why these have (or indeed have not) been justified.

6.7 Concluding Remarks

This chapter advocates for a holistic conception of the public interest, where interests are accounted for, rather than polarised. HRR governance has moved on from a ‘consent or anonymise’ binary and now needs novel and bold mechanisms that do not seek to over-play the role of legal mechanisms, nor suggest that public views alone can deliver good governance solutions. While the concept of the public interest remains contested and highly contextual, there is an increasing drive towards maximising the potential of this embedded concept in order to deliver a step-change in HRR.

1 A. Sorbie, ‘Sharing Confidential Health Data for Research Purposes in the UK: Where Are ‘Publics’ in the Public Interest?’, (2020) Evidence & Policy, 16(2), 249265

2 S. Bailey, ‘The Public Interest: Some Operational Dilemmas’ in C. Friedrich (ed.), Nomos V: The Public Interest (New York: Atherton Press, 1962), pp. 96106.

3 G. Schubert, The Public Interest: A Critique of the Theory of a Political Concept (Glencoe, Illinois: Free Press, 1960).

4 F. J. Sorauf, ‘The Public Interest Reconsidered’, (1957) The Journal of Politics, 19(4), 616639, 633.

5 Footnote Ibid., 639.

6 F. Sorauf, ‘The Conceptual Muddle’ Dilemmas’ in C. Friedrich (ed.), Nomos V: The Public Interest (New York: Atherton Press, 1962), pp. 183190, p. 189.

7 M. Feintuck, ‘The Public Interest’ in Regulation (Oxford University Press, 2004), p. 34, quoting A. Ogus, Regulation: Legal Form and Economic Theory (Oxford: Clarendon, 1989), p. 2.

8 Feintuck, ‘The Public Interest’, p. 57.

9 J. Bell, ‘Public Interest: Policy or Principle?’ in R. Brownsword (ed.), Law and the Public Interest: Proceedings of the 1992 ALSP Conference (Stuttgart: Franz Steiner Verlag, 1993) pp. 2736.

10 J. R. Williams, ‘The Declaration of Helsinki and Public Health’, (2008) Bulletin of the World Health Organization, 86(8), 650652.

11 Care Act 2014, Section 110(2) states: (2) The main objective of the HRA in exercising its functions is – (a) to protect participants and potential participants in health or social care research and the general public by encouraging research that is safe and ethical, and (b) to promote the interests of those participants and potential participants and the general public by facilitating the conduct of research that is safe and ethical (including by promoting transparency in research).

12 M. Taylor, Genetic Data and the Law: A Critical Perspective on Privacy Protection (Cambridge University Press, 2012).

13 Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC.

14 Article 6(1)(e).

15 Consent retains its ethical significance and legal importance under wider legal frameworks, but it is explicitly stated that: ‘For the purposes of the GDPR, the legal basis for processing data for health and social care research should NOT be consent. This means that requirements in the GDPR relating to consent do NOT apply to health and care research’. Health Research Authority, ‘Consent in research’, (NHS Health Research Authority, 2018), www.hra.nhs.uk/planning-and-improving-research/policies-standards-legislation/data-protection-and-information-governance/gdpr-guidance/what-law-says/consent-research/.

16 Data Protection Act 2018, Section 8.

17 Wellcome, ‘Data Protection Bill – Second Reading Briefing for the House of Lords by the Wellcome Trust’, (Wellcome, 10 October 2017), www.wellcome.ac.uk/sites/default/files/data-protection-bill-second-reading.pdf; ‘Data Protection Bill – Lords’ Committee Stage Day 1’, www.wellcome.ac.uk/sites/default/files/data-protection-bill-lords-committee.pdf

18 Data Protection Act 2018, Explanatory note to Section 8.

19 The essential elements were established in Coco v. A N Clark (Engineers) Ltd [1969] RPC 41.

20 W v. Egdell [1989] EWCA Civ 13.

21 Lewis v. Secretary of State for Health [2008] EWHC 2196, Paragraph 58.

22 Footnote Ibid., Paragraph 59.

23 Footnote Ibid., Paragraph 58.

24 M. Coleman et al., ‘Confidentiality and the Public Interest in Medical Research – Will We Ever Get It Right?’, (2003) Clinical Medicine, 3(3), 219228.

25 Taylor, Genetic Data, p. 29

26 For example, see Hansard, HL, vol. 785, col. 146, 10 October 2017; Hansard, HL, vol. 785, col. 1236, 30 October.

27 These included the wide scope of the public interest provisions that provided the Secretary of State with ‘sweeping powers to collect confidential data on named patients without consent’ (Hansard, HC, vol. 622, col. 997, 26 February 2001, Earl Howe).

28 G. Laurie et al., ‘On Moving Targets and Magic Bullets: Can the UK Lead the Way with Responsible Data Linkage for Health Research?’, (2015) International Journal of Medical Informatics, 84(11), 933940.

29 Wellcome, ‘Public Attitudes to Commercial Access to Health Data’, p. 1, referring to Ipsos MORI, ‘The One-Way Mirror: Public Attitudes to Commercial Access to Health Data’, (Wellcome Trust, 2016), www.wellcome.ac.uk/sites/default/files/public-attitudes-to-commercial-access-to-health-data-summary-wellcome-mar16.pdf

30 Healthcare at Home Limited (Appellant) v. The Common Services Agency (Respondent) (Scotland) [2014], par. 2.

31 Footnote Ibid., para 1.

32 Footnote Ibid., para 1.

33 Footnote Ibid., para 2.

34 M. Taylor, ‘Information Governance as a Force for Good? Lessons to be Learnt from care.data’, (2014) SCRIPTed, 11(1), 18.

35 P. Carter et al., ‘The Social Licence for Research: Why care.data Ran into Trouble’, (2015) Journal of Medical Ethics, 41(5), 404409.

36 Footnote Ibid., 408

37 M. Aitken et al., ‘Moving from Trust to Trustworthiness: Experiences of Public Engagement in the Scottish Health Informatics Programme’, (2016) Science and Public Policy, 111; M. Aitken et al., ‘Public Responses to the Sharing and Linkage of Health Data for Research Purposes: A Systematic Review and Thematic Synthesis of Qualitative Studies’, (2016) BMC Medical Ethics, 17(73), 124; M. Aitken et al., ‘Public Preferences Regarding Data Linkage for Health Research: A Discrete Choice Experiment’, (2018) International Journal of Population Data Science, 3(11), 113.

38 Aitken et al., ‘Public Responses’, 2

39 ‘About Us’, (Understanding Patient Data), www.understandingpatientdata.org.uk/about-us.

40 NIHR, ‘Standards for Public Involvement in Research’, (NIHR, 2019), www.invo.org.uk/posttypepublication/national-standards-for-public-involvement/

41 J. Ocloo, and R. Matthews, ‘From Tokenism to Empowerment: Progressive Patient and Public Involvement in Healthcare Improvement’, (2016) BMJ Quality and Safety, 25(8), 626632.

42 J. Stilgoe and S. Lock, ‘Why Should We Promote Public Engagement with Science?’, (2014) Public Understanding of Science, 23(1), 415.

43 M. McCoy et al., ‘National Standards for Public Involvement in Research: Missing the Forest for the Trees’, (2018) Journal of Medical Ethics, 44(12), 801804, p. 802, quoting A. Prince et al., ‘Patient and Public Involvement in the Design of Clinical Trials: An Overview of Systematic Reviews’, (2018) Journal of Evaluation in Clinical Practice, 24(1), 240253.

44 McCoy et al., ‘National Standards’, 802.

45 Footnote Ibid., 803

46 See Burgess, Chapter 25, and Cunningham-Burley and Aitken, Chapter 11, of this volume.

47 See A. Rid in A. Sorbie, ‘Conference Report: Liminal Spaces Symposium at IAB 2016: What Does It Mean to Regulate in the Public Interest?’, (2016) SCRIPTed, 13(3), 374381.

48 See M. Taylor in A. Sorbie, ‘Conference Report’, and Taylor and Whitton, Chapter 24 of this volume.

49 Although outside the scope if this chapter, this holistic model also calls for scrutiny of the values in which it is grounded. Candidates may include, e.g. citizenship (Feintuck, ‘The Public Interest’) or solidarity (Kieslich and Prainsack, Chapter 5 of this volume).

50 For example, health data, such as that held by the NHS, may be of ‘immense value’ to researchers developing artificial intelligence for use in healthcare settings. However, the question of how this value is realised remains ‘a crucial one to get right because of the implications for public confidence’ (Select Committee on Artificial Intelligence, ‘AI in the UK: ready, willing and able?’, (House of Lords, 2018), www.publications.parliament.uk/pa/ld201719/ldselect/ldai/100/100.pdf.

7 Privacy

David Townend
7.1 Introduction: The Modern DifficultyFootnote 1

Privacy is a well-established element of the governance and narrative of modern society. In research, it is a mainstay of good and best practice; major research initiatives all speak of safeguarding participants’ rights and ensuring ‘privacy protecting’ processing of personal data. However, while privacy protection is pervasive in modern society and is at the conceptual heart of human rights, it remains nebulous in character. For researchers who engage with people in their studies, the need to respect privacy is obvious, yet how to do so is less so. This chapter offers first an explanation of why privacy is a difficult concept to express, how the law approaches the concept and how it might be explored as a broader normative concept that can be operationalised by researchers. In that wider scheme, I show how individuals respond to the same privacy situation in different ways – that we have a range of privacy sensitivities. I think about four privacy elements in the law: human rights, privacy in legal theory, personal data protection and consent. Finally, I consider how law participates in the broader normative understanding of property as the private life lived in society.

7.2 Privacy as a Normative Difficulty

A good starting point is to ask: what do we mean when we talk about ‘privacy’? It would be difficult for a modern research project to suggest that it was not ‘privacy respecting’ or ‘privacy preserving’. However, the concept is somewhat ill-defined, and that claim to be privacy respecting or preserving might, in reality, add little to the protection of individuals. In part, this problem stems from the colloquial, cultural aspect of the concept: we each have our own idea of what constitutes our privacy – our private space.

Imagine setting up a new data sharing project. You hypothesise that linking data that different institutions already gather could address a modern health problem – say, the growth of obesity and type 2 diabetes. Such data, current and historical, could be used by machine learning to create and continuously revise algorithms to help identify and ‘nudge’ those at risk of developing the condition or disease. The already-gathered data could be from general practitioners and hospitals, supermarkets and banks, gym memberships, and health and lifestyle apps on smart phones, watches and other ‘wearables’. But how would individuals’ privacy be protected within such a project? Many will be uneasy about such data being stored in the first place, let alone retaining it and linking it for this purpose. Many will see that there might be a benefit, but would want to be convinced of technical safeguards before opting into such a project. Many will be happy, having ‘nothing to hide’ and seeing the benefits for their health through such an app. Some would see this initiative as socially desirable, as part, perhaps, of one’s general duty and the basis of personalised medicine, so that such processing would be a compulsory part of registration for healthcare; an in-kind payment to the healthcare system alongside financial payments, necessary for the continued development of modern healthcare that is a general societal and personal good.

Our difficulty is that each one of the people taking these different positions would see their response as a ‘privacy preserving’ stance.Footnote 2 As explored elsewhere in this volume, this observation underlines the diversity of ‘publics’ and their views (see Aitken and Cunningham Burley, Chapter 11, and Burgess, Chapter 25, in this volume). Under the label ‘privacy’ there is a wide spectrum of conceptualisations, from the enthusiastic adopter and compulsion for all, through allowing people to opt-out, generally leaving participation to opting in, to wanting nothing to do with such projects. How then can a researcher frame a ‘privacy’ policy for their research? Are we creating the problem by using the term ‘privacy’ informally and colloquially? Does the law provide a definition of the term that avoids or militates against the problem?

7.3 Privacy as a Human Right

A logical starting point might be human rights law. Privacy and the right to respect for private life is enshrined in human rights law. Unfortunately, it does not give much assistance in the definition of those rights. Two examples show the common problem clearly.Footnote 3 Article 12 of the Universal Declaration of Human Rights states:

No one shall be subjected to arbitrary interference with his privacy, family, home or correspondence, nor to attacks upon his honour and reputation. Everyone has the right to the protection of the law against such interference or attacks.Footnote 4

Article 8 of the European Convention on Human Rights creates the right in this way:

  1. 1. Everyone has the right to respect for his private and family life, his home and his correspondence.

  2. 2. There shall be no interference by a public authority with the exercise of this right except such as is in accordance with the law and is necessary in a democratic society in the interests of national security, public safety or the economic well-being of the country, for the prevention of disorder or crime, for the protection of health or morals, or for the protection of the rights and freedoms of others.Footnote 5

Two observations can be made about these ‘privacy’ rights: (1) privacy is not an absolute right, i.e. there are always exceptions and (2) ‘privacy’ and ‘respect for private life’ require a great deal of further definition to make them operational. As to the first observation, the rights are held in relation to the competing rights of others: a right against ‘arbitrary interference’ and ‘no interference … except such’. The concepts of privacy in human rights legislation acknowledge that the rights are held in balance between members of society; privacy is not absolute, because on occasion one has to give way to the needs of others.

As to the content of privacy – and reflecting the broad conceptualisations in the research project example above – we see that what is available from the human right to privacy is international recognition of a space where an individual can exist, free from the demands of others; there is a normative standard that recognises that people must be respected as individuals.

The European Court of Human Rights has ruled extensively on the human right to respect for private life, and a line of caselaw has been created. This produces a canon of decisions where particular disputes have been settled where the particular parties have been unable to resolve their conflict between themselves. However, does that line of cases produce a normative definition of privacy, i.e. one that sits with and accommodates the range of sensitivities expressed above? I think not. A courtroom determination arguably defines a point on the range of sensitivities as ‘privacy’, pragmatically for the parties. Our problem comes when we try to use caselaw as indicative of more than how judges resolve conflicts between intractable parties when a privacy right is engaged. Does this mean the law adds little to the broader normative question about how we, as researchers, should respect the privacy of those with whom we engage in our work?

Two North American contributions could help to understand this. The first expression of the legal right to privacy is usually recognised as Warren and Brandeis’ 1890 idea that we can agree that individuals have the right to be left alone.Footnote 6 Reading their paper today, it resonates with current concerns: technological developments and the increasing press prurience required a right to be ‘left alone’. In the modern context of genetics, Allen proposes a broader typology of privacy: ‘physical privacy’, ‘proprietary privacy’, ‘informational privacy’, and ‘decisional privacy’.Footnote 7 The first two, which seem strange ‘privacies’ today, are where Warren and Brandeis clearly see the Common Law as having reached in 1890. Law protects individuals’ physical privacy through consent; private property law is equally well established. Warren and Brandeis identified ‘informational privacy’ and what might be described as ‘reputational privacy’ as the area where the law needed to develop in 1890. Allen pointed to the vast and compelling literature around the woman’s right to choose in discussing the right to ‘decisional privacy’. Legal theory, in part, responds to current privacy issues. Today, two major privacy issues in research are the protection of personal data protection and informed consent.

7.4 Privacy in Specific Legal Responses: Personal Data Protection and Informed Consent

The development of the automated processing of personal data has focussed privacy, at least in part, around ‘informational privacy’.Footnote 8 The Organization for Economic Co-operation and Development OECD Guidelines on the Protection of Privacy and Transborder Flows of Personal Data set an international standard in 1980 that remains at the core of data protection law.Footnote 9 The guidelines are transposed into regional and national laws.Footnote 10

Data protection, as an expression of an area of privacy, seeks to balance a variety of interests in the processing of personal data within the non-absolute nature of privacy; the object of data protection is to create the legal conditions under which it is possible and appropriate to process personal data. Taking the European Union General Data Protection Regulation 2016/679 (GDPR) as an example, there are four elements in data protection law: data protection principles;Footnote 11 legal bases for processing personal data;Footnote 12 information that must be given to the data subject;Footnote 13 and, rights of the data subject.Footnote 14 Each element contains a balance of interests.

For stand-alone research with human participants directly contacted by the researcher, the route through the GDPR is clear. Security and data minimisation standards (i.e. only gathering, analysing and keeping data for such a time necessary for the purpose of the project) are clear; data subjects can be informed about the project fully, and data subjects rights can be respected. More complex data-sharing methodologies – perhaps the project envisaged in Section 7.2 above – are more difficult to negotiate through the GDPR. Are original consents valid for the new processing? Was the consent too broad for the new GDPR requirements? Might the processing be compatible with the original purpose for which the data were gathered? Could the new processing be in the public interest? How should data subjects be informed about the proposed new project? Each of these questions is open to debate in the GDPR. And the problem is how can the lack of definitional clarity in the rights be resolved in such a way that it accommodates all the positions on the spectrum of interests indicated in Section 7.2 above? One could say, law must produce a working definition and in a democracy, all differences cannot be accommodated, so some will be disappointed. However, the sensitivity of the data in the example above shows that there is a danger that those who are not within the working definition of privacy will be alienated from participating in key areas of social life, perhaps even avoiding interaction with, say, health research or medical services to their detriment.

If one of the current legal discussions is around informational privacy, the other is around decisional privacy. Informed consent is a legal mechanism to protect decisional privacy, not just in research, but across consumer society. The right of individual adults to make their own choices is largely unchallenged.Footnote 15 The choices must be free and informed. The question is, how informed must a choice be to qualify as a valid choice from an individual? This, in many modern biomedical research methodologies, is contested. A biobank, where data are gathered for the purpose of providing datasets for future, as yet undefined, research projects, depends on creating the biobank at the outset through a ‘broad’ consent. How though can an individual be said to give ‘informed consent’ if the purposes for which the consent is asked cannot be explained in detail? How can a consent that is ‘for research’ be specific enough to be an adequate safeguard of privacy interests? (See, for example, Kaye and Prictor, Chapter 10, in this volume for a specific discussion of consent in this context.)

The privacy issue is: what constitutes sufficient information upon which a participant can base her choice? Two conditions have to be satisfied: the quality of the information that will be made available; and (who determines) the amount of information that is necessary to underpin a decision. A non-specialist participant is not necessarily in a position to judge the first of these conditions. That is the role of independent review boards, standing as a proxy for the participant to assess the quality and trustworthiness of the scientific and methodological information that will be offered to the participant. For the second condition, what is sufficient information upon which to make a decision and who determines that decision, is a matter for the individual participant, and should not be seen as part of the role of the ethics committee, researcher or other body. The purpose of informed consent is to protect the individual participant from, essentially, paternalism – the usurping of the participant’s free choice of whether or not to participate (unless the decision is palpably to the detriment of an individual who is not deemed competent to make a choice). Therefore, in the general case, it is inappropriate to remove the determination of what is sufficient information to inform the particular person from that person, or to determine for them what are appropriate or inappropriate considerations to bring to the decision-making process. This would seem to be crucial in ensuring an individual’s decisional privacy – the extent of the right to make decisions for oneself.

7.5 Realising Privacy in Modern Research Governance

So far I have made two claims about privacy. First, individuals hold a range of sensitivities about their privacy (and we could add that this is a dynamic balance depending also upon the relationships between individuals and the emotional setting or moment of the relationship.Footnote 16 Second, the law produces a mechanism for resolving conflicts that fall within its definition of privacy, but it does not provide a complete normative definition of privacy that meets all the social functions required of the concept (that will confront researchers negotiating privacy relationships with their participants). Two observations might help with locating our thinking at this point. First, there is not a complete, normative definition of privacy in any discipline that satisfactorily meets the dynamic nature of privacy. There are many different definitions and conceptualisations, but there is no granular agreement on the normative question – what ought I to understand as ‘my permitted private life’.Footnote 17 Second, the presentation so far might appear to suggest that privacy is a matter of individual autonomy, in opposition to society. This, in the remainder of the chapter, I will argue is not the case, by exploring how privacy might be operationalised, in our case, in research. The question is: what tools can we use to understand our relationships as individuals in society?

To do this, I suggest that there are three areas that can usefully be considered by both researchers (and participants) in the particular circumstances of a research project and by society in trying to understand the conceptualisation of privacy in modern society: the public interest, confidentiality and discourse.

The public interest, the common good, as a measure of solidarity is very attractive. It addresses directly the range of sentiments problem to which I refer to throughout the chapter (see Kieslich and Prainsack, Chapter 5, and Sorbie, Chapter 6, in this section, and Taylor and Whitton, Chapter 24, later in this volume). Appealing to the public interest is a practical mechanism that answers the individual’s privacy sensitivities with the following: whatever you believe to be your privacy, these are the supervening arguments why, for example, you should let me stand on your land or use your personal data (your privacy has to accommodate these broader needs of others). The difficulty with the public interest is that it seems itself to have no definition or internal rules. Appeals to the public interest seem to be constructed loosely through a utilitarian calculus: the greatest utility for the greatest number. Mill himself identifies the problem: the tyranny of the majority. The problem has two elements. The claim to ‘supervening utility’ could seem itself to be a subjective claim, so those in the minority, suffering the consequences of a loss of amenity (in this case the breach of their privacy), are not immediately convinced of the substance of the argument. The construction does not balance the magnitude of the loss to the individual with the benefit (or avoided loss) of another individual; rather, the one stands against the many. This is not particularly satisfactory, especially when one links this back to the fundamental breach and the sense of the loss of privacy cutting to the personhood of the individual. Adopting the arguments of Arendt, we might phrase this more strongly. Arendt identifies the individual as constituted in two parts: the physical and the legal. In her studies of totalitarianism, she finds that tyrannies occur where the two parts of the individual are separated by bureaucracies and the legal individual is forgotten. Left with only the physical individual, the human is reduced to an expendable commodity.Footnote 18 Simple appeals to the public interest could be in danger of overlooking the whole individual and producing an alienation of those whose rights are removed in the public interest or common good.

Another way of constructing the appeal to the public interest can be through deontological rather than ontological theories, particularly those of Kant and Rawls. Taking Kant,Footnote 19 a first step would be to consider the losses to individuals – the person who stands to lose their privacy rights, and a person who would suffer a loss if that privacy was not breached. A second step would be to require each of those individuals to consider their claim to their privacy through the lens of the second formulation of the Categorical Imperative – that one should treat others as ends in themselves, not merely as means to one’s own ends.Footnote 20 Because privacy is not an absolute right, when making such a claim, we must each ask: do I merely instrumentalise the other person in the balance by making this privacy claim? This is a matter of fact: which of us will suffer most? The third element is to acknowledge that the law can require me to adopt that choice if I fail to make it for myself, as it is the choice I should have made unprompted (I can argue that the calculation on the facts is incorrect, but not that the calculation ought not to be made). Rawls might construct it slightly differently: whereas I might prefer a particular action preserving my privacy, I must accept the breach of my privacy as reasonable in the circumstances. Using his ‘veil of ignorance’, when I do not know my potential status in society, I must adopt this measure to protect the least-well-off member of society when the decision is made.Footnote 21

In the example raised in Section 7.2, using this public interest consideration helps to reconcile the range of sensitivities problem. As a researcher trying to design privacy safeguards, I can use the calculations to evaluate the risks and benefits identifiable in the research, and then present the evaluation to participants and regulators. The public interest creates a discourse that steps outside self-interest. However, this sets off a klaxon that the public interest is not antithetical to privacy, as presented here; public interest is part of privacy. And I agree. Here, I am suggesting that using public interest arguments is a mechanism for defining the relationship of the individual to others (that is, to other individuals). The result is not saying that the public interest ‘breaches’ the privacy of the participant, but that it helps to define the individual’s privacy in relation to others (for the individual and for other people and institutions). It brings to the subjectivity of the dynamic range of sentiments (that I identified as an issue at the outset) the solidarity and community that is also part of one’s privacy.Footnote 22 This holistic understanding of privacy as a private life lived in community not reducible to a simply autonomy-based claim is best explored by Laurie’s ‘spatial’, psychological privacy.Footnote 23

Confidentiality is a second legal tool to ensure participants’ rights are safeguarded. Arguably, it is a more practical tool or concept for researchers than privacy. Confidentiality earths abstract privacy concepts in actionable relationships and duties. Taking Common Law confidentiality as an example, it is constructed either expressly, as a contractual term, or it is implied into the conduct of a contract or through equity into the relationship between individuals.Footnote 24 Confidentiality depends on concrete, known parameters of the relationship, or parameters that one ought, in good conscience, to have known. Like data protection, it does not prohibit behaviour; rather confidentiality creates an environment in which particular behaviours can occur. This is important in the context of health research regulation because many potential research participants will be recruited through the professional relationships they enjoy with healthcare professionals; it is a tool that can be extended into other researcher–participant relationships. Confidentiality and the trust-based nature of that relationship can both help with recruitment and provide a welcome degree of reassurance about privacy protection.

Finally, and implicit throughout the operationalisation of privacy, privacy is a negotiated space that requires public engagement through discourse. Discourse ethics has a modern iteration, but a long history. The virtue ethics of Aristotle and Ancient Greek philosophy is dependent on the identification of the extent and nature of the virtues and their application in human life; Shaftesbury’s early enlightenment ‘politeness’Footnote 25 and the salons of the Age of Reason again ground the discussion of the questions, ‘who are we, and how ought we to behave?’ in public, albeit intellectual, discourse; today, Habermas et al. advocate this inclusion as a part of a participative democracy, perhaps reiterating the central arguments of the early Frankfurt School against the false consciousness of the Culture Industry.Footnote 26 The thrust of this whole chapter is that privacy must be debated and understood in the lives of individuals; universities, professional bodies, and ethics committees must facilitate conversations that empower individuals to realise their decisional privacy in making choices about the nature of their participation in society.Footnote 27

7.6 Conclusion

This chapter has focused on different aspects of a conceptual problem raised in relation to a modern research dilemma: how do we negotiate privacy-protecting research where individuals hold a dynamic range of sensitivities about their relationships to others in society? We have seen that whereas human rights law does not present granular definitions of privacy and courts use privacy concepts to resolve disputes in the area, attempts in legal theory and specific areas of law (personal data protection and informed consent) do not fill the conceptual gaps. The argument I advance is that using the public interest, confidentiality and public engagement discourse in constructing research protocols will go some way to address those gaps. It will also strengthen the relationship between researchers and the public they seek to engage and to serve, and could facilitate a greater understanding of the methods and objectives of science.

1 I am grateful to Graeme Laurie, Annie Sorbie and all the editors and colleagues who commented on this chapter. Errors are mine.

2 See the range of sensitivities expressed in public opinion surveys about privacy. For example, the Eurobarometers on data protection, Eurobarometers numbers 147 and 196 (2003), 225 and 226 (2008), 359 (2011), and 431 (2015), and on biotechnology, Eurobarometers numbers 61 (1991), 80 (1993), 108 (1997), 134 (2000), 177 (2003), 244b (2006), and 341 (2010), all available at ‘Public Opinion’, (European Union), www.ec.europa.eu/commfrontoffice/publicopinion/index.cfm.

For a discussion of a broader literature, see D. Townend et al.,‘Privacy Interests in Biobanking: A Preliminary View on a European Perspective’ in J. Kaye and M. Stranger (eds), Principles and Practice in Biobanking Governance (Farnham: Ashgate Publishing Ltd., 2009), pp. 137159.

3 See also, Articles 7, 8 and 52 of the European Union, Charter of Fundamental Rights of the European Union, 26 October 2012, 2012/C 326/02.

4 UN General Assembly, ‘Universal Declaration of Human Rights’, 10 December 1948, 217 A (III).

5 Council of Europe, European Convention for the Protection of Human Rights and Fundamental Freedoms, as amended by Protocols Nos 11 and 14, 4 November 1950, ETS 5.

6 S. D. Warren and L. D. Brandeis, ‘The Right to Privacy’, (1890) Harvard Law Review, 4(5), 193220.

7 A. L. Allen, ‘Genetic Privacy: Emerging Concepts and Values’ in M. A. Rothstein (ed.) Genetic Secrets: Protecting Privacy and Confidentiality in the Genetic Era (New Haven: Yale University Press, 1997), pp. 3160.

8 See the tone, for example, of the Council of Europe website, where the focus is on privacy of personal data. ‘Council of Europe Data Protection Website’, (Council of Europe), www.coe.int/en/web/data-protection

9 Organization for Economic Co-operation and Development, ‘OECD Guidelines on the Protection of Privacy and Transborder Flows of Personal Data’, (OECD, 1980). See also, OECD, ‘The OECD Privacy Framework’, (OECD, 2013).

10 See, for example, Council of Europe Convention 108; European Union Directive 95/46/EC replaced by the General Data Protection Regulation 2016/679.

11 GDPR, Article 5.

12 GDPR, Articles 6 and 9.

13 GDPR, Articles 13 and 14.

14 GDPR, Articles 15–22.

15 Although it is not an absolute right. See, for example, A. Smith, The Theory of Moral Sentiments (1759) or J. S. Mill, On Liberty (1859).

16 See M. J. Taylor, Genetic Data and the Law: A Critical Perspective on Privacy Protection (Cambridge University Press, 2012).

17 This can be seen in privacy debates in other academic disciplines. See, for example, J. DeCew, ‘Privacy’, (The Stanford Encyclopedia of Philosophy, Spring 2018 Edition), E. N. Zalta (ed) www.plato.stanford.edu/archives/spr2018/entries/privacy/; A. Westin, Privacy and Freedom (New York: Atheneum, 1967); A. Westin, ‘Social and Political Dimensions of Privacy’, (2003) Journal of Social Issues, 59(2), 431453.

18 H. Arendt, The Human Condition (Chicago University Press, 1958).

19 I have developed this idea previously: D. Townend, ‘Privacy, Politeness and the Boundary Between Theory and Practice in Ethical Rationalism’ in P. Capps and S. Pattinson (eds), Ethical Rationalism and the Law (Oxford: Hart Publishing, 2017), pp. 171189.

20 I. Kant, Groundwork of the Metaphysics of Morals (1785). See M. Rohlf, ‘Immanuel Kant’, (The Stanford Encyclopedia of Philosophy, Spring 2020 Edition), E. N. Zalta (ed.), www.plato.stanford.edu/archives/spr2020/entries/kant/ (section 5.4).

21 J. Rawls, A Theory of Justice (Cambridge, MA: Belknap Press, 1971, Revised Edition 1999). See L. Wenar, ‘John Rawls’, (The Stanford Encyclopedia of Philosophy, Spring 2017 Edition), E. N. Zalta (ed), www.plato.stanford.edu/archives/spr2017/entries/rawls/.

22 And this is what the court advocates in W v. Egdell [1989] EWCA Civ 13 and is arguably the purpose of the derogations in human rights law discussed above.

23 G. Laurie, Genetic Privacy: A Challenge to Medico-Legal Norms (Cambridge University Press, 2002).

24 Francome v. Mirror Group Newspapers Ltd [1984] 1 WLR 892 (UK); Campbell v. MGN Ltd [2004] UKHL 22. See Taylor and Whitton, Chapter 24, in this volume.

25 A. A. Cooper, Third Earl of Shaftesbury, Characteristics of Men, Manners, Opinions, Times, L. E. Klein (ed.), (Cambridge University Press, 1999); L. Klein, Shaftesbury and the Culture of Politeness: Moral Discourse and Cultural Politics in Early Eighteenth-Century England (Cambridge University Press, 1994).

26 See, for example, J. Habermas, Between Facts and Norms: Contributions to a Discourse Theory of Law and Democracy (tr. W. Rehg) (Cambridge, US-MA: MIT Press, 1996) (originally published in German, 1992); M. Horkheimer and T. W. Adorno, Dialectic of Enlightenment (tr. J. Cumming) (New York: Herder and Herder, 1972) (original publication in German, 1944).

27 Townend, ‘Privacy’.

8 Trustworthy Institutions in Global Health Research Collaborations

Angeliki Kerasidou
8.1 Introduction

Trust is often cited as being fundamental in biomedical research and in research collaborations. However, despite its prominence, its specific meaning and role remain vague. What does trust mean, and is it the same whether directed towards individuals and research institutions? What is it about trust that makes it important in global health research, and how can we effectively promote it? This chapter analyses the meaning of trust and discusses its importance and relevance in the context of global health research collaborations.

In recent decades, biomedical research has moved away from a one-researcher-one-project model to adopt a more collaborative way of working that brings together researchers from different disciplines, institutions and countries. Global health research, a field that has emerged as a distinct area of biomedical research, exemplifies this trend towards collaborative partnerships. Global health, as ‘collaborative trans-national research …’,Footnote 1 often relies on collaborations between researchers and institutions from high-income countries (HIC) and low-and-middle income countries (LMIC). LMICs still carry the highest burden of disease globally and have a high prevalence of many illnesses that pose global threats (e.g. infectious diseases). This has motivated a number of national and international funders to support global health research. The redirection of funds towards global health has resulted in increased interest among HIC researchers in working on diseases such as malaria, tuberculosis, HIV–AIDS and conditions such as malnutrition, and also a new impetus in forming partnerships with colleagues from LMICs.

Global health research is seen as a natural field for collaborative work for two reasons. First, by definition, the problems that global health research is trying to answer are complex, multifaceted and transcend borders and boundaries; tackling such problems requires collaborations between disciplines, countries and institutions. Second, most of the issues global health is concerned with affect less affluent parts of the world. Building health research capacity in these countries, and strengthening their public health systems, is seen as the most effective and sustainable way to ensure the successful progress and implementation of global health research, and to meet global health priorities. The importance of trust and the role of institutions in establishing and promoting trust relationships are often noted in discussions regarding global health research collaborations. Trust is often presented as a foundational element of research participation,Footnote 2 data sharingFootnote 3 and sharing of samples and other resources.Footnote 4

Here, I give an account of what it means for an institution to be trusted and be trustworthy in the context of global health research. I employ the example of data sharing to illustrate the importance and value of trustworthiness as an institutional moral characteristic. I use the term ‘institution’ to refer to groups or collectives that actively undertake research, such as universities and research centres. I conclude that trust is important in global health research collaboration because of the power imbalance between partners that often characterises such collaborations. In order to promote trust, institutions need to focus on being trustworthy by developing a behaviour that corresponds to the aims, principles and values they profess to uphold, and by demonstrating that they have incorporated into their functions, rules and regulations the particular needs of their partners and collaborators.

8.2 What Is a Collaboration?

We use the term ‘collaboration’ in our everyday language to signify many different types of partnerships. Yet, not all ways of working together are collaborations. The term denotes a particular type of partnership where two or more partners come together to achieve a common aim or goal.Footnote 5 Collaborations are non-hierarchical structures, based on the sharing of decision-making and responsibility that rely more on capacity and expertise, rather than on functions or titles.Footnote 6 Consider, for example, a collaboration between a statistics unit and an epidemiology unit working together on a population health project investigating lung cancer. The two groups are committed to the aim of the project and share equal responsibility for its successful completion. They bring different expertise into the project, participate equally in decisions regarding its running and direction and share ownership for its outputs (e.g. authorship on academic publications). Collaborations are characterised by transparency, openness in communication, synergy and honest appreciation of each other’s positions. Transparency facilitates a collective awareness of the project, its structure, strengths and weaknesses, and promotes collective ownership. Open communication allows for the free flow of information and exchange of ideas, but also for the expression of concerns. The easier it is for people to talk to each other and share their thoughts and viewpoints, the easier it is for a project to stay on track and reach its goals. Understanding each other’s positions and particular circumstances is also important, as it helps with setting expectations at the right level, anticipating problems and foreseeing areas where conflict may arise. Finally, synergy, which describes the drive and desire to achieve the common goal and recognition of the partners’ interdependence in fulfilling it, is what drives such partnerships.Footnote 7

Other types of partnerships or co-working include cooperation – which brings partners together who do not share the same goal, but who need each other’s skills and expertise to reach their individual aims – and hiring or commissioning someone to do a specific job. For example, someone can be brought into a project to complete a very specific task, such as to conduct a systematic literature review, collect samples or develop informed consent forms for a clinical trial. Once the task is completed, the person’s involvement in the project is ended. None of these types of partnerships can be described as collaborations as they lack the fundamental characteristics of non-hierarchical and synergistic co-labouring.

8.3 Trust and Trustworthiness

Alongside synergy and horizontal organisation, trust is regularly cited as a fundamental characteristic of collaborations.Footnote 8 D’Amour notes that ‘the term collaboration conveys the idea of sharing … in a spirit of harmony and trust’.Footnote 9 One empirical study that investigated what underpins successful collaborations in global health research from the perspective of scientists and other research actors, identified trust between partners as one of the major contributing factors.Footnote 10 But why is trust so crucial for collaborations? Trust is yet another term that is often used in our everyday language but not always to describe the same thing. A short analysis would help to better define this term and see how it applies to the context of global health research.

Trust is an attitude towards a person whom we hope, and have good reasons to believe, will behave in a way that confirms our trust. This attitude can take different forms. People can trust others wholeheartedly and perfectly (A trusts B), for example their mother or spouse. But most commonly, trust is perceived as a three-part relationship (A trusts B to x). There are three main attributes of a trust relationship: vulnerability, assumption of good will from the trustee towards the trustor and voluntariness.Footnote 11 Vulnerability stems from the fact that when trusting, the trustor becomes vulnerable to the trustee as they acknowledge and accept that the trustee can decisively affect the outcome of the entrusted action.Footnote 12 This is what justifies feelings of gratitude or of betrayal when trust is confirmed or broken.Footnote 13 Vulnerability is not, however, a personal characteristic of the trustor. Rather, it is a relational property that emerges from the act of trusting. Consider the following example: a researcher shares some potentially significant pre-publication findings with a colleague who also works in a similar area. She has previously worked with this colleague and trusts him. In her correspondence she stresses the importance of these findings and asks the colleague to keep them confidential. If the colleague confirms her trust, and keeps the findings confidential, she will feel her trust is confirmed; if, however, the colleague ignores her trust and publishes the findings or shares them with others (e.g. at a conference), she will justifiably feel betrayed. The feeling of betrayal is predicated on the fact that she has no assurances, other than her trust, to protect her from the colleague’s decision and behaviour, and this is what makes her vulnerable towards her trustor. Seeking assurances, by trying to constrain someone’s behaviours as a way of limiting one’s vulnerability would indicate that the trustor mistrusts, or lacks trust for that person. This is why trusting requires some level of optimism about the trustee or a normative attitude that the trustee ought to do what the trustor wills them to do.Footnote 14

The second characteristic of trust is the belief that the trustee has good will towards the trustor.Footnote 15 It is this belief that counterbalances vulnerability and provides a reasonable justification for trusting someone. To return to the previous example, the researcher reveals the pre-publication findings to her colleague because she has good reasons to believe that he has good will towards her and will not intentionally harm or hurt her. If she did not have good reasons to believe this, then choosing to reveal her findings and make herself vulnerable towards him, all things being equal, would be unjustified. Some challenge the importance of good will in trust, by suggesting that trust may be warranted when we believe that those we trust (trustees) will conform to social constraints and norms, or that they will act in the ways we expect out of self-interest.Footnote 16 Yet, while social constrains and self-interest could increase people’s reliability, it is questionable whether such motives can underpin trust. A belief in the good will of the trustee signifies that the trustor has good reason to assume that the trustee cares about her and/or about the things about which she also cares. Although this could be problematic in situations where one does not have insight into the ‘psychology of the one-trusted’,Footnote 17 one could still justify trust on the belief in the other’s good will by adopting a wide notion of good will, which includes commitment to benevolence and conscientious moral attitude.Footnote 18

The third characteristic is that trust is voluntary, insofar as it cannot be forced or demanded. As Baier notes: ‘“Trust me!” is for most of us an invitation which we cannot accept at will – either we do already trust the one who says it, in which case it serves at best as reassurance, or it is properly responded to with, “Why should and how can I, until I have cause to?”’Footnote 19 Trust takes time to establish, and requires an expectation that people will behave not only in the way we assume they will, but rather in the way we assume they should.Footnote 20 A consistent demonstration of good will, as well as capacity to perform the entrusted action, can provide a good reason for trust. And those who want to be trusted can help generate such relationships by fostering and increasing their trustworthiness.

Trustworthiness is a moral characteristic of the trustee and signifies that they have an attitude of good will towards the trustor by being responsive to the trustor’s dependency upon them.Footnote 21 The motivation for behaving trustworthily also matters. Trustworthiness signifies something more than just the mere observation of rules and regulations out of self-interest or duty. It is not just a tactic to avoid punishment or penalties, or to fulfil one’s sense of duty. Potter describes trustworthiness as a virtue. ‘In evaluating someone’s trustworthiness’, she argues ‘we need to know that she can be counted on, as a matter of the sort of person she is, to take care of those things with which we are considering entrusting her’ (emphasis added).Footnote 22 However, it is important to note that expectation for one to behave in a certain manner does not compel the trustee to behave in the expected way. The fact that one is being counted on forms an important consideration to be taken into account but does not force one to act in a certain way – otherwise one would be forced to act in a ‘trustworthy’ way even when the trust placed on one is unjustified or misguided.

So far, I have argued that trust is a relational mode predicated on a reasonable belief in the trustee’s skill to perform the entrusted action and also good will towards the trustor. Trust cannot be forced or demanded, and by trusting, one makes oneself vulnerable toward the person they choose to trust. Trustworthiness is a moral characteristic that indicates that someone can be counted on. It is not necessary that a trustworthy person is automatically trusted, but trustworthy behaviour can illicit trust. In the context of these definitions we can explore this chapter’s main questions: what is the role of trust in global health research collaborations and can institutions be trusted? If trust is commonly perceived as a characteristic of interpersonal relationships and trustworthiness as a personal quality or virtue, is it possible to talk meaningfully about trusting institutions, or to ascribe moral characteristics such as trustworthiness to collectives?

8.4 Trust in Global Health Research

In 2013, the Council on Health Research for Development (COHRED) published a report on fair collaborations in global health.Footnote 23 It noted that relying on HIC collaborators’ good will has not been sufficient to ensure fair and just collaborations between partners. What was needed instead, the report recommended, was to build LMIC institutions’ capacity in contract negotiations. The implication seems to be here, that instead of just trusting people to behave fairly and justly and thus opening oneself up to having their trust betrayed, one needs to ensure that people will behave this way. This could be achieved by putting in place contracts that direct and set the parameters of right behaviour. One way of understanding this contractual relationship is as relationship of reliance. Relationships of reliance are based on proven capacity and clear systems of accountability. In such relationships, the expectation is that the partners will act based on self-interest. Collaborators can ensure successful partnerships by aligning their interests and by putting in place rules to secure against defection. What makes relationships of reliance preferable to relationships of trust is that the former do not require an assumption of good will, nor do they require the trustor to become vulnerable to the trustee.Footnote 24

One important condition, however, must apply for relationships of reliance to work. Reliance requires power parity between partners.Footnote 25 This is because in relationships that operate on self-interest, it is far easier for the stronger partners to shift the balance to their favour. This is particularly relevant for global health research collaborations, which often bring together institutions from HICs and LMICs. Giving LMIC researchers and institutions the tools to defend and promote their own interests is one way of promoting reliable – rather than trusting – partnerships and addressing relationships of dependency, and COHRED’s efforts are a valuable step towards this. However, there are a number of reasons why building trust relationships and promoting trustworthiness remains important in this context. First, in situations where power parity between partners is lacking, trust can be an essential foundation on which to build a good and fair collaboration. For example, attitudes of good will – a crucial feature of trust – can counterbalance self-interested motivations. Second, trust could facilitate good collaborative partnerships, by creating a safe environment in which partners can focus on achieving the common goal rather than on protecting their own interests. Finally, it is common sense that everyone, given the option, would prefer to work with partners they trust and not only with those they can reliably predict their behaviour.

If we accept that trust remains relevant in global health research, what we need to consider next is how it could be promoted. One of the reasons that could justify and encourage a trust relationship is trustworthiness. Although trustworthiness cannot always and de facto guarantee trust, moral agents who want to be trusted by their partners and collaborators could do worse than to try to cultivate and demonstrate their trustworthiness. However, while trustworthiness can be attributed to individual persons, collaborations in global health research however, are not just between individuals, but also between institutions. It is important, therefore, to examine whether it is reasonable to talk about ‘trustworthy’ institutions.

8.5 Trustworthy Institutions

Prior to ascertaining whether institutions (e.g. universities, research centres) can be trustworthy, we must establish whether it is reasonable to talk about groups and collectives possessing such moral characteristics as trustworthiness.Footnote 26 In other words, can institutions involved in global health research collaborations be moral agents? There are two main reasons, which, I believe, give support to the view that collectives are entities that could be treated as moral agents: first, such a position chimes with the way we think about the role of collectives in public life and also the way we treat them in practical terms. For example, we expect universities to adhere to ethical principles when conducting research and we hold them responsible when they fail to do so.Footnote 27 In law, collectives are treated as bearers of rights and responsibilities and can be penalised for wrongdoing and for failing to meet their duties and obligations. Second, the view that institutions are moral agents reflects a growing realisation that many issues require the action of collectives in order to be resolved. Actions such as conducting large-scale research aimed at halting pandemics or reversing climate change are unavailable to individuals but possible to groups and institutions. If we accept that these actions reflect duties that ought to be met, then these duties will have to be ascribed to actors that can meet them.Footnote 28

Being trustworthy means that a given individual (or institution) acts not only as they are expected to, but in a way that demonstrates that they have taken into account the fact that someone is counting on them.Footnote 29 Trustworthiness is a characteristic or moral attitude that is revealed through one’s actions and also in one’s ‘values, commitments and loyalties’.Footnote 30 When it comes to institutions, their trustworthy character is revealed in their professed goals and aims, at their institutional structures, internal rules and regulations as indicators for their moral motivations,Footnote 31 and in their reputation and track record as indicator for their skill and commitment to right action.Footnote 32 Researchers and groups in global health who are looking for collaborations would perceive institutions that declare to care about things they also care as more trustworthy, rather than institutions that do not profess such interests. An institution’s track record and proven capacity in their ability to reach these shared goals would add to its trustworthiness. Importantly, being trustworthy is not about following rules but acquiring a disposition of trustworthiness. Behaving in a certain way only for fear of penalty demonstrates a self-interested orientation, rather than concern for others or about what others value. Therefore, institutions would need to demonstrate that their commitment to trustworthy behaviour is principled and corresponds with their aims and purpose, rather than motivated by a desire to avoid sanctions and penalties, including loss of future collaborations. For institutions participating in global health research, this will mean demonstrating that they have incorporated into their structures, rules and regulations central aims of global health such as addressing health inequalities, improving health through rigorous research and promoting research capacity in countries that lack it. Using the example of data sharing and open access may help to illustrate this point.

8.6 Trustworthiness in Data Sharing Collaborations

Data sharing is often presented as foundational to global health research.Footnote 33 Health and health-related data (e.g. genomic, phenotypic or clinical data) are an inexhaustible resource that could be used repeatedly to address multiple research questions, provide answers to a plethora of global health issues and thereby help reduce the global burden of disease. For example, data sharing between countries and institutions is essential in the attempt to understand and respond to epidemics and pandemics, as the cases of the H5N1 avian flu in 2007 and the outbreaks of Ebola in 2014 and ZIKA in 2015 have demonstrated.Footnote 34 Recognition that health data offer valuable resources with multiple applications has led to a position where data sharing is seen as both a scientific and moral imperative in biomedical research,Footnote 35 while failure to share has been variously described as being unscientific, contrary to research integrity, wasteful and unjust.Footnote 36 In recent years, a lot of effort has been put into facilitating and promoting the open sharing of data.Footnote 37 Progress in data sharing tools, methods and policies is seen as the ‘innovation with the farthest-reaching impacts among the global medical community’.Footnote 38 This has led to the wide endorsement of data sharing and open access policies by many international research bodies, funding organisations, academic publishers and policymakers.Footnote 39 It seems that adopting and promoting open access of data and the implementation of a robust open data sharing policy would signal an institution’s moral character as being one dedicated to open, transparent and robust science, and to maximising research benefits for all. But would this mean that such an institution is trustworthy?

In the context of global health research, data sharing can be ethically and practically complex. Despite its potential benefits, there are significant ethical and societal barriers to the wide implementation of open data sharing policies and practices.Footnote 40 Leaving aside confidentiality and consent, a significant issue in global health stems from the uneven ability of institutions in different parts of the world to utilise data.Footnote 41 As Serwadda and others note, advancements in technology that make data collection, storage and sharing easier, and the shift in the social and scientific norms to support openness and sharing, is undermining equitable collaborations between HIC and LMIC.Footnote 42 This has led to ‘a landscape, often characterised by limited capacity and deep mistrust, for acceptance and implementation of open data policies’.Footnote 43 Furthermore, despite claims that open data sharing could lead to advancements that would be beneficial to all, including to the communities of origin, this is not always the case. Often, the new therapeutics developed are either too expensive for LMICs to purchase, or these countries lack adequate public health structures to make use of any new actionable knowledge. For example, in 2007, Indonesia refused to share its H5N1 avian flu data and samples unless their country was guaranteed affordable access to vaccines – and researchers from other LMIC seem to think that this was a fair response to an unfair situation.Footnote 44 Although data sharing could accelerate the production of new and useful knowledge, it can also contribute to the perpetuation of global injustices and undercut the stated goals of global health research.

Adopting an open access policy to data sharing could make an institution reliable, in the sense that its partners would know what to expect and would be able to predict its behaviour and actions with a certain degree of accuracy. Would recognising this institution’s reliability in this domain, however, amount to it been perceived as being trustworthy by its partners?Footnote 45 Although adopting certain (moral) rules and acting consistently is an indication of a certain (moral) character, trustworthiness requires more than that; it requires an attitude of good will and responsiveness to the other’s needs. Hence, a trustworthy institution in global health research would not blankly endorse an open data sharing policy, but would retain a flexible stance, leaving room for adapting its policies with the specificities of its collaborators in mind. Such adaptations might include time-specific embargoes on data release to give partners a fair head start on using their data, restrictions of use to protect the stated research aims of such partners and embedding contextually meaningful capacity building activities into their collaboration.Footnote 46 Although an open data sharing policy could ensure that maximum value and utility is extracted from data, allowing for the negotiation of a managed access policy would signal an institution with good will towards its collaborators and ‘a direct responsiveness to the fact that the other is counting on [it]’.Footnote 47

8.7 Conclusion

Trust is and will remain important in global health research collaborations, at least until the power imbalance between LMIC- and HIC-based researchers and their institutions is addressed. Institutions committed to advancing the aims of global health, including helping build research capacity in LMIC, should aim to promote fair and trusting collaborations. The best way of achieving this is by cultivating and demonstrating their trustworthiness as a way of eliciting justified trust. Being trustworthy requires more than just the observation of rules or the incorporation of moral principles in policies and structures. Although such moral attitudes would likely increase an institution’s reliability, trustworthiness also demands attention to the relational aspect of trust. Trustworthiness requires that the institution is concerned with its partners and what its partners value, acknowledges its partners’ vulnerability and demonstrates ‘a direct responsiveness to the fact that the other is counting on [it]’.Footnote 48 The practice of data sharing provides a useful case to examine what being a trustworthy institution might look like in practice. Moving forward, more research will be required to fully examine the relationship between rules, regulations and policies and the moral character of institutions in global health.

1 R. Beaglehole and R. Bonita, ‘What Is Global Health?’, (2010) Global Health Action, 3(1), 5142.

2 M. Guillemin et al., ‘Do Research Participants Trust Researchers or Their Institutions?’, (2018) JEEHRE, 13(3), 285294.

3 R. Milne et al., ‘Trust in Genomic Data Sharing among Members of the General Public in the UK, USA, Canada and Australia’, (2019) Human Genetics, 138(11–12), 12371246.

4 P. Tindana et al., ‘Ethical Issues in the Export, Storage, and Reuse of Human Biological Samples in Biomedical Research: Perspectives of Key Stakeholders in Ghana and Kenya’, (2014) BMC Medical Ethics, 15(76).

5 E. A. Henneman et al., ‘Collaboration: A Concept Analysis’, (1995) Journal of Advanced Nursing, 21(1), 103109; D. D’Amour et al., ‘The Conceptual Basis for Interprofessional Collaboration: Core Concepts and Theoretical Frameworks’, (2005) Journal of Interprofessional Care, 19(sup 1), 116131.

6 Henneman et al., ‘Collaboration: A Concept Analysis’.

7 D’Amour et al., ‘The Conceptual Basis for Interprofessional Collaboration’.

8 A. W. Pike et al., ‘A New Architecture for Quality Assurance: Nurse-Physician Collaboration’, (1993) Journal of Nursing Care Quality, 7(3), 18; D’Amour et al., ‘The Conceptual Basis for Interprofessional Collaboration’, 116; M. Parker and P. Kingori, ‘Good and Bad Research Collaborations: Researchers’ Views on Science and Ethics in Global Health Research’, (2016) PLoS ONE 11(10).

9 D’Amour et al., ‘The Conceptual Basis for Interprofessional Collaboration’.

10 Parker and Kingori, ‘Good and Bad Research Collaborations’.

11 A. Kerasidou, ‘Trust Me, I’m a Researcher!: The Role of Trust in Biomedical Research’, (2017) Med Health Care Philos, 20(1), 4350.

12 R. Holton, ‘Deciding to Trust, Coming to Believe’, (1994) Australasian Journal of Philosophy, 72(1), 6376; S. Wright, ‘Trust and Trustworthiness’, (2010) Philosophia, 38(3), 615627.

13 A. Baier, ‘Trust and Antitrust’, (1986) Ethics, 96(2), 231260.

14 V. McGeer, ‘Trust, Hope and Empowerment’, (2008) Australasian Journal of Philosophy, 86(2), 237254.

15 Baier, ‘Trust and Antitrust’.

16 R. Hardin, Trust and Trustworthiness (Russell Sage Foundation, 2002); O. O’Neill, A Question of Trust (Cambridge: Cambridge University Press, 2002).

17 S. Blackburn, Ruling Passion: A Theory of Practical Reasoning (Oxford: Oxford University Press, 1998).

18 K. Jones, ‘Trust as an Affective Attitude’, (1996) Ethics, 107(1), 425.

19 Baier, ‘Trust and Antitrust’, 244.

20 M. Urban Walker, Moral Repair: Reconstructing Moral Relations after Wrongdoing (Cambridge University Press, 2006).

21 K. Jones, ‘Trustworthiness’, (2012) Ethics, 123(1), 6185.

22 N. Nyquist Potter, How Can I Be Trusted?: A Virtue Theory of Trustworthiness (Rowman & Littlefield, 2002), p. 7.

23 COHRED, ‘Where There Is No Lawyer: Guidance for Fairer Contract Negotiation in Collaborative Research Partnerships’, (COHRED, 2013).

24 This is not to say that in relationships of reliance things cannot go wrong. One can fail to accurately predict the other person’s action, which can result in harm or loss.

25 A. Kerasidou, ‘The Role of Trust in Global Health Research Collaborations’, (2019) Bioethics, 33(4), 495501.

26 The types of groups or collectives I have in mind are those who submit to a common goal, can act as one body and present organisational structures and rules, e.g. universities, research bodies and international agencies, and not those based merely on the sharing of a common characteristic (e.g. a disease).

27 J. Couzin-Frankel, ‘A Lonely Crusade’, (2014) Science, 344(6186), 793797; C. Elliot, ‘Guinea-pigging’, The New Yorker (31 December 2007).

28 For a comprehensive defence of institutions as moral agents see: C. List and P. Pettit, Group Agency: The Possibility, Design, and Status of Corporate Agents (Oxford University Press, 2011).

29 Jones, ‘Trustworthiness*’; Wright, ‘Trust and Trustworthiness’.

30 Potter, How Can I Be Trusted?, p. 7.

31 P. A. French, ‘Types of Collectivities and Blame’, (1975) The Personalist, 56(2), 6585; R. Bachmann and A. Inkpen, ‘Understanding Institutional-Based Trust Building Processes in Inter-Organizational Relationships’, (2011) Organizaition Studies, 32(2), 281301.

32 Hardin, Trust and Trustworthiness.

33 E. Pisani et al., ‘Beyond Open Data: Realising the Health Benefits of Sharing Data’, (2016) BMJ, 355.

34 K. Littler et al., ‘Progress in Promoting Data Sharing in Public Health Emergencies’, (2017) Bulletin World Health Organisation, 95(4), 243243A.

35 H. Bauchner et al., ‘Data Sharing: An Ethical and Scientific Imperative’, (2016) JAMA, 315(12), 12381240.

36 M. Munafo et al., ‘Open Science Prevents Mindless Science’, (2018) BMJ, 363; P. Langat et al., ‘Is There a Duty to Share? Ethics of Sharing Research Data in the Context of Public Health Emergencies’, (2011) Public Health Ethics, 4(1), 411; P. C. Gotzsche, ‘Why We Need Easy Access to All Data from All Clinical Trials and How to Accomplish It’, (2011) Trials, 12(1), 249.

37 M. Wilkinson et al., ‘The FAIR Guiding Principles for Scientific Data Management and Stewardship’, (2016) Scientific Data, 3.

38 ‘Is Data Sharing a Path to Global Health?’, (WIRED, 5 February 2018), www.datamakespossible.westerndigital.com/data-sharing-panacea-global-health.

39 European Medicines Agency, ‘European Medicines Agency Policy on Publication of Clinical Data for Medicinal Products for Human Use’, (European Medicines Agency, 2014); F. Godlee and T. Groves, ‘The New BMJ Policy on Sharing Data from Drug and Device Trials’, (2012) BMJ, 345(7884), 10; The Wellcome Trust, Policy on Data Management and Sharing (London, England: The Wellcome Trust, 2009); National Institutes of Health, Final NIH Statement on Sharing Research Data (Bethesda: National Institutes of Health, 2003).

40 S. Bull and M. Parker, ‘Sharing Public Health Research Data: Towards the Development of Ethical Data-Sharing Practice in Low- and Middle-Income Settings’, (2015) Journal of Empirical Research on Human Research Ethics, 10(3), 217224.

41 I. Jao et al., ‘Research Stakeholders’ Views on Benefits and Challenges for Public Health Research Data Sharing in Kenya: The Importance of Trust and Social Relations’, (2015) PLoS ONE, 10(9).

42 D. Serwadda et al., ‘Open Data Sharing and the Global South – Who Benefits?’, (2018) Science, 359(6376), 642643.

43 Footnote Ibid., 642.

44 K. T. Emerson and M. C. Murphy, ‘A Company I Can Trust? Organizational Lay Theories Moderate Stereotype Threat for Women’, (2015) Personality and Social Psychology Bulletin, 41(2), 295307.

45 Hawley argues that drawing a distinction between reliability and trustworthiness of institutions is not useful because ‘we can require of our institutions that they are reliable in the respects that matter to us’ see: K. J. Hawley, ‘Trustworthy Groups and Organisations’ in P. Faulkner and T. Simpson (eds), The Philosophy of Trust (Oxford University Press, (2017), p. 20. In her case, Hawley has in mind public institutions with whom ‘we’ as citizens have a special kind of relationship, meaning that these institutions have a duty to be responsive to our needs and particular circumstances. Whether research institutions have the same duty towards researchers in other countries or to the global research community is not immediately clear. An argument will have to be made to demonstrate that research institutions fall within this special category. However, this investigation falls outside the remit of this chapter.

46 M. Parker et al., ‘Ethical Data Release in Genome-Wide Association Studies in Developing Countries’, (2009) PLOS Medicine, 6(11), e1000143.

47 Jones, ‘Trustworthiness’, 62.

9 Vulnerabilities and Power The Political Side of Health Research

Iain Brassington
9.1 Introduction

In this chapter, I will argue that there is a political dimension to research, and that accounts of health research regulation that ignore political relations between stakeholders are therefore incomplete. The concept of vulnerability – particularly vulnerability to exploitation – provides the grit around which the claims are built. This is because vulnerability is an inescapable part of human life; because research participation may magnify vulnerability, even while health research itself promises to mitigate certain vulnerabilities (most directly vulnerability to illness, but indirectly vulnerability to economic hardships that may follow therefrom); and because vulnerability is manifested in, exacerbated by, or mitigated through, inherently political relationships with others, the groups and communities of which we are a part, and in the context of which all research takes place. I shall not be making any normative claims about research regulation here, save for the suggestion that decision-makers ought to take account of latent political aspects in their deliberations. For the most part, I shall simply attempt to sketch out some of those political aspects.

9.2 Setting the Scene

Certain key terms ought to be defined at the offset.

  • By vulnerability, I understand a susceptibility to harm or wrong arising from a physical or social contingency above and beyond that found in a recognisably decent human life.

  • By the vulnerable, I understand those who are at an elevated risk of harm or wrong arising from such contingencies.

  • By power, I understand the capacity to act, or to resist being acted upon.Footnote 1

  • By power relations, I understand the interplay of agents’ relative power.

  • By the political, I understand the domain in which power relations are manifested.Footnote 2

  • By exploitation, I understand the use of some thing or person to serve one’s ends.

Some elaboration is in order. At its most basic, vulnerability is any susceptibility to harms or wrongs; but such an understanding is generally unhelpful, because (per Rogers) ‘it obscures rather than enables the identification of the context-specific needs of particular groups’Footnote 3 – plausibly, one may read this as ‘individuals and groups’ – and because (per Wrigley and Dawson) ‘if everyone is vulnerable, then no one is’.Footnote 4 A more nuanced and useful conceptualisation of vulnerability would relate it to a susceptibility to harms or wrongs greater than is normally found in a recognisably decent human life. Correspondingly, in stating that ‘[s]ome groups and individuals are particularly vulnerable and may have an increased likelihood of being wronged or of incurring additional harm’,Footnote 5 the Declaration of Helsinki is plainly referring to the ways in which persons may be further vulnerable above a universal baseline. That said, I will indicate below that, and how, the more basic understanding is not without utility.

Wendy Rogers provides an account of some of the difficulties of conceptualising vulnerability in this volume (see Chapter 1) and taxonomies of different kinds of vulnerability have been offered elsewhere.Footnote 6 I will neither rehearse nor assess those accounts here, save to highlight the idea of pathogenic vulnerability, the sources of which include morally dysfunctional or abusive interpersonal and social relationships, and sociopolitical oppression or injustice,Footnote 7 and which thereby illustrates plainly one of the political aspects of vulnerability. However, we conceptualise or parse it, though, vulnerability invites politically-informed responses. Wrigley and Dawson assert that vulnerability ‘implies an ethical duty to safeguard [the vulnerable person’s or group’s] well-being because the person or group is unable to do so adequately themselves’.Footnote 8 For his part, ten Have claims that ‘[w]hat makes vulnerability problematic is the possibility of abuse and exploitation’; for him, vulnerability need not be eliminated, so long as it can be ‘compensated, diminished, and transformed’.Footnote 9 Putative duties to safeguard the vulnerable, or to militate against abuse, could be discharged by individuals in some cases, and by the state in others. Venturing claims one way or the other implies a political position, because it speaks to decisions about how and by whom power may be exerted over, and on behalf of, another.

Exploitation, as defined above, implies the exercise of power over another: the exploiter is in this context more powerful than the exploited. As a manifestation of the power relations between agents, it is therefore a political phenomenon; and if exploitation violates a right of the exploited, it may be wrongful. Insofar as that vulnerability is susceptibility to certain harms or wrongs, it includes susceptibility to wrongful exploitation; and since exploitation is a political phenomenon, vulnerability to wrongful exploitation will therefore also be political. The relevance of this will become clear as we proceed.

9.3 Individuals’ Vulnerability in Research

It is in the nature of research that outcomes are uncertain; this means that healthy volunteers in medical trials might be susceptible to unexpected harms. If research concerns a treatment’s effectiveness, it will often be necessary to recruit patients into a trial; but such a cohort will, by definition, be of people with medical needs, some of which may be otherwise unmet. The prospect of a health benefit, especially if there are few other extant or affordable treatment options, may mean that this somatic vulnerability is accompanied by vulnerability to exploitation: the patient may allow herself to be enrolled into a trial into which she would not have allowed herself to be enrolled otherwise. Moreover, participants’ ability to control their exposure to risk may be limited: even without perfect knowledge, researchers are likely to have greater insight into the risks, and are able to control information in a way that participants, who rely on researchers for information, are not. This is a form of epistemic power held by researchers. Indeed, researchers may be perceived as having control over information even when they do not; and this perception may give them a ‘credibility excess’Footnote 10 that is itself a source of epistemic power, insofar as that it can influence the decisions that participants make, perhaps to the extent of inhibiting their making them at all. How researchers and research managers handle the power disparity between them and participants is a political problem writ small.

Even putting the political aspect of this relationship to one side, it would be reasonable to expect that researchers address questions about the broader political context of their programme and protocol. After all, if someone enrols as a research subject because it is the only way they can access treatment, or because it is the only way they can afford it or other necessities, this tells us something about the characteristics of the state in which they live – notably, how just it is. Correspondingly, acknowledged political injustice may alter the likelihood that a person would act as a participant, how they behave as a participant, and whether their participation is voluntary. The political questions are clear. Does the political environment in which a person lives provide adequate protection against exploitation? What should be done if it does not?

At times, it may be that political circumstances make ethically acceptable research impossible. In extremis, this might be because certain people are forced to participate by an overweening government: prisoners, say, may be particularly vulnerable to this kind of pressure in some regimes. But participatory voluntariness may also be eroded by the lure of medical treatment that participants would not otherwise have, perhaps because it is not normally within the state’s abilities to provide it. On the other hand, refusing to carry out research because the context in which it is proposed creates vulnerabilities or militates against their mitigation, may simply mean that would-be participants are deprived of benefits that they might have had – Ganguli-Mitra and Hunt touch on this problem when they consider the use of experimental interventions during the 2013–2016 Ebola outbreak in Chapter 32 of this volume – and that scientific opportunities are lost as well. A further problem is that some illnesses are illnesses of poverty; it may not be possible to carry out research on those illnesses without recruiting people who are socioeconomically vulnerable, because less socioeconomically vulnerable people would be less susceptible to the illness in question. (That said, one may wonder whether prioritising poverty alleviation would dilute any imperative to research the illnesses that it causes.)Footnote 11

There is unlikely to be an easy way to determine whether a given political situation is conducive to ethically sound research. Possibly the best that could be said is that good research practice may require an awareness of, and sensitivity to, the prevailing political dispensation as it applies to certain individuals.

9.4 Individuals and Groups

How well do these considerations translate to groups?

For the moment, I shall assume that groups are aggregates of individuals, and that groups’ vulnerabilities are aggregates of individuals’ vulnerabilities. Admittedly, this is a simplification: something might be good or bad for the group as a whole without being good or bad for each and every member thereof; a group’s integrity, say, may be vulnerable in a way irreducible to its members’ vulnerabilities. But, for the time being, and given space constraints, I think that the simplification is not gross.

Granted that groups are aggregates of individuals, discriminatory or otherwise unjust political arrangements may exacerbate or even generate vulnerabilities in those individuals qua group-members. Most obviously, individuals may be at increased susceptibility to harm or wrong if they lack legal or political representation, education, and so on, because of their membership of a particular group. This kind of powerlessness to resist injustice is a political product generating a pathogenic vulnerability – and a state in which injustice is not addressed is itself unjust, or vicious in some other way.Footnote 12 Further, the legacy of historic injustices may linger even if the unjust policies were ditched long ago.

But even having been identified as a member of a group at all may generate vulnerabilities in individuals, irrespective of the political circumstances. To give a simple example, a public health research programme may require population-level data-gathering. Any given individual may feature in such research by dint of having been identified as belonging to a target group – but they might not be aware that the research is taking place. Already, then, we will be confronted with the possible wrong of individuals not being treated as ends in themselves. This wrong has a political dimension in that the power of research subjects is a consideration: one is powerless to withdraw from a study in which one does not know that one is a subject.Footnote 13 We might say that researchers who think their work is worth the effort ought to approach those persons who may be captured by it – something that is in principle in their power to do – to give them a chance to opt out, and that research without this opt-out would be impermissible. This would restore to individuals some power. Yet giving people the chance to opt out of a large cohort study would be very difficult in practice, and – perhaps more importantly – would risk undermining the study’s scientific integrity, which is itself a criterion of its moral permissibility. There is no clear solution to this sort of problem, though awareness of it is an important precursor to formulating best practice.

Even if that problem is solved, others present themselves. A group might be characterised by an elevated occurrence of certain characteristics. Imagine that members of group A typically have an unusually high susceptibility to a given disease, and that members of B typically have an elevated inherited resistance to it. Facts like this would generate legitimate questions that would be worth investigating: by learning about how it is that some human bodies are more resilient or susceptible to an illness than others, we could glean insight that would help us prevent it or treat it when it occurs. Yet both groups would also be vulnerable to injustice and exploitation. Thinking about the distribution of the eventual benefits of the research will help show how.

Clearly, medical research contributes to the development of new treatments, at least some of which provide profits for the manufacturers; and the profit motive may drive socially-desirable research. However, the line between just profit and profiteering, which is by definition unjust, is crossed if the benefits of the research are not fairly distributed between researchers – and their backers – and participants. Thus, for example, if any drugs arising from research dependent on the participation of members of A are profitmaking, and those participants derive no benefit – perhaps because socioeconomic deprivation makes the drugs unaffordable – that would be a paradigmatic example of injustice. Even if A is a reasonably well-represented and educated group, it or its members might be exploited in other ways, perhaps by being targeted specifically for expensive medical interventions. B would be less vulnerable on these fronts, since its members’ need for any drugs is, by stipulation, reduced. However, again, if members of B received no benefit at all from research into which their contribution was crucial, they might still have been exploited. After all, exploitation does not always imply harm – but to have contributed to something that benefits others is to have been exploited; and if this was without recompense, or at least without the opportunity to waive recompense, it is arguably to have been treated wholly as a means to their end, and therefore to have been wronged.

That groups can be exploited or treated unjustly – such as in the ways illustrated by A and B – is sufficient to show that there is a power differential in play; and because the political domain is that in which power relations are manifested, it is also straightforward to point out that this has a political dimension. As such, a full assessment of the ethics of a given piece of research, and a convincing regulatory policy, would take into account the political situation, both locally and globally.

On the local scale, it would be important to keep in mind questions such as whether the group’s vulnerability to exploitation is exacerbated by things like systemic discrimination or economic disadvantage, which may make it difficult for members of a community to assert moral rights that themselves may not be fully reflected in law. The better protected a group is in law, the better able it and its members will be to avoid or resist exploitation in other contexts.

Globally, if research is carried out on people from low-income countries, and the benefits of that research flow overwhelmingly towards high-income countries, what we see is, in effect, a transfer of benefits from the least-wealthy to the most. In this context, the Swiss NGO Public Eye estimates that

[a]lthough most clinical trials are conducted in the United States and Europe, over the last 20 years there has been a strong tendency towards offshoring to developing and emergent countries. The proportion of testing in emerging markets increased from 10 percent to 40 percent. This continued to increase between 2006 and 2010, while the proportion of clinical trials conducted in Western Europe and the United States fell from 55 percent to 38 percent.Footnote 14

Such a transfer is facilitated and guaranteed by a system of domestic and international laws through the framing of which power becomes visible; and keeping those laws in place, or altering them to reduce the chance of exploitation, is correspondingly a matter of the political will of the powerful. And though individual researchers are powerless to do much about laws that facilitate unjust exploitation derived from research, they are able to do something about the design of individual research programmes, and whether or not they go ahead to begin with.

Yet this is not the most difficult problem in the way of handling group vulnerabilities in health research: that concerns how researchers and regulators should respond when the interests, wishes, and vulnerabilities of different members of a group are in tension. It is this problem to which I turn my attention now.

9.5 Group Membership and Group Vulnerabilities

Return to groups A and B from the example above. Suppose that researchers are particularly interested in a gene that is common in A but not in B; they hypothesise that this gene is relevant to understanding the medical condition they are studying. This presents a problem for consent: because genes are not confined to one member of the group, any individual’s participation in the programme automatically recruits other members as what we might call ‘indirect participants’. It might therefore be argued that every member of the group is vulnerable to having been wronged, even if the ‘direct participant’ – the person, say, whose blood is drawn – has given full consent. How might we take account of this vulnerability in other members of the group?

It is a commonplace that full, informed consent is at least a part of protecting the rights of research participants; from that we can infer that it would be part of mitigating their vulnerability. But obtaining the consent of each member of the group before beginning the research would be wildly impractical for any but the smallest groups in the most confined geographical areas. More, we would have to decide whether assent to participation must be unanimous: whether, that is, the permission of a person who would presumably not be a direct participant in the research should be a requirement to secure the participation of those who would be. Inasmuch as that this is a question about the relationship of individuals to each other, it is political.

Another layer of complication is added if we deny that a group’s vulnerabilities are reducible to those of the aggregate of its members – and it seems as though this may sometimes be the case. Plausibly, there will be situations in which the vulnerabilities of individuals and of groups do not map onto each other particularly closely, if at all: groups can be vulnerable in their own right. For example, the size of a tribe of hunter-gatherers may fall as its members urbanise; we might therefore want to say that the group is increasingly vulnerable even as individual members, thanks to better access to things like health care and education, become less so. But if this is correct, then even addressing every individual’s vulnerability may not address wholly the vulnerabilities of the group in the abstract, and so even unanimous consent may be insufficient to prevent impersonal harms or wrongs. Yet it does not seem plausible to say that a research programme should not go ahead because it is impossible to guarantee that the vulnerabilities of the group as a whole will not be exploited. Partly, this is because it seems to sacrifice the (probably admirable) willingness to participate of identifiable members of the community on the altar of concerns about everyone and no one in particular. And partly it is because, though the vulnerabilities of identifiable other members of the community and of the community itself may be important, they are not likely to be the only relevant moral consideration. After all: everyone who stands to benefit – directly or indirectly, tangibly or intangibly – from the research has an interest in its going ahead. These are political problems: to echo Bernard Crick, ‘conflicts of interest, when public, create political activity’.Footnote 15

Having a representative or representative body that can speak on behalf of the group broadly understood may be suggested as a way forward. For example, Charles Weijer argues that, although some groups and communities ‘do not possess a legitimate political authority empowered to make binding decisions on behalf of members’, which means that ‘it would be both impossible and inappropriate to seek community consent for research participation’, they ‘may nonetheless have representative groups, and researchers ought to engage these groups in a dialogue concerning study design, conduct, and research results’.Footnote 16 Yet we may still wonder how we determine who represents the community and in what way, and what we should do if and when the views of members of the group or community broadly understood diverge from the views of its notional representatives. We should not forget the possibility that would-be research participants may be vulnerable to peer pressure, either to participate or not to, from the group of which they are a part. In this light, it is not obvious what should happen if one member of group A or B from the example above is willing to volunteer as a research participant when those representatives are opposed, or vice versa. Again: since these problems concern how individuals and groups interact, they are plainly political.

Neither should we forget that individuals may be members of several communities or groups simultaneously. As such, referring to membership of a community is likely to mask other problems. Accordingly, when, in the context of genetic research, Jones et al. state that, ‘depending on the research focus’,

a community may include a group sharing a common geographic location, ethnicity, disease, occupation, etc. as well as virtual communities linked regionally, nationally or internationallyFootnote 17

they leave open questions about whether one must specify just one of these, and which – if any – takes priority over the other. At some point, someone would have to stipulate that the ‘kind’ of community in question is this or that; but such stipulations would appear to be always disputable, and likely politicised to boot.

When considering research involving vulnerable groups then, the relative power of the researcher (and the researcher’s backers) and the participant is not the only consideration. Researchers’ power relative to that of the group as a whole would also be important to keep in mind; at the same time, so would the power of the group as a whole in relation to the individual participant. Finally, even if we think that the interests of the community are significant, there is a lingering question of where the boundaries of the community should be drawn: sufficiently cosmopolitan politics may deny that the boundaries of this or that group are significant.Footnote 18 These questions are inescapably political given the understanding of the political as that domain in which power is manifested, but also political in a more everyday sense, because they speak to problems of how individuals relate to the groups and communities of which they are a part, and how we define group or community membership.

9.6 Politics and Protection

I noted earlier in this chapter Wrigley and Dawson’s claim that there is an imperative to mitigate vulnerability. Allowing that there is such an imperative, it speaks to the obligations individuals have to each other, but also to the responsibilities of the community, as expressed through the state. Either way, there is a political dimension to it. More, it is reasonable to suppose that health research is one of the things that might be enlisted as a means of mitigating universally-shared human vulnerabilities, and it is likely that a functioning state of some sort is necessary to facilitate such research. Indeed, the idea that political existence is in one way or another crucial to human flourishing has been a touchstone of western philosophy since Aristotle.Footnote 19

It should also be remembered that, as well as facilitating research, protecting research subjects from harms and wrongs more generally – notably, through regulation – falls within the state’s demesne. It is in this light that we might consider moves such as the reforms to the Mexican General Health Law approved in 2008, which made ‘the sampling of genetic material and its transport outside of Mexico without prior approval […] illegal’.Footnote 20 The Genomic Sovereignty amendment states that Mexican-derived human genome data are the property of Mexico’s government, and prohibits and penalises their collection and use in research without prior government approval.Footnote 21 This may be seen as an attempt by the Mexican state to protect vulnerable groups within it from the depredations of large and wealthy biotech companies. Such moves may be seen as particularly called-for when, for example, the results of genetic research might be patentable. In such circumstances, a national government can shield minority groups that might not be able to resist unjust exploitation on their own, and can work to give them authority over what happens to data derived from their members.

This is not the only way to see things, though. Cooperation with commercial research institutions could provide vulnerable groups – think again of groups A and B above – with a way to capitalise on their own genetic resources, by entering into benefit-sharing agreements that guarantee them a portion of any proceeds. Such cooperation may also provide a way for research attention to be paid to conditions that may be more prevalent in that community than elsewhere. On this basis, legislative moves such as Mexico’s may be seen as an appropriation, however well-meaning, of the rights of some of its people(s) to decide for themselves how to handle data derived from their genes. Alternatively, it may be national governments that are best able to persuade biotech companies to research certain conditions at all; and the state may be able to use its power not to prevent a group exploiting its genetic resources, or to coopt them, but to ensure that the group in question it is able to exploit them effectively, since only national governments have the heft to ensure that the exploitation is not of the objectionable sort.

9.7 Conclusion

Research promises us a way to address human vulnerabilities, but it may exacerbate others in the process. Ensuring informed consent from participants may be a means of mitigating some of these, but not others. Those that it might mitigate often have a political genesis; but the relationship between researcher and participant can only really be understood when its own inherent political dynamic is acknowledged, too. More, the complications of the political aspects of research are magnified when we are dealing with vulnerable groups and communities, and with their members.

It has not been the aim of this chapter to offer any normative suggestions; nevertheless, fully to account for individuals’ vulnerability, and reliably to avoid exacerbating or exploiting it unjustly, researchers should probably take account not just of the familiar ethical norms of health research, such as informed consent, but also of the political context in which such norms are applied.

1 This falls within a tradition that goes back at least as far as Hobbes: ‘The POWER of a Man, (to take it Universally,) is his present means, to obtain some future apparent Good’. T. Hobbes, Leviathan (Cambridge University Press, 1999), p. 62. More recently, Miranda Fricker has defined ‘social power’ as ‘a practically socially situated capacity to control others’ actions’. M. Fricker, Epistemic Injustice (Oxford: Clarendon, 2007), p. 13; I take this to be related.

2 H. Lasswell, Politics: Who Gets What, When, How (New York: McGraw-Hill, 1936), p. 3: ‘The study of politics is the study of influence and the influential’. Combining this with Fricker’s account above, gives us reason to think that social power and politics are inseparable, that we therefore cannot talk about politics without talking about power, and that talking about power will at least often be talking about the political.

3 W. Rogers, ‘Vulnerability and Bioethics’ in C. Mackenzie et al. (eds), Vulnerability: New Essays in Ethics and Feminist Philosophy (Oxford University Press, 2014), p. 69.

4 A. Wrigley and A. Dawson, ‘Vulnerability and Marginalized Populations’ in D. Barrett et al. (eds), Public Health Ethics: Cases Spanning the Globe (Dordrecht: Springer, 2016), p. 204

5 World Medical Association, ‘WMA Declaration of Helsinki – Ethical Principles for Medical Research Involving Human Subjects’, (1964), §19, www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/. Emphasis added.

6 C. Mckenzie et al., ‘Introduction: What Is Vulnerability, and Why does It Matter for Moral Theory?’ in C. Mckenzie et al. (eds), Vulnerability: New Essays in Ethics and Feminist Philosophy (Oxford University Press, 2014), p. 7ff; F. Luna, ‘Elucidating the Concept of Vulnerability: Layers Not Labels’, (2009) International Journal of Feminist Approaches to Bioethics, 2(1), 121139; F. Luna, ‘Identifying and Evaluating Layers of Vulnerability – A Way Forward’, (2019) Developing World Bioethics, 19(2), 8695.

7 W. Rogers et al., ‘Why Bioethics Needs a Concept of Vulnerability’, (2012) International Journal of Feminist Approaches to Bioethics, 5(2), 25.

8 Wrigley and Dawson, ‘Vulnerability and Marginalized Populations’, p. 203

9 Indeed, he goes so far as to entertain the (for my money, implausible) suggestion that ‘Love would be impossible if we [did] not make ourselves vulnerable to another person.’ H. ten Have, Vulnerability: Challenging Bioethics (Abingdon: Routledge, 2016), pp. 112113.

10 Fricker, ‘Epistemic Injustice’, p. 17; I. Kidd and H. Carel, ‘Epistemic Injustice and Illness’, (2017) Journal of Applied Philosophy, 34(2), 172173.

11 I have nodded towards this point elsewhere, though without making it explicitly: see I. Brassington, ‘John Harris’ Argument for a Duty to Research’, (2007), Bioethics, 21(3), 160168, esp. at 165. Again, it is hard to see how there is not a political aspect to such arguments.

12 Here, I follow John Rawls’s opening gambit: ‘Justice is the first virtue of social institutions’. J. Rawls, A Theory of Justice (Revised edition) (Oxford University Press, 1999), p. 3.

13 I use ‘subjects’ rather than ‘participants’ here, since to say that one might participate in research about which one is unaware is oxymoronic.

14 Public Eye, ‘Ethical Violation’, www.publiceye.ch/en/topics/medicines/ethical-violation.

15 B. Crick, In Defence of Politics (London: Bloomsbury Academic, 2013), 10.

16 See, for example, C. Weijer, ‘Community Consent for Genetic Research’, (2006) eLS, 3.

17 D. Jones et al., ‘Beyond Consent: Respect for Community in Genetic Research’, (2014) eLS, 4.

18 I am conflating ‘group’ and ‘community’ here – but they may not be quite the same. We can arrange people or things into groups notwithstanding that they have no sense of community. A community is a kind of group: one that recognises, self-identifies as a community under the auspices of, and endorses the importance of some common feature. I do not think that this distinction makes much difference for the points I am making.

19 Aristotle, The Politics (London: Penguin, 1992).

20 B. Séguin et al., ‘Genomics, Public Health and Developing Countries: The Case of the Mexican National Institute of Genomic Medicine (INMEGEN)’, (2008) Nature Reviews Genetics, 9(S1), S5S9, S6. Slightly modified.

21 R. Benjamin, ‘A Lab of Their Own: Genomic Sovereignty as Postcolonial Science Policy’, (2009) Policy and Society, 28(4), 341355.

Section IB Tools, Processes and Actors Introduction

Edward Dove and Sethi Nayha

This section of the volume explores the tools, processes and actors at play in regulating health research. Regulators rely on a number of tools or regulatory devices to strike a balance between promoting sound research and protecting participants. Some of the paradigmatic examples are (informed) consent and research ethics review of proposed projects; both are explored in this section. Other examples include intellectual property (especially patents), data access governance models, and benefit-sharing mechanisms. Much of the contemporary scholarship on and practice of health research regulation relies on, and criticises, these tools. Relatedly, and arguably, regulation itself is processual; it is about guiding human practices towards desirable endpoints while avoiding undesirable consequences. There has been little discussion of this processual aspect of regulation to date and the specific processes at play in health research. Contributors in this section explore some of the most crucial processes, including risk–benefit analysis, research ethics review and data access governance mechanisms. Further, as becomes apparent, processes can themselves become tools or mechanisms for regulation. Finally, one cannot robustly explore the contours of health research regulation without a consideration of the roles regulatory actors play. Here, several contributors look at the institutional dimension of regulatory authorities and the crucial role experts and science advisory bodies play in constructing health research regulation.

Despite the breadth of topics explored within this section, an overarching theme emerges across the thirteen chapters: that technological change forces us to reassess the suitability of pre-existing tools, processes, and regulatory/governance ecosystems. While a number of tools and processes are long-standing features of health research regulation and are practised by a variety of long-standing actors, they are coming under increasing pressure in twenty-first-century research, driven by pluralistic societal values, learning healthcare systems, Big Data-driven analysis, artificial intelligence and international research collaboration across geographic borders that thrives on harmonised regulation. As considered by the authors, in some cases, new tools, processes or actors are advocated; in other cases, it may be more beneficial to reform them to ensure remain they fit for purpose and provide meaningful value to health research regulation.

Much of the discussion focusses therefore not only on the nature of these long-standing tools, processes, and actors, but also on how they might be sustained – if at all – well into the twenty-first century. For example, the digital-based data turn necessitates reconsidering fundamental principles like consent and developing new digital-based mechanisms to put participants at the heart of decision-making, as discussed by Kaye and Prictor (Chapter 10). Shabani, Thorogood and Murtagh (Chapter 19) also speak to the challenges that data intensive research is presenting for governance and in particular the challenges of balancing the need to grant (open) access to databases with the need to protect the rights and interests of patients and participants.

This leads to another related theme emerging within this section: the need to examine more closely the participatory turn in health research regulation. Public and participant involvement is becoming an increasingly emphasised component of health research, as illustrated by public engagement exercises becoming mandatory within many research funding schemes. But, as Aitken and Cunningham-Burley (Chapter 11) note, many different forms of public engagement exist and we need to ask ‘why’ publics are engaged, rather than simply ‘how’ they are engaged. They suggest that framing public engagement as a political exercise can help us to answer this question. For Chuong and O’Doherty (Chapter 12), the process of participatory governance also necessitates unpacking, particularly due to the varied approaches taken towards embedding deliberative practices and including patients and participants as partners within health research initiatives. Both of these chapters help set up discussion and analysis to come later in this book, specifically the contribution from Burgess (Chapter 25), who makes a case for mobilising public expertise in the design of health research regulation.

Beyond the inclusion of publics and participants in decision-making, many authors in this section raise additional questions about decision-making tools and processes involving other regulatory actors. For example, Dove (Chapter 18) notes how research ethics committees have evolved into regulatory entities in their own right, suggesting that they can play an important role in stewarding projects towards an ethical endpoint. Similarly, McMahon (Chapter 21) explores the ways in which institutions (and their scaffolding) can shape and influence decision-making in health research and argues that this ought to be reflected when drafting legal provisions and guidance. On the question of guidance, Sethi (Chapter 17) lays out different implications that rules, principles and best-practice-based approaches can carry for health research, including the importance of capturing previous lessons learned within regulatory approaches. Sethi’s discussion of principles-based regulation helps round out the discussion to come later in this book, specifically Vayena and Blassime’s contribution (Chapter 26) on Big Data and a proposed model of adaptive governance. Sethi’s chapter also engages with another key theme emerging within this section: the construction of knowledge-bases and expertise. For example, Flear (Chapter 16) suggests that basing current framings of regulatory harm as technological risk marginalises critical stakeholder knowledges of harm, in turn limits knowledge-bases. Indeed, in considering how governments make use of expertise to inform health research regulation, Meslin (Chapter 22) concludes that it will be best served when different stakeholders are empowered to contribute to the process of regulation, and when governments are open to advice from the expertise of experts and non-experts alike.

Many of the authors highlight the need to analyse how we anticipate and manage the outputs (beneficial and harmful) of health research. For example, Coleman (Chapter 13) questions the robustness and objectivity attributed to risk–benefit analysis, despite the heavy reliance placed upon it within health research. Similarly, benefit sharing has become a key requirement for many research projects but, as discussed by Simm (Chapter 15), there are practical challenges to deploying such a complex tool to distinct concrete projects. Patents are also a standard feature of health research and innovation. As considered by Nicol and Nielsen (Chapter 14), these can be used both as a positive incentive to foster innovation and, paradoxically, as a means to stifle collaboration and resource sharing.

Three final cross-cutting themes must be kept in mind as we continue to attempt to improve health research regulation. First, in closing this section, Nicholls (Chapter 20) reminds us that we must be mindful of the constant need to evaluate and adapt our approaches to the varying contexts and ongoing developments in health research regulation. Second, in recognition of the fragility of public trust and the necessity of public confidence for health research initiatives to succeed, we must continue to strive for transparency, fairness and inclusivity within our practices. Finally, as we seek to refine and develop new approaches to health research regulation, we must acknowledge that no one tool or process can provide a panacea for the complex array of values and interests at stake. All must be kept under constant review as part of a well-functioning learning system, as Laurie argues in the Afterword to this volume.

10 Consent

Jane Kaye and Megan Prictor
10.1 Introduction

Informed consent is regarded as the cornerstone of medical research; a mechanism that respects human dignity and enables research participants to exercise their autonomy and self-determination. It is a widely accepted legal, ethical and regulatory requirement for most health research. Nonetheless, the practice of informed consent varies by context, is subject to exceptions, and, in reality, often falls short of the theoretical ideal.Footnote 1 The widespread use of digital technologies this century has revolutionised the collection, management and analysis of data for health research, and has also challenged fundamental principles such as informed consent. The previously clear boundaries between health research and clinical care are becoming blurred in practice, with implications for implementation and regulation. Through our analysis we have identified the key components of consent for research articulated consistently in international legal instruments. This chapter will: (1) describe the new uses of data and other changes in health research; (2) discuss the legal requirements for informed consent for research found in international instruments; and (3) discuss the challenges in meeting these requirements in the context of emerging research data practices.

10.2 The Changing Nature of Research

Health research is no longer a case simply of the physical measurement and intimate observation of patients. Rather, it increasingly depends upon the generation and use of data, and new analysis tools such as Artificial Intelligence (AI). Health research has been transformed by innovations in digital technologies enabling the collection, curation and management of large quantities of diverse data from multiple sources. The intangible nature of digital data means that it can be perfectly replicated indefinitely, instantly shared with others across geographical borders and used for multiple purposes, such as clinical care and research. The information revolution enables data to be pulled from different sources such as electronic medical records; wearables and smart phones monitoring chronic conditions; and datasets outside the health care system yielding inferences about an individual’s health. These developments have significant implications for informed consent.

New technologies have enabled the development of ambitious scientific agendas, new types of infrastructure such as biobanks and genomic sequencing platforms and international collaborations involving datasets of thousands of research participants. Much innovation is driven by collaborations between clinical and research partners that provide practical need and clinical data, and companies offering technical expertise and resources. Examples are: national genomic initiatives including Genomics England (UK), All of Us (USA), Aviesan (France), Precision Medicine Initiative (China); international research collaborations like the Human Genome Project, Global Alliance for Genomics and Health, the Personal Genome Project; and mission-orientated collaborations such as Digital Technology Supercluster (Canada) and the UK Health Data Research Alliance.

The greatest challenges emerge around informed consent in these new contexts where already-collected data can be used in ways not anticipated at the time of collection and data can be sent across jurisdictional borders. When data and tissue samples are being collected for multiple unknown future research uses, explicit informed consent to the research aims and methods may not be possible. In response to this practical challenge, the World Medical Association (WMA) adopted the Declaration of Taipei on Ethical Considerations regarding Health Databases and Biobanks (2002, revised 2016). It stipulates that instead of consenting to individual research, individuals may validly consent to the purpose of the biobank, the governance arrangements, privacy protections, risks associated with their contribution and so on. This form of ‘broad consent’ is really an agreement that others will govern the research, since determinations about appropriate uses of the data and biomaterials are decided by researchers with approval by research ethics committees or similar bodies.Footnote 2

10.3 The Basis for Informed Consent

The moral force of consent is not unique to health research; it is integral to many interpersonal interactions, as well as being entrenched in societal values. The key moral values at play in medical research are: autonomy – the right for an individual to make his or her own choice; beneficence – the principle of acting with the participant’s best interests in mind; non-maleficence – the principle that ‘above all, do no harm’; and justice – emphasising fairness and equality among individuals.Footnote 3 The concepts of voluntariness and transparency embedded in informed consent speak to the ethical value of respect for human beings, their autonomy, their dignity as free moral agents and their welfare. This respect for individuals has resulted in special protections for those who are not legally competent to provide informed consent. Beneficence requires that the probable benefits of the research project outweigh the harms. In the context of informed consent, non-maleficence demands that harm is minimised by researchers being attuned to participant welfare and fully disclosing likely benefits and risks to permit adequately informed choice. The principle of justice in the research setting requires that potential participants are equally provided with adequate information to make a knowledgeable decision, helping to avoid participant exploitation. Consideration of the ethical principles underpinning informed consent also requires reflection on cultural values, such as those pertaining to specific indigenous communities or ethnic groups. Cultural values may lead researchers to consider, for example, whether unique harms to cultural integrity and heritage could accrue to certain groups through specific research projects, and whether respect for human beings should be seen through a lens of collective, as well as individual, autonomy and well-being.Footnote 4 These ethical principles underpin informed consent in health research practice, but not all of them have been implemented into law.

10.4 Legal Requirements for Informed Consent

The requirements for informed consent emerged from a range of egregious examples of physical experimentation on humans. Among the most notable examples were the Nuremberg trials following World War II, although concern about harmful research practices internationally had surfaced decades earlier.Footnote 5 The trial of Nazi doctors produced a ten-point Code that became the foundation of modern health research ethics. Voluntary consent was its first and arguably most emphasised principle.Footnote 6 It has since been espoused in declarations by international and non-governmental organisations. A key instrument is the WMA’s Declaration of Helsinki (1964, as amended) setting out the basic requirements for informed consent for research.

In medical research involving human subjects capable of giving informed consent, each potential subject must be adequately informed of the aims, methods, sources of funding, any possible conflicts of interest, institutional affiliations of the researcher, the anticipated benefits and potential risks of the study and the discomfort it may entail, post-study provisions and any other relevant aspects of the study. The potential subject must be informed of the right to refuse to participate in the study or to withdraw consent to participate at any time without reprisal.Footnote 7

Crucial to this formulation is the need to communicate and provide detailed information to the ‘human subject’. While this information should be comprehensive enough for participants to make an informed decision, it positions the researcher as the information provider and the subject as a passive recipient. Yet, the Declaration also posits ongoing engagement as an essential requirement as the participant can withdraw consent at any time.

The principle of free consent also forms part of the United Nations’ International Covenant on Civil and Political Rights (Article 7). Further guidelines and conventions promulgated by international organisations such as the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH),Footnote 8 the Council for International Organizations of Medical Sciences,Footnote 9 and the Council of Europe,Footnote 10 endorse and explain these principles. The ICH Good Clinical Practice Guideline considers consent in the context of human clinical trials; it establishes a unified quality standard for the European Union, Japan and the USA. The Oviedo Convention and the 2005 Additional Protocol relating to biomedical research similarly foreground consent, stipulating that it be ‘informed, free, express, specific and documented’.Footnote 11 The European General Data Protection Regulation (GDPR) has raised the bar for informed consent for data use worldwide. In Australia, the National Health and Medical Research Council’s National Statement on Ethical Conduct in Human Research (2007, updated 2018) is the principle guiding document for health research. From these documents, several key components can be discerned, such as competence, transparency and voluntariness, and that consent must be informed.

Only ‘human subjects capable of giving informed consent’ are the subject of the Helsinki Declaration statement about consent. Ethicists have described competent people as those who have ‘the capacity to understand the material information, to make a judgement about the information in light of his or her values, to intend a certain outcome, and to freely communicate his or her wish to caregivers or investigators’.Footnote 12 Special protections pertain to those not competent to give consent, such as some young children and some people who are physically, mentally or intellectually incapacitated. These protections centre upon authorisation by a research ethics committee and consent provided by a legal representative. The potential participant may still be asked to assent to the research.

Assessing competence represents a challenge in relation to biobanks and other longitudinal research endeavours where people contributing data or tissue samples may have shifting competence over time; for instance people who were enrolled into research as children will become competent to provide consent for themselves as they reach adulthood.Footnote 13 People impacted by cognitive decline or mental illness may lose competence to provide consent, either temporarily or indefinitely. Periodically revisiting consent for participants is an ethically appropriate, yet logistically demanding, response.

As indicated above, the Nuremberg Code and the Declaration of Helsinki outline a range of information that potential research participants are to be given to enable them to be informed before making a choice about enrolment. The ICH Guideline goes into further detail regarding clinical trials, stating that the information should be conveyed orally and in writing (4.8.10), and that that the explanation should include:

  • Whether the expected benefits of the research pertain to the individual participants;

  • What compensation is available if harm results;

  • The extent to which the participant’s identity will be disclosed;

  • The expected duration of participation;

  • How many participants are likely to be involved in the research.

National or regional statutes and guidelines stipulate the required informational elements for consent to health research in their jurisdictions, mirroring the elements contained in the international instruments to varying degrees.Footnote 14

Limited disclosure of information may sometimes be permitted, for instance in a study of human behaviour where the research aims would be frustrated by full disclosure to participants.Footnote 15 It may also be a necessary consequence of the difficulty of comprehensive disclosure in the context of Big Data science, where not all the uses of the data (that may not be collected directly from the individual) can be anticipated when the data are collected.

The Declaration of Helsinki requirement that research participants must be ‘adequately informed’ points to further consideration of how best to communicate the complex information described above. This is the focus of much recent law and guidance.Footnote 16 Research has shown repeatedly that participants often do not understand the investigative purpose of clinical trials, key concepts such as randomisation and the risks and benefits of participation.Footnote 17 Using simple language and providing enough time to consider the information can help, as well as tailoring information to participant age and educational level. Researchers have evaluated tools to assist with communicating information in ways that support understanding.Footnote 18 Complex, heterogenous and changing research endeavours that cross geographic boundaries and blur the lines between clinical care, daily life and research pose an additional challenge to the requirement for transparency.

A consistent requirement of international conventions, law and guidelines for ethical research is that for consent to be valid, it must be voluntary.Footnote 19 The Nuremberg Code obliges researchers to avoid ‘any element of force, fraud, deceit, duress, over-reaching, or other ulterior form of constraint or coercion’.Footnote 20 Beyond the problem of overt coercion by another person, other considerations in evaluating voluntariness include: deference to the perceived power of the researcher or institution;Footnote 21 the mere existence of a power imbalance;Footnote 22 the existence of a dependent relationship with the researcher;Footnote 23 and the amount paid to participants.Footnote 24 On power and vulnerabilities, see further Brassington, Chapter 9, this volume.

These concerns are largely associated with duress as a result of specific relationships developed through personal interactions. In Big Data or AI analysis, the concept of voluntariness must be reconsidered, as often the data users are not known to the data subject and the nature of the duress may not be straightforwardly attributed to particular relationships. An example is companies that provide direct-to-consumer genetic tests, where the provision of test results also enables the companies to use the data for purposes including marketing and research. This is a different kind of duress as people lured through the fine print in click-wrap contracts are then enrolled into research.Footnote 25

Traditionally, valid informed consent occurs before the participant’s involvement in the research;Footnote 26 no specific timing is recommended as long as there is time for the person to acquire sufficient understanding of the research. In selected circumstances, ‘deferred’ consent – where individuals do not know they are enrolled in a clinical trial so that the sample is not biased and they are asked for consent later onFootnote 27 – a waiver of consent or an opt-out approach might be justifiable. These are typically addressed within relevant guidance.Footnote 28 Once-off informed consent before a project starts may, however, be insufficient to acquit researchers’ responsibilities in the context of longitudinal data-intense research infrastructures. Modalities that permit ongoing or at least repeated opportunities to refresh consent, such as staged consent and Dynamic Consent, considered below, are a developing response to this issue.

It is a key principle of health research, traceable back to the Declaration of Helsinki, that potential research participants have a right to decline the invitation to participate without giving a reason and should not incur any disadvantage or discrimination as a consequence.Footnote 29 Further, people who have consented must be free to withdraw consent at any time without incurring disadvantage. The GDPR stipulation that ‘It shall be as easy to withdraw as to give consent’,Footnote 30 has energised research into technology-based tools to facilitate seamless execution of a withdrawal decision, or even to support shifting levels of participation over time.Footnote 31

Newer research methods and infrastructures characterised by open-ended research activities and widespread data sharing add complexity to the interpretation of ‘withdrawing consent’. International guidelines have acknowledged that withdrawal in this context might equate to no new data collection while raising a question over whether existing samples and data must be destroyed or remain available for research.Footnote 32

10.5 The Limitations of Consent

In research involving human participants, the informed consent process is foregrounded.

As a legal mechanism intended to protect human subjects in the way envisaged by international instruments, it is also recognised that consent may be insufficient. People often do not understand what they have agreed to participate in, retain the information about the research or even recall that they agreed to be involved.Footnote 33 Consent is not the only legal basis for conducting health research. While there is variation between jurisdictions, broadly speaking research involving data or tissue may be able to proceed without consent in certain circumstances. These include if: there is an overriding public interest and consent is impracticable; there is a serious public health threat; the participant is not reasonably identifiable; or the research carries low or negligible risk. Many researchers have sought to augment traditional modes of consent at the point of entry to research, to support informed decision-making by potential participants. New consent processes seek to enable truly informed consent rather than doing away with this fundamental requirement.

Traditionally, consent is operationalised as a written document prepared by the researcher setting out the information described above. The participant’s agreement is indicated by their signature and date on the document. Concerns about participant problems with reading and understanding the form have led to initiatives including simplified written materials, extra time and the incorporation of multimedia tools.Footnote 34 More nuanced consent modalities might encompass different tiers of information – with simple, minimally compliant information presented first, linking to more comprehensive explanation – and different staging of information, for instance with new choices being presented to participants at a later time.Footnote 35

Scholars have also considered when and how it might be appropriate to diverge from the notion of the individual human subject as the autonomous decision-maker for health research participation, towards a communitarian approach informed by ethical considerations pertaining to culture and relationships. The concept of informed consent must, in this context, expand to incorporate the possibility of family and community members at least being consulted, perhaps even deciding jointly. Osuji’s work on relational autonomy in informed consent points to decisions ‘made not just in relation to others but with them, that is, involving them: family members, friends, relations, and others’.Footnote 36 This approach might particularly suit some groups, with extensive examples deriving from Australian aboriginal and other Indigenous communities,Footnote 37 family members with shared genetic heritageFootnote 38 and some Asian and African cultures.Footnote 39 Communitarian-based consent processes may not meet legal requirements for informed consent to research, but may nevertheless be a beneficial adjunct to standard processes in some instances.

10.6 New Digital Consent Mechanisms

The pervasion of technology into all aspects of human endeavour has transformed health research activities and the consent processes which support them. Electronic consent may mean simply transferring the paper form to a computerised version. Internationally, electronic signatures are becoming generally accepted as legally valid in various contexts.Footnote 40 These may comprise typewritten or handwritten signatures on an electronic form, digital representations such as fingerprints or cryptographic signatures. Progress is being made on so-called digital, qualified or advanced electronic signatures which can authenticate the identity of the person signing, as well as the date and location.Footnote 41

Semi-autonomous consent is emerging in computer science; it refers to an approach in which participants record their consent preferences up-front, a computer enacts these preferences in response to requests – for instance, invitations to participate in research – and the participants review the decisions, refine their expressed preferences and provide additional information.Footnote 42 This could be a way to address consent fatigue by freeing participants from the need to make numerous disaggregated consent decisions. It is a promising development at a time when increasing uses of people’s health data for research may overwhelm traditional tick-box consent.

Dynamic Consent is an approach to consent developed to accommodate the changes in the way that medical research is conducted. It is a personalised, digital communication interface that connects researchers and participants, placing participants at the heart of decision-making. The interface facilitates two-way communication to stimulate a more engaged, informed and scientifically-literate participant population where individuals can tailor and manage their own consent preferences.Footnote 43 In this way it meets many of the requirements of informed consent as stipulated in legal instrumentsFootnote 44 but also allows for the complexity of data flows characterising health research and clinical care. The approach has been used in the PEER project,Footnote 45 CHRIS,Footnote 46 the Australian Genomics Health AllianceFootnote 47 and the RUDY project.Footnote 48 It seems appropriate to have digital consent forms for a digital world that allow for greater flexibility and engagement with patients when the uses of data for research purposes cannot be predicted at the time of collection.

10.7 Conclusion

The organisation and execution of health research has undergone considerable change due to technological innovations that have escalated in the twenty-first century. Despite this, the requirements of informed consent enshrined in the Nuremberg Code are still the basic standard for health research. These requirements were formulated specifically in response to atrocities that occurred through physical experimentation. They continue to be applied to data-based research that is very different in its scope and nature, and in the issues it raises for individuals compared to physically-based research, that was the template for the consent requirements found in international instruments. The process for obtaining and recording consent has undergone little change over time and is still recorded through paper-based systems, reliant on one-to-one interactions. While this works well for single projects with a focus on the prevention of physical, rather than informational harm, it is less suitable when data are used in multiple settings for diverse purposes.

Paper-based systems are not flexible and responsive and cannot provide people with the information that is needed in a changing research environment. Digital systems such as Dynamic Consent provide the tools for people to be given information as the research evolves and to be able to change their mind and withdraw their consent. However, given the complexity and scale of research, when data are collected from a number of remote data points it is difficult for consent to effectively respond to all of the issues associated with data-intensive research. The use of collective datasets that concern communal or public interests are difficult to govern through individual decision-making mechanisms such as consent.Footnote 49

Consent is only one of the many governance mechanisms that should be brought into play to protect people involved in health research. Additionally, attention should be given to the ecosystem of research and informational governance that consist of legal requirements, regulatory bodies and best practice that provide the protective framework that is wrapped around health research. Despite its shortcomings, informed consent is still fundamental to health research, but we should recognise its strengths and limitations. More consideration is needed on how to develop better ways to enable the basic requirements of informed consent to be enacted through digital mechanisms that are responsive to the characteristics of data-intensive research. Further research needs to be directed to how the governance of health research should adapt to this new complexity.

1 C. Grady, ‘Enduring and Emerging Challenges of Informed Consent’, (2015) New England Journal of Medicine, 372(9), 855862.

2 S. Boers et al., ‘Broad Consent Is Consent for Governance’, (2015) American Journal of Bioethics, 15(9), 5355.

3 T. Beauchamp and J. Childress, Principles of Biomedical Ethics, 4th Edition (Oxford University Press, 1994).

4 For instance: National Health and Medical Research Council [Australia], ‘Ethical Conduct in Research with Aboriginal and Torres Strait Islander Peoples and Communities’, (NHMRC, 2018); L. Jamieson et al., ‘Ten Principles Relevant to Health Research among Indigenous Australian Populations’, (2012) Medical Journal of Australia, 197(1), 1618.

5 A. Dhai, ‘The Research Ethics Evolution: From Nuremberg to Helsinki’, (2014) South African Medical Journal, 104(3), 178180.

6 Trials of War Criminals before the Nuremberg Military Tribunals under Control Council Law No. 10 [Nuremberg Code] (1949) para. 1.

7 World Medical Association, ‘Declaration of Helsinki – Ethical Principles for Medical Research Involving Human Subjects’, (World Medical Association, 1964, 2013 version), para. 26. [hereafter ‘Declaration of Helsinki’]

8 International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH), ‘Guideline for Good Clinical Practice’, (ICH, 1996).

9 Council for International Organizations of Medical Sciences, ‘International Ethical Guidelines for Biomedical Research Involving Human Subjects’, (CIOMS, 2002, updated 2016).

10 Convention for the Protection of Human Rights and Dignity of the Human Being with regard to the Application of Biology and Medicine: Convention on Human Rights and Biomedicine, Oviedo, 04/04/1997, in force 01/12/1999, ETS No. 164.

11 Additional Protocol to the Convention on Human Rights and Biomedicine, Concerning Biomedical Research,’ Strasbourg, 21/05/2005, in force 01/09/2007, CETS No. 195, Article 14.1.

12 Beauchamp and Childress, Principles of Biomedical Ethics, p. 135.

13 M. Taylor et al., ‘When Can the Child Speak for Herself?’, (2018) Medical Law Review, 26(3), 369391.

14 For example, Human Biomedical Research Act 2015, sec. 12 (Singapore); National Health and Medical Research Council, Australian Research Council, and Universities Australia, ‘National Statement on Ethical Conduct in Human Research’, (NHMRC, 2007), ch 2.2. [hereafter ‘NHMRC National Statement’]; Health Research Authority, ‘Consent and Participant Information Guidance’, (HRA) (UK) ; Federal Policy for the Protection of Human Subjects (‘Common Rule’), 45 CFR part 46, para. 46.114, (1991); The Medicines for Human Use (Clinical Trials) Regulations 2004 No. 1031, Schedule 1 (UK).

15 NHMRC National Statement, chap. 2.3.

16 NHMRC National Statement, para. 5.2.17; Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation), OJ 2016 L 119/1 Recital 58.

17 M. Falagas et al., ‘Informed Consent: How Much and What Do Patients Understand?’, (2009) American Journal of Surgery, 198(3), 420435; On risk-benefit analysis, see also Coleman, Chapter 13 in this volume.

18 For example: A. Synnot et al., ‘Audio-Visual Presentation of Information for Informed Consent for Participation in Clinical Trials’, (2014) Cochrane Database of Systematic Reviews, (5); J. Flory and E. Emanuel, ‘Interventions to Improve Research Participants’ Understanding in Informed Consent for Research: A Systematic Review’, (2004) JAMA, 292(13), 15931601.

19 Additional Protocol to the Convention on Human rights and Biomedicine, Article 14.1; ICH, ‘Guideline for Good Clinical Practice’, paras 2.9 and 3.1.8; NHMRC National Statement, para. 2.2.9; General Data Protection Regulation, Article 4(11); Declaration of Helsinki, para. 25.

20 Nuremberg Code, para. 1.

21 NHMRC National Statement, para. 2.2.9.

22 General Data Protection Regulation, Recital 43.

23 Declaration of Helsinki, para. 27.

24 ICH, ‘Guideline for Good Clinical Practice’, para. 3.1.8; NHMRC National Statement, para. 2.2.10.

25 A. Phillips, Buying your Self on the Internet: Wrap Contracts and Personal Genomics (Edinburgh University Press, 2019).

26 ICH, ‘Guideline for Good Clinical Practice’, para. 2.9.

27 L. Johnson and S. Rangaswamy, ‘Use of Deferred Consent for Enrolment in Trials is Fraught with Problems’, (2015) BMJ, 351.

28 NHMRC National Statement, chap. 2.3; The paper N. Songstad et al. and on behalf of the HIPSTER trial investigators, ‘Retrospective Consent in a Neonatal Randomized Controlled Trial’, (2018) Pediatrics, 141(1), e20172092 presents an example of deferred consent.

29 Declaration of Helsinki, paras 26, 31.

30 General Data Protection Regulation, Article 7(3).

31 K. Melham et al., ‘The Evolution of Withdrawal: Negotiating Research Relationships in Biobanking’ (2014) Life Sciences, Society and Policy, 10(1), 113.

32 Council for International Organizations of Medical Sciences and World Health Organization, ‘International Ethical Guidelines for Epidemiological Studies’, (CIOMS, 2009) p. 48.

33 J. Sugarman et al., ‘Getting Meaningful Informed Consent From Older Adults: A Structured Literature Review of Empirical Research’, (1998) Journal of the American Geriatrics Society, 46(4), 517524; P. Fortun et al., ‘Recall of Informed Consent Information by Healthy Volunteers in Clinical Trials’, (2008) QJM: An International Journal of Medicine, 101(8) 625629; R. Broekstra et al., ‘Written Informed Consent in Health Research Is Outdated’, (2017) European Journal of Public Health, 27(2), 194195; Falagas et al., ‘Informed Consent’; H. Teare et al., ‘Towards “Engagement 2.0”: Insights From a Study of Dynamic Consent with Biobank Participants’, (2015) Digital Health, 1, 113.

34 A. Nishimura et al., ‘Improving Understanding in the Research Informed Consent Process’, (2013) BMC Medical Ethics, 14(1), 115; Synnot et al., ‘Audio-Visual Presentation’; B. Palmer et al., ‘Effectiveness of Multimedia Aids to Enhance Comprehension of Research Consent Information: A Systematic Review’, (2012) IRB: Ethics & Human Research, 34(6), 115; S. McGraw et al., ‘Clarity and Appeal of a Multimedia Informed Consent Tool for Biobanking’, (2012) IRB: Ethics & Human Research, 34(1), 919; C. Simon et al., ‘Interactive Multimedia Consent for Biobanking: A Randomized Trial’, (2016) Genetics in Medicine, 18(1), 5764.

35 E. Bunnik et al., ‘A Tiered-Layered-Staged Model for Informed Consent in Personal Genome Testing’, (2013) European Journal of Human Genetics, 21(6), 596601.

36 P. Osuji, ‘Relational Autonomy in Informed Consent (RAIC) as an Ethics of Care Approach to the Concept of Informed Consent’, (2017) Medicine, Health Care and Philosophy, 21(1), 101111, 109.

37 F. Russell et al., ‘A Pilot Study of the Quality of Informed Consent Materials for Aboriginal Participants in Clinical Trials’, (2005) Journal of Medical Ethics, 31(8), 490494; P. McGrath and E. Phillips, ‘Western Notions of Informed Consent and Indigenous Cultures: Australian Findings at the Interface’, (2008) Journal of Bioethical Inquiry, 5(1), 2131.

38 J. Minari et al., ‘The Emerging Need for Family-Centric Initiatives for Obtaining Consent in Personal Genome Research’, (2014) Genome Medicine, 6(12), 118.

39 H3Africa Working Group on Ethics, ‘Ethics and Governance Framework for Best Practice in Genomic Research and Biobanking in Africa’, (H3Africa, 2017).

40 United Nations, ‘United Nations Convention on the Use of Electronic Communications in International Contracts’, (UNCITRAL, 2005) Article 9(3); Electronic Transactions Act 1999 (Cth) sec. 8(1); Regulation (EU) No 910/2014 of the European Parliament and of the Council of 23 July 2014 on electronic identification and trust services for electronic transactions in the internal market and repealing Directive 1999/93/EC (2014); CFR Code of Federal Regulations Title 21 Part 11, (1997) (USA); Electronic Signatures in Global and National Commerce Act 2000, Pub. L. No. 106-229, 114 Stat. 464 (2000) (USA).

41 Health Research Authority and Medicines and Healthcare Products Regulatory Agency, ‘Joint Statement on Seeking Consent by Electronic Means’, (HRA and MHPRA, 2018) p. 5.

42 R. Gomer et al., ‘Consenting Agents: Semi-Autonomous Interactions for Ubiquitous Consent’, Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing (Seattle, Washington: ACM Press, 2014), pp. 653–58.

43 J. Kaye et al., ‘Dynamic Consent: A Patient Interface for Twenty-First Century Research Networks’, (2015) European Journal of Human Genetics, 23, 141146.

44 M. Prictor et al. ‘Consent for Data Processing Under the General Data Protection Regulation: Could “Dynamic Consent” be a Useful Tool for Researchers?’, (2019) Journal of Data Protection and Privacy, 3(1), 93112.

45 Genetic Alliance, ‘Platform for Engaging Everyone Responsibly’, www.geneticalliance.org/programs/biotrust/peer.

46 CHRIS eurac research, ‘Welcome to the CHRIS study!’, (CHRIS), www.de.chris.eurac.edu.

48 H. Teare et al., ‘The RUDY Study: Using Digital Technologies to Enable a Research Partnership’, (2017) European Journal of Human Genetics, 25, 816822.

49 J. Allen, ‘Group Consent and the Nature of Group Belonging: Genomics, Race and Indigenous Rights’, (2009) Journal of Law, Information and Science, 20(2), 2859.

11 Forms of Engagement

Mhairi Aitken and Sarah Cunningham-Burley
11.1 Introduction

Public engagement (PE) is part of the contemporary landscape of health research and innovation and considered a panacea for what is often characterised as a problem of trust in science or scientific research, as well as a way to ward off actual or potential opposition to new developments. This is quite a weight for those engaging in engagement to carry, and all the more so since PE is often underspecified in terms of purpose. PE can mean and involve different things but such flexibility can come at the price of clarity. It may allow productive creativity but can limit PE’s traction.Footnote 1

In this chapter we provide a synthesis of current conceptualisations of PE. We then consider what kinds of publics are ‘engaged with’ and what this means for the kinds of information exchanges and dialogues that are undertaken. Different forms of PE ‘make up’ different kinds of publics: engagements do not, indeed cannot, start with a clean sheet – neither with a pure public nor through a pure engagement.Footnote 2 As Irwin,Footnote 3 among others, has noted, PE is a political exercise and this wider context serves to frame what is engaged about. It is therefore all the more important to reflect on the practice of PE and what it is hoped will be achieved. We argue that clarity and transparency about the intention, practice and impact of PE are required if PE is to provide an authentic and meaningful tool within health research governance.

11.2 Engaging with Critique

PE has been a subject of debate for many years, particularly in the Science and Technology Studies literature, through what is termed critical public understanding of science. From Wynne’sFootnote 4 seminal work onwards, this critique has championed the range of expertise that can come to bear on matters scientific and has provided analytical verve to critiques of the institutional arrangements of both science and PE. Criticisms of top-down models of PE were dominant throughout the 1990s and the ‘deficit model of public understanding’ was roundly debunked not least for suggesting that public ignorance of science was a fundamental cause of loss of trust. This critique played an important role in bringing about a new emphasis on two-way processes of PE that went beyond ‘educating the public’.Footnote 5 New commitments to dialogue and engagement – ‘the participatory turn’ – have become more commonplace and mainstream.Footnote 6 However, as Stilgoe and colleagues have commented, the shift from deficit model approaches to dialogic PE, has been only partially successful:

It has been relatively easy to make the first part of the argument that monologues should become conversations. It has been harder to convince the institutions of science that the public are not the problem. The rapid move from doing communication to doing dialogue has obscured an unfinished conversation about the broader meaning of this activity.Footnote 7

Herein lies further threats to the integrity of PE.

PE is now a component of much health research where engagement or patient and public involvement is often a funding requirement. This is particularly pronounced in the UK where public understanding and engagement in science has gained increasing institutional traction since the House of Lords report in 2000. For some, the deficit model of public understanding has simply been replaced with a deficit model of public trust, to which ‘more understanding’ and, even, ‘more dialogue’ remain a solution.Footnote 8 So, on the one hand the deficit model of publics in need of education about science lingers on, sometimes under the guise of trust. Yet, on the other, we see PE being taken up across sectors – and there is evidence of PE, sometimes, bringing science and its governance to account.

PE can be productive as many commentators have posited.Footnote 9 The task for health research governance is to ensure that participatory practices are not skewed towards institutional ends but allow diverse voices into the policy making process so that they can make a difference to how health research is conducted, regulated and held accountable to the very publics it purports to serve. As Braun and Schultz note:

The question that is increasingly discussed in public understanding of science (PUS) today is not so much whether there is a trend towards participation but what we are to make of it, how to assess it, how to understand the dynamics propelling it, how to systematise and interpret the different forms and trajectories it takes, what the benefits, pitfalls or unintended side-effects of these forms and trajectories are and for whom.Footnote 10

We now turn to consider some of these questions.

11.3 Forms of Public Engagement

Enthusiasm for, and professed commitment to, PE does not easily translate into meaningful engagement in practice. This is in no small part due to the fact that the term ‘public engagement’ can be interpreted in many different ways and PE is undertaken for a variety of reasons.

Key challenges around PE are that the different ideas about its role and value manifest in a variety of purposes and rationales, whether implicit or explicit. PE can be underpinned by normative, substantive or instrumental rationales.Footnote 11 A normative position suggests that PE should be conducted as it is ‘the right thing to do’ – something that is part and parcel of both public and institutional expectations. An instrumental position regards PE as a means to particular ends. For example, PE might be conducted to secure particular outcomes such as greater public support for a policy or project. Such a position aligns PE closely with institutional aims and objectives: it promotes public support through understanding and addressing public concerns. A substantive position suggests that the goal of PE is to lead to benefits for participants or wider publics: this can include empowering members of the public, enhancing skills or building social capital.Footnote 12 While these varying rationales are not mutually exclusive, they lead to different understandings and expectations regarding the objectives and role of PE, as well as different ideas of what it means for such processes to be ‘successful’.

Rowe and Frewer argue that public involvement ‘as widely understood and imprecisely defined can take many forms, in many different situations (contexts), with many different types of participants, requirements, and aims (and so on), for which different mechanisms may be required to maximize effectiveness (howsoever this is defined)’.Footnote 13 Choosing between different forms requires consideration of purpose and an awareness of the wider context within which engagement is taking place; its effectiveness is more than a matter of method. Academic and practitioner literatures on PE contain many different typologies and classifications of forms of engagement. These often take as their starting point Arnstein’sFootnote 14 ladder of public participation. This sets out eight levels of participation, in the form of a hierarchy of engagement. On the bottom rung of the ladder (non-participation), engagement is viewed instrumentally as an opportunity to educate the public and/or engineer support, a common effort when seeking to fill a knowledge deficit or garner social support for a new development. In the middle of the ladder, tokenistic forms of participation include informing and consulting members of the public, where consultation does not involve a two way process, but rather positions the public as having views and attitudes that might be helpful to seek as part of policy development. Again, this is not an unusual mode of engagement in the context of health research. Arnstein suggested that both of these could be valuable first steps towards participation but that they are limited by the lack of influence that participants have. Consultation is described as being a cosmetic ‘window-dressing ritual’ with little impact, although the extent of impact would depend on how the results of any consultation are subsequently used, rather than being intrinsic to the method itself. The top rungs of the ladder, which move towards empowerment and ownership of process, require redistribution of power to members of the public; while the participatory turn gestures towards such an approach, institutional practices often militate against its enactment.

Arnstein’s model has been adapted by a large number of individuals and organisations in developing alternative classification systems and models. This has resulted in a proliferation of typologies, tool kits and models which can be referred to in designing and/or evaluating PE approaches. Aitken has observed that these models, whilst adopting varying terminology and structures, typically follow common patterns:

Each starts with a ‘bottom’ layer of engagement which is essentially concerned with information provision […] They then have one (or more) layer(s) with limited forms of public feedback into decision-making processes (consultation), and finally they each have a ‘top’ layer with more participatory forms of PE which give greater control to participants.Footnote 15

Forms of engagement classified as ‘awareness raising’ are essentially concerned with the dissemination of information. Where awareness raising is conducted on its own (i.e. where this represents the entirety of a PE approach) this represents a minimal form of PE. It may even be argued that awareness raising on its own – as one-sided and unidirectional information provision – should not be considered PE. Rowe and Frewer note that at this level, ‘information flow is one-way: there is no involvement of the public per se in the sense that public feedback is not required or specifically sought’.Footnote 16 Awareness raising is limited in what it can achieve, but the focus on increasing understanding of particular issues may be a prerequisite for the deliberative approaches discussed below.

Examples of PE activities focussed on awareness raising include campaigns by national public health bodies such as Public Health England’s ‘Value of Vaccines’,Footnote 17 or the creation and dissemination of videos and animations to explain the ways that people’s health data is used in research.Footnote 18

Consultation aims to gather insights into the views, attitudes or knowledge of members of the public in order to inform decisions. It can involve – to varying degrees – two-way flows of information. Wilcox contends that: ‘Consultation is appropriate when you can offer some choices on what you are going to do – but not the opportunity [for the public] to develop their own ideas or participate in putting plans into action’.Footnote 19 Consultation provides the means for public views to be captured and taken into consideration, but does not necessarily mean that these views, or public preferences and/or concerns will be acted on or addressed.

Consultation can be either a one-way or two-way process. In a one-way process, public opinion is sought on pre-defined topics or questions, whereas a two-way process can include opportunities for respondents to reflect on and/or question information provided by those running engagement exercises.Footnote 20 Such two-way processes can ensure the questions asked, and subsequently the responses given, reflect the interests and priorities of those being engaged. It can also facilitate dialogue and ‘deeper’ forms of engagement with the aim of characterising, in all their complexity, public attitudes and perspectives.

It is widely recognised that consultation will be best received and most effective when it is perceived to be meaningful. This means that participants want to know how their views are taken into account and what impact the consultation has had (i.e. how has this informed decision-making). Davidson and colleagues caution that: ‘Consultation can be a valuable mechanism for reflecting public interests, but can also lead to disappointment and frustrations if participants feel that their views are not being taken seriously or that the exercise is used to legitimise decisions that have already been made’.Footnote 21 Again, we see that choice of method is no guarantee of meaningful engagement in terms of influence on the practices of research and its governance.

Approaches taken to consultation include: public consultations where any member of the public is able to submit a written response; surveys and questionnaires with a sample which aims to be representative of the wider population (or key groups within it); and, focus groups, deliberative engagement or community-based participatory methods to engage more deeply with communities to shape both research processes and outcomes.

Approaches to PE that can be classified under the heading of empowerment are those that would be positioned at the top of Arnstein’s ladder of participation. These approaches involve the devolution of power to participants and the creation of benefits for participants and/or wider society. This can be achieved through public-led forms of engagement where public members themselves design the process and determine its objectives, topics of relevance and scope or through partnership approaches.Footnote 22 It might also be achieved through engagement approaches that bring together public members in ways that build relationships and social capital that will continue after the engagement process ends.Footnote 23 Both invited and uninvitedFootnote 24 forms of engagement can involve empowerment, so it is possible to engineer a flattening of hierarchies of knowledge and expertise as well as respond to efforts of publics to come together to define and debate issues of concern.

Empowering forms of engagement can lead to outcomes of increased relevance to communities and that most accurately reflect public interests and values. However, they can also be more expensive than traditional forms of engagement, given that they necessitate more open and flexible timeframes and may require extra skills related to facilitation and negotiation. Certainly, they may confront the more uncomfortable social, political and economic consequences and drivers of health research.

One example of engaging with some of the wider issues raised by health data and research is the dialogue commissioned by the Scottish Government to deliberate about private and third sector involvement in data sharing.Footnote 25

While a hierarchical classification, such as Arnstein’s, serves to highlight the importance of how the public are positioned in different modes of engagement, each broad approach described above can add different value and play important roles in PE. In practice it may be most appropriate for PE to use a range of methods reflecting different rationales and objectives. Rather than conceptualising them hierarchically, it is more helpful to think of these methods as overlapping and often working alongside each other within any PE practice or strategy.

11.4 Types of Publics

PE and involvement professionals, policy documents and critical scholars increasingly refer to ‘publics’ as a way to problematise and differentiate within and between different kinds of public. The adoption of such a term signifies that publics are diverse and that we cannot talk of a homogeneous public. However, beyond that, the term may obscure more than it reveals: what kinds of publics are we talking about when we talk about PE, and how are these related to particular forms of engagement? As Braun and Schultz note ‘“The public,” we argue, is never immediately given but inevitably the outcome of processes of naming and framing, staging, selection and priority setting, attribution, interpellation, categorisation and classification’.Footnote 26 How members of ‘the public’ are recruited is more than a practical matter: the process embodies the assumptions, aims and priorities of those designing the engagement.

On the whole, publics are constructed or ‘come into being’ within PE practices rather than being self-forming. As with types of PE, different categorisations of publics have been developed. Degeling and colleagues highlight three different types: citizens (ordinary people who are unfamiliar with the issues, a kind of pure public); consumers (those with relevant personal experience, a kind of affected public) and advocates (those with technical expertise or partisan interests).Footnote 27 And each of these was linked to different types of PE. Citizens were treated as a resource to increase democratic legitimacy; consumers were directed to focus on personal preferences; advocates were most commonly used as expert witnesses in juries – directly linked to policy processes. However, overall the ‘type’ of public sought was often not explicit, and their role not specified.

Braun and SchultzFootnote 28 elaborate a four-fold distinction: the general public, the pure public, the affected public and the partisan public. Different PE methods serve to construct different kinds of publics. The general public is a construct required for opinion polls and surveys; pure publics for citizen conferences and juries; affected publics for consultative panels; partisan publics for stakeholder consultations. However, as with the different types of PE, in practice there will be overlaps across these dimensions and subject positions will shift as expertise is crafted through the processes of engagement and facilitation.Footnote 29 Different types of expertise are presumed here too: the general public gives policy makers knowledge about people’s attitudes; the pure public creates a ‘mature’ citizen who becomes knowledgeable and can develop sophisticated arguments; affected publics bring expertise to ‘educate’ the expert – very common in health research regulation; and a partisan public may be deliberately configured to elicit viewpoints ‘out there’ in society to assess the ‘landscape of possible argument’.Footnote 30

Types of PE and the categorisation of different publics involve processes of inclusion and exclusion and the legitimacy of PE can easily be challenged because of who participates: some voices may be prioritised over others, and challenges may be made to participants’ expertise. We turn now to a case study of how PE is being enacted in one area of health research to explore how we might deal with these problematics of how and who.

11.5 Public Engagement in Data Intensive Health Research: Principles for an Inclusive Approach

The digitisation of society has led to an explosion of interest in the potential uses of more and more population data in research; this is particularly true in relation to health research.Footnote 31 However, recent years have also brought a number of public controversies, particularly regarding proposed uses of health data. Two high profile examples from England are the failed introduction of the care.data scheme to link hospital and GP recordsFootnote 32 and Google Deep Minds’ involvement in processing health data at an NHS Trust in London.Footnote 33 The introduction of Australia’s National Electronic Health Record Systems (NEHRS) also floundered, demonstrating the importance of taking account how such programmes reflect, or jar, with public values.Footnote 34 Such controversies have drawn attention to the importance of engaging with members of the public and stakeholders to ensure that data are used in ways which align with public values and interests and to ensure that public concerns are adequately addressed.

The growing interest in potential uses of population data, and the increasing recognition of the importance of ensuring a social licence for their use, have resulted in considerable interest in understanding public attitudes and views on these topics.Footnote 35 With the expansion of research uses of (health) data there has been a growing interest in public acceptability. As Bradwell and Gallagher have suggested, ‘personal information use needs to be far more democratic, open and transparent’ and this means ‘giving people the opportunity to negotiate how others use their personal information in the various and many contexts in which this happens’.Footnote 36 PE is seen as key to the successful gathering and use of health data for research purposes.

As a recent consensus statement on PE in data intensive health research posits, there are particular reasons to promote PE in data intensive health researchFootnote 37 including its scale – here the wider public is an ‘affected’ public and the distance is increased between researchers and those from whom data are gathered, thus requiring a new kind of social licence.Footnote 38 This requires novel thinking about how best to engage publics in shaping acceptable practices and their effects.

As well as recognising diverse practices, aims and effects, and building reflexive critique into PE for health research regulation and governance, we need to articulate some common commitments that can help steer a useful path through this diversity and thereby challenge criticisms of institutional capture and tokenism.Footnote 39 These commitments must include clarity of purpose and transparency, which will help deal with the challenges of multiple but often implicit purposes and goals. Inclusion and accessibility will broaden reach and two way communication – dialogue – is a necessary but not sufficient condition for impact. The latter can only be achieved if there is institutional buy-in, a commitment to respond to and utilise PE in governance and research. Given the challenges of assessing whether or not PE is impactful, something we discuss in the conclusion below, PE should be designed with impact in mind and be evaluated throughout. It is clear that you cannot straightforwardly get the right public and the right mechanism and be assured of meaningful and impactful PE. The choices are complicated and inflected with norms and goals that need to be explicitly stated and indeed challenged.

We now turn, as a conclusion, to review some of the outstanding issues that a critical approach to PE brings and make the case for robust evaluation.

11.6 Conclusion

The prominent emphasis on PE in relation to health research can be seen as a reflection of a wider resurgence of interest in PE in diverse policy areas.Footnote 40 For example, Coleman and Gotzehave pointed to a widespread commitment to PE, conceived of as a mechanism for addressing problems in democratic societies.Footnote 41 For Wilsdon and Willis, the emphasis on engagement represents a wider pattern whereby the ‘standard response’ of government to public ambivalence or hostility towards technological, social or political innovation is ‘a promise to listen harder’.Footnote 42

PE is not straightforward, and fulfilling the commitments of PE presents challenges and dilemmas in practice. There are many different ways of approaching PE, and these lead to different ideas of what constitutes success. There is no agreed best practice in evaluation; different rationales lead to different approaches to evaluation. Approaches underpinned by normative rationales will evaluate the quality of PE processes (Was it done well?); instrumental rationales lead to a focus on outcomes (Was it useful? Did it achieve the objectives?); and substantive rationales will assess the value added for participants or wider society (Did participants benefit from the process? Were there wider positive impacts?). Evaluation following substantive rationales is typically focussed on longer term outcomes, compared to evaluation following normative or instrumental rationales. Such longer term outcomes may be indirect and difficult to quantify or measure.

While the literature on methods of doing PE continues to proliferate, evaluation of PE remains under-theorised and underreported. The current evidence base is limited, but existing approaches to evaluating PE tend to reflect instrumental rationales and focus on direct outcomes of PE rather than substantive rationales and indirect, less tangible outcomes or impacts.Footnote 43 Wilson and colleaguesFootnote 44 have observed that there is a tendency to focus on ‘good news’ in evaluating PE and that positivist paradigms shaping research projects or programmes can limit the opportunities to fully or adequately evaluate the complexities of PE as a social process.

This is significant as it means that while a variety of rationales and purposes are acknowledged in relation to PE, there is very limited evidence of the extent to which these are realised. This in turn has negative implications for the recognition – and consequently, the institutional support – that PE receives. By providing evidence only of narrow and direct outcomes, instrumental approaches to evaluation obscure the varied and multiple benefits that can result from PE. While ‘the move from “deficit to dialogue” is now recognised and repeated by scientists, funders and policymakers […] for all of the changing currents on the surface, the deeper tidal rhythms of science and its governance remain resistant’.Footnote 45 Despite growing emphasis on dialogue and co-inquiry, simplistic views of the relationship between science and the public persistFootnote 46 and PE is often conducted in instrumental ways which seek to manufacture trust in science rather than foster meaningful dialogue. Greater reflection is required on the question of why publics are engaged rather than how they are engaged.

Finally, in designing, conducting and using PE in health research, we need to be reflective and critical, asking ourselves whether the issues are being narrowly defined and interpreted within existing frameworks (that often focus on privacy and consent). Does this preclude wider discussions of public benefit and the political economy of Big Data research for health? PE can and should improve health research and its regulation by questioning institutional practices and societal norms and using publics’ contributions to help shape solutions.

1 S. Parry et al., ‘Heterogeneous Agendas Around Public Engagement in Stem Cell Research: The Case for Maintaining Plasticity’, (2012) Science and Technology Studies, 12(2), 6180.

2 K. Braun and S. Schultz, ‘“… A Certain Amount of Engineering Involved”: Constructing the Public in Participatory Governance Arrangements’, (2010) Public Understanding of Science, 19(4), 403419.

3 A. Irwin, ‘The Politics of Talk: Coming to Terms with the ‘New’ Scientific Governance’, (2012) Social Studies of Science, 36(2), 299320.

4 B. WynneMay the Sheep Safely Graze? A Reflexive View of the Expert–Lay Knowledge Divide’ in S. Lash et al. (eds), Risk, Environment and Modernity: Towards a New Ecology (London: Sage, 1998).

5 M. Kurath and P. Gisler, ‘Informing, Involving or Engaging? Science Communication, in the Ages of Atom-, Bio-and Nanotechnology’, (2009) Public Understanding of Science, 18(5), 559573.

6 Irwin, ‘The Politics of Talk’.

7 J. Stilgoe et al., ‘Why Should We Promote Public Engagement with Science?’, (2014) Public Understanding of Science, 23(1), 415, 8.

8 S. Cunningham-Burley, ‘Public Knowledge and Public Trust’, (2006) Community Genetics, 9(3), 204210; B. Wynne, ‘Public Engagement as a Means of Restoring Public Trust in Science – Hitting the Notes, but Missing the Music?’, (2006) Community Genetics, 9(3), 211220.

9 A. Irwin and M. Michael, Science, Social Theory and Public Knowledge (Berkshire: Open University Press, 2003).

10 Braun and Schultz, ‘… A Certain Amount of Engineering’, 404.

11 D. J. Fiorino, ‘Citizen Participation and Environmental Risk: A Survey of Institutional Mechanisms’, (1990) Science, Technology, & Human Values, 15(2), 226243.

12 J. Wilsdon and R. Willis, See-Through Science: Why Public Engagement Needs to Move Upstream (London: Demos, 2004).

13 G. Rowe and L. J. Frewer, ‘Evaluating Public-Participation Exercises: A Research Agenda’, (2004) Science, Technology, and Human Values, 29(4), 512556, 252.

14 S. R. Arnstein, ‘A Ladder of Citizen Participation’, (1969) Journal of the American Planning Association, 35(4), 216224.

15 M. Aitken, ‘E-Planning and Public Participation: Addressing or Aggravating the Challenges of Public Participation in Planning?’, (2014International Journal of E-Planning Research (IJEPR), 33853, 42.

16 G. Rowe and L. J. Frewer, ‘A Typology of Public Engagement Mechanisms’, (2005) Science, Technology, & Human Values, 30(2), 251290, 255.

17 Public Health England, ‘Campaign Resource Cente’, (Public Health England), www.campaignresources.phe.gov.uk/resources/campaigns.

18 For example those produced by Understanding Patient Data, ‘Data Saves Lives Animations’, (Understanding Patient Data), www.understandingpatientdata.org.uk/animations.

19 D. Wilcox, ‘The Guide to Effective Participation’, (Brighton: Partnerships, 1994), 11.

20 Rowe and Frewer, ‘Typology of Public Engagement’.

21 S. Davidson et al., ‘Public Acceptability of Data Sharing between the Public, Private and Third Sectors for Research Purposes’, (2013) Social Research Series (Edinburgh: Scottish Government), 4.30.

22 L. Belone et al., ‘Community-Based Participatory Research Conceptual Model: Community Partner Consultation and Face Validity’, (2016) Qualitative Health Research, 26(1), 117135.

23 INVOLVE, ‘People and Participation: How to Put Citizens at the Heart of Decision-Making’ (INVOLVE, 2005), www.involve.org.uk/sites/default/files/field/attachemnt/People-and-Participation.pdf.

24 P. Wehling, ‘From Invited to Uninvited Participation (and Back?): Rethinking Civil Society Engagement in Technology Assessment and Development’, (2012) Poiesis & Praxis9(1), 4360.

25 Davidson et al., ‘Public Acceptability’.

26 Braun and Schultz, ‘… A Certain Amount of Engineering’, 406

27 C. Degeling et al., ‘Which Public and Why Deliberate?—A Scoping Review of Public Deliberation in Public Health and Health Policy Research’, (2015) Social Science & Medicine, 131, 114121.

28 Braun and Schultz, ‘… A Certain Amount of Engineering’.

29 A. Kerr et al., ‘Shifting Subject Positions: Experts and Lay People in Public Dialogue’, (2007) Social Studies of Science, 37(3), 385411.

30 Braun and Schultz, ‘… A Certain Amount of Engineering’, 414.

31 K. McGrail et al., ‘A Position Statement on Population Data Science: The Science of Data about People’, (2018) International Journal of Population Data Science, 3(1), 111.

32 P. Carter et al., ‘The Social Licence for Research: Why care.data Ran into Trouble’, (2015) Journal of Medical Ethics, 41(5), 404409.

33 J. Powles and H. Hodson, ‘Google DeepMind and Healthcare in an Age of Algorithms’, (2017Health and Technology, 7, 351367.

34 K. Garrety et al., ‘National Electronic Health Records and the Digital Disruption of Moral Orders’, (2014) Social Science & Medicine, 101, 7077.

35 M. Aitken et al., ‘Public Responses to the Sharing and Linkage of Health Data for Research Purposes: A Systematic Review and Thematic Synthesis of Qualitative Studies’, (2016) BMC Medical Ethics, 17(1), 73; Social Research Institute, ‘The One-Way Mirror: Public Attitudes to Commercial Access to Health Data’, (Wellcome Trust, 2016).

36 P. Bradwell and N. Gallagher, We No Longer Control What Others Know about Us, But We Don’t Yet Understand the Consequences …The New Politics of Personal Information (London: Demos, 2007), pp. 1819.

37 M. Aitken et al., ‘Consensus Statement on Public Involvement and Engagement with Data Intensive Health Research’, (2019) International Journal of Population Data Science, 4(1), 111.

38 Carter et al., ‘The Social Licence for Research’.

39 Aitken et al., ‘Consensus Statement’.

40 M. Pieczka and O. Escobar, ‘Dialogue and Science: Innovation in Policy-Making and the Discourse of Public Engagement in the UK’, (2013) Science and Public Policy, 40(1), 113126.

41 J. Gotze and S. Coleman, Bowling Together: Online Public Engagement in Policy Deliberation (London: Hansard Society, 2010).

42 Wilsdon and Willis, See-Through Science, p. 16.

43 J. P. Domecq et al., ‘Patient Engagement in Research: A Systematic Review’, (2014). BMC Health Services Research, 14(1), 89.

44 P. Wilson et al., (2015) ‘ReseArch with Patient and Public invOlvement: A RealisT evaluation – the RAPPORT study’, (2015) Health Services and Delivery Research, 3(38), 19.

45 Stilgoe et al., ‘Why Should We Promote Public Engagement with Science?’, 4.

46 Kurath and Gisler, ‘Informing, Involving or Engaging?’.

12 Participatory Governance in Health Research Patients and Publics as Stewards of Health Research Systems

Kim H. Chuong and Kieran C. O’Doherty
12.1 Introduction

This chapter discusses participatory governance as a conceptual framework for engaging patients and members of the public in health research governance, with particular emphasis on deliberative practices. We consider the involvement of patients and members of the public in institutional mechanisms to enhance responsibility and accountability in collective decision-making regarding health research. We illustrate key principles using discussion of precision medicine, as this demonstrates many of the challenges and tensions inherent in developing participatory governance in health research more generally. Precision medicine aims to advance healthcare and health research through the development of treatments that are more precisely targeted to patient characteristics.

Our central argument in this chapter is that patients and broader publics should be recognised as having a legitimate role in health research governance. As such, there need to be institutional mechanisms for patients and publics to be represented among stewards of health research systems, with a role in articulating vision, identifying research priorities, setting ethical standards, and evaluation. We begin by reviewing relevant scholarship on patient and public engagement in health research, particularly in the context of the development and use of Big Data for precision medicine. We then examine conceptualisations of participatory governance and outline stewardship as a key function of governance in a health research system. Thereafter, we propose the involvement of patients and publics as stewards who share leadership and oversight responsibilities in health research, and consider the challenges that may occur, most notably owing to professional resistance. Finally, we discuss the conditions and institutional design elements that enable participatory governance in health research.

12.2 Patient and Public Engagement in Health Research

Beresford identifies two broad approaches that have predominated in public engagement in health and social research since the 1990s.Footnote 1 Consumerist approaches reflect a broad interest in the market and seek consumer feedback to improve products or enhance services; in contrast, democratic approaches are concerned with people having more say in institutions or organisations that have an impact on their lives. Unlike consumerist approaches, democratic approaches are explicit about issues of power, the (re)distribution of power and a commitment to personal and collective empowerment. Well-known examples of democratic approaches include the social movements initiated by people living with disability and HIV/AIDS, where these communities demanded greater inclusion in the development of scientific knowledge and health policy decisions.Footnote 2 Moral and ethical reasons based on democratic notions of patient empowerment and redistribution of power, and consequentialist arguments that patient and public engagement can improve research credibility and social acceptance, are also offered by health researchers.Footnote 3 It should be noted that patient and public engagement does not, in and of itself, constitute an active role for members of the public in health research and policy decision-making. Conceptual models have often highlighted the multiple forms that engagement can take, which vary in the degree to which members of the public are empowered to participate in an active role (see Aitken and Cunningham-Burley, Chapter 11).

In recent years, the potential to link large data sources and harness the breadth and depth of such Big Data has been hailed as bringing ‘a massive transformation’ to healthcare.Footnote 4 Data sources include those collected for health services (e.g. electronic health records), health research (e.g. clinical trials, biobanks, genomic databases), public health (e.g. immunisation registries, vital statistics), and other innovative sources (e.g. social media). Achieving the aims of precision medicine relies on the creation of networks of diverse data sources and scientific disciplines to capture a more holistic understanding of health and disease.Footnote 5 Conducting research using such infrastructure represents a shift from individual and isolated projects to research enterprises that span multiple institutions and jurisdictions. While the challenges of doing patient and public engagement well have been widely recognised, the emergence of precision medicine highlights the stakes and urgency of involving patients and publics in meaningful ways.

Biomedical research initiatives that involve large, networked research infrastructure rely on public support and cooperation. Rhetorical appeals to democratising scientific research, empowerment and public benefits, have been employed in government-sponsored initiatives in the USA and UK in attempts to foster to public trust and cultivate a sense of collective investment and civic duty to participate, notably to agree to data collection and sharing.Footnote 6 Such appeals have been explicit in the US Precision Medicine Initiative (PMI)Footnote 7 since its inception, whereas they have been used post hoc in the NHS England care.data programme after public backlash. The failure of care.data illustrates the importance of effective and meaningful public engagement – rather than tokenistic appeals – to secure public trust and confidence in its oversight for large-scale, networked research. Established to be a centralised data sharing system that linked vast amounts of patient data including electronic health records from general practitioners, care.data was suspended and eventually closed in 2016 after widespread public and professional concerns, including around its ‘opt-out’ consent scheme, transparency, patient confidentiality and privacy, and potential for commercialisation.Footnote 8 See further, Burgess, Chapter 25, this volume.

Research using Big Data raises many unprecedented social, ethical, and legal challenges. Data are often collected without clear indication of their uses in research (e.g. electronic health records) or under vague terms regarding their future research uses (e.g. biobanks). Challenges arise with regard to informed consent about future research that may not yet be conceived; privacy and confidentiality; potential for harms from misuses; return of results and incidental findings; and ownership and benefit sharing, which have implications for social justice.Footnote 9 As cross-border sharing of data raises the challenges of marked differences in regulatory approaches and social norms to privacy, there have been calls for an international comparative analysis of how data privacy laws might have affected biobank practices and the development of a global privacy governance framework that could be used as foundational principles.Footnote 10 Arguments have been made that relying on informed consent – which was developed primarily for individual studies – is insufficient to resolve many of the social and ethical challenges in the context of large-scale, networked research; rather, the focus should be on the level of systemic oversight or governance.Footnote 11 Laurie proposes an ‘Ethics+’ governance approach that appraises biobank management in processual terms.Footnote 12 This approach focuses on the dynamics and interactions of stakeholders in deliberative processes towards the management of a biobank, and allows for adaptation to changes in circumstances, ways of thinking, and personnel.

12.3 Participatory Governance in Health Research Systems

The concept of governance has theoretical roots in diverse disciplines and has been used in a variety of ways, with a variety of meanings.Footnote 13 In the health sector, the concept of governance has been informed by a systems perspective, notably the World Health Organization’s framework for health systems.Footnote 14 In their review, Barbazza and Tello claim that: ‘Despite the complexities and multidimensionality inherent to governance, there does however appear to be general consensus that the governance function characterizes a set of processes (customs, policies or laws) that are formally or informally applied to distribute responsibility or accountability among actors of a given [health] system’.Footnote 15 Common values, such as ‘good’ or ‘democratic,’ and descriptions of the type of accountability arrangement, such as ‘hierarchical’ or ‘networked,’ may be used to denote how governance should be defined. The notion of distributed responsibility or accountability relates to the assertion that governance is about collective decision-making and involves various forms of partnership and self-governing networks of actors.Footnote 16

A systems perspective allows for a more integrated and coordinated view of health research activities that may be highly fragmented, specialised and competitive.Footnote 17 Strengthening the coordination of research activities promotes more effective use of resources and dissemination of scientific knowledge in the advancement of healthcare. The vision of a learning healthcare system, which was first proposed by the US Institute of Medicine (IOM), illustrates a cycle of continuous learning and care improvement that bridges research and clinical practice.Footnote 18 The engagement of patients, their families and other relevant stakeholders is identified as a fundamental element of a learning healthcare system.Footnote 19 Engaging patients as active partners in the cycle is argued to both secure the materials required for research (i.e. data and samples) and enhance patient trust.Footnote 20

Pang and colleagues propose stewardship as a key function within a health research system that has four components: defining a vision for the health research system; identifying research priorities and coordinating adherence to them; setting and monitoring ethical standards; and monitoring and evaluating the system.Footnote 21 Other key functions of a health research system include: financing, which involves securing and allocating research funds accountably; creating and sustaining resources including human and physical capacity; and producing and using research. An important question is therefore how to engage and incorporate the perspectives and values of patients and publics in governance, particularly in terms of stewardship.

Internationally, participatory governance has been explored in multiple reforms in social, economic, and environmental planning and development that varied in design, issue areas and scope.Footnote 22 Fung and Wright use the term ‘empowered participatory governance’ to describe how such reforms are ‘participatory because they rely upon the commitment and capacities of ordinary people to make sensible decisions through reasoned deliberation and empowered because they attempt to tie action to discussion’.Footnote 23 They outline three general principles: (1) a focus on solving practical problems that creates situations for participants to cooperate and build congenial relationships; (2) bottom-up participation, with laypeople being engaged in decision-making while experts facilitate the process by leveraging professional and citizen insights; and (3) deliberative solution generation, wherein participants listen to and consider each other’s positions and offer reasons for their own positions. A similar concept is collaborative governance, which is defined by Ansell and Gash as ‘a governing arrangement where one or more public agencies directly engage non-state stakeholders in a collective decision-making process that is formal, consensus-oriented, and deliberative and that aims to make or implement public policy or manage public programs or assets’.Footnote 24 The criterion of formal collaboration implies established arrangements to engage publics. Participatory governance is advocated to contribute to citizen empowerment, build local communities’ capacity, address the gap in political representation and power distribution, and increase the efficiency and equity of public services. Unfortunately, however, successful implementation of participatory governance ideals is ‘a story of mixed outcomes’ with the failures still outnumbering the successful cases.Footnote 25

Yishai argues that the health sector has remained impervious to the practice of participatory governance: patients have not had a substantial voice in health policy decisions, even though they may enjoy the power to choose from different health services and providers as consumers.Footnote 26 Professional resistance to non-expert views and marginalisation of public interests by commercial interests are cited as some of the reasons for the limited involvement of patients. Similarly, there are concerns that public voices are not given the same weight as those of professionals in health research decision-making. Tokenism, engaging patients as merely a ‘tick-box exercise’ – for funding or regulatory requirements – and devaluing patient input in comparison to expert input are common concerns.Footnote 27 Furthermore, most engagement efforts are limited to preliminary activities and not sustained across the research cycle; the vast majority of biomedical research initiatives do not engage publics beyond informed consent for data collection and sharing.Footnote 28

Deliberative practices, such as community advisory boards and citizens’ forums, have been suggested as mechanisms to allow public input in the governance of research with Big Data.Footnote 29 Public deliberation has been used to engage diverse members of the public to explore, discuss and reach collective decisions regarding the institutional practices and governance of biobanks, and the use and sharing of linked data for research.Footnote 30 However, in many instances, public input is limited to the point in time at which the deliberative forum is convened. One example of ongoing input is provided by the Mayo Clinic Biobank deliberation, which was used as a seeding mechanism for the establishment of a standing Community Advisory Board. To address the challenge of moving from one-time input to ongoing, institutionalised public engagement, O’Doherty and colleagues propose four principles to guide adaptive biobank governance: (1) recognition of participants as a collective body, as opposed to just an aggregation of individuals; (2) trustworthiness of the biobank, with a reflexive focus of biobank leaders and managers on its practices and governance arrangements, as opposed to a focus on the trust of participants divorced from considerations of how such trust is earned; (3) adaptive management that is capable of drawing on appropriate public input for decisions that substantively affect collective patient or public expectations and relationships; and (4) fit between the particular biobank and specific structural elements of governance that are implemented.Footnote 31

A few cases of multi-agency research networks that engage patients or research participants in governance are also available. For instance, the Patient-Centered Outcomes Research Institute (PCORI) in the USA established multiple patient-powered research networks, each focusing on a particular health condition (www.pcori.org). In the UK, the Managing Ethico-social, Technical and Administrative issues in Data ACcess (METADAC) was established as a multi-study governance infrastructure to provide ethics and policy oversight to data and sample access for multiple major population cohort studies. Murtagh and colleagues identify three key structural features: (1) independence and transparency, with an independent governing body that promotes fair, consistent and transparent practices; (2) interdisciplinarity, with the METADAC Access Committee comprising individuals with social, biomedical, ethical, legal and clinical expertise, and individuals with personal experience participating in cohort studies; and (3) patient-centred decision-making, which means respecting study participants’ expectations, involving them in decision-making roles and communicating in a format that is clear and accessible.Footnote 32

12.4 Enabling Conditions and Institutional Designs
12.4.1 Enabling Conditions: Power/Resource Imbalances and Representativeness

Fung and Wright propose that an enabling condition to facilitate participatory governance is ‘a rough equality of power, for the purposes of deliberative decision-making, between participants’.Footnote 33 Nonetheless, power and resource imbalances are a common problem in many cases of patient and public engagement. Patients and publics bring different forms of knowledge that could be seen as challenging traditional scientific knowledge production and the legitimacy of professional skills and knowledge. Such knowledge could be constructed positively by researchers, but it could also be constructed in ways that question its validity compared to professional/academic knowledge.Footnote 34 Furthermore, patients and publics may not always be capable of articulating their needs as researchable questions, which limits the uptake of their ideas in research prioritisation, or a perceived mismatch may lead to resistance from researchers to act upon priorities identified by patients and publics.Footnote 35

Articulating a vision for advancing patient and public engagement in a health research system is important, whether it is at an organisational or broader level.Footnote 36 We further propose recognition of patients and publics as having legitimate representation as stewards or governors, with a role in articulating vision, identifying research priorities, setting ethical standards, and evaluation. Moreover, we suggest that formal arrangements are required to enable patients and publics in their role as stewards and governors within institutional architecture. A range of innovative mechanisms have been explored and implemented. For instance, ArthritisPower, which is a patient-powered research network within PCORI, established a governance structure in which patients have representation and overlapping membership across the Executive Board, Patient Governor Group and Research Advisory Board. Clear communication of expectations, provision of well-prepared tools for engagement (e.g. work groups organised around particular tasks or topics, online platform for patient governors to connect) and regular assessments of patient governors’ viewpoints are found to be necessary to support and build patients’ capacity within a multi-stakeholder governance structure.Footnote 37

It should be recognised that members of the public vary in their capacity to participate, deliberate and influence decision-making. Those who are advantaged in terms of education, wealth or membership in dominant racial/ethnic groups often participate more frequently and effectively in deliberative decision-making.Footnote 38 Power and resource imbalances can result in the problem of co-optation whereby stronger stakeholders are able to generate support for their own agendas. The lack of representation of certain groups – i.e. youth, Indigenous, Black and ethnic minority groups – has been noted in many efforts of patient and public engagement in health research,Footnote 39 which reflects structural barriers and/or historical discrimination and mistrust due to past ethical violations. This raises challenges of how to promote and support inclusion and equity in decision-making. This also serves as a valuable counterpoint on power dynamics as discussed by Brassington, chapter 9.

There are also concerns that patients may risk becoming less able to represent broader patient perspectives as they become more trained and educated in research and more involved in the governance of research activities. For instance, Epstein documented the use of ‘credibility tactics’, such as the acquisition of the language of biomedical science by HIV/AIDS activists to gain acceptance in the scientific community, and Thompson and colleagues identified the emergence of professionalised lay experts who demonstrated considerable support for dominant scientific paradigms and privileged professional or certified forms of expertise among patients and caregiver participants in cancer research settings in England.Footnote 40 To guard against this, the governance structure of ArthritisPower maintains a mix of veteran and new members by limiting patient governors’ memberships to three years.Footnote 41

12.4.2 Institutional Designs: Relationships, Trust and Leadership Support

Fung and Wright outline three institutional design elements that are necessary for participatory governance: (1) devolution of decision-making power to local units that are charged and held accountable with implementing solutions; (2) centralised supervision and coordination to connect the local units, coordinate and distribute resources, reinforce quality of local decision-making, and diffuse learning and innovation; and (3) transformation of formal governance procedures to institutionalise the ongoing participation of laypeople.Footnote 42 At a national level, devolution of power implies that the state solicits local units, such as community organisations and local councils, to devise and implement solutions. Members of the public are engaged at a local level through these organisations as stakeholders who are affected by the targeted problems. Within a health research system, network or organisation, patients and publics may serve on advisory boards and committees as members within a multi-stakeholder governance structure.

In this section, we discuss factors that may facilitate or impede the participation of patients and publics in the governance structures of health research systems, networks or organisations. It is important to consider multilevel engagement strategies for matching participation opportunities to varying interests, capacities and goals of patients and publics.Footnote 43 These strategies may range from patients and publics having one-time input into a targeted issue, to serving in leadership roles as members of a research team or governing body. Involving patients and publics in governance structures in an ongoing manner requires relationship building over much longer periods of time.

Clarity of roles and purposes of patient and public engagement is needed for relationship building, as well as for developing and maintaining trust. Participatory forms of governance are more feasible when stakeholders have opportunities to identify mutual gains in collaboration. However, pre-existing relationships can discourage stakeholders from seeing the value of collaboration. In health research that spans multiple sites, approaches and willingness to engage patients and publics may differ considerably across the participating sites.Footnote 44 Establishing new relationships with patients as partners may be considered too risky and jeopardising to current relationships by some sites.

Additionally, engagement activities that focus on ‘patients’, ‘citizens’ or ‘members of a community’, may each carry different sets of assumptions. Patients often have a personal connection to the health issue in question, whereas community members are selected to represent a collective experience and perspective. In national biomedical research initiatives, engagement as ‘citizens’ may lead to the exclusion of certain groups, such as advocacy groups and charities, from governing committees to avoid ‘special interests’.Footnote 45 While people may be able to navigate and draw on different aspects of their lives to inform research and policy, further exploration is needed to understand the common and distinctive aspects between different types of roles that people occupy.Footnote 46 In any case, clarity regarding roles and responsibilities, and transparency in the aims of engagement are necessary for relationship and trust building.

Fung and Wright assert that centralised supervision and coordination is needed to stabilise and deepen the practice of participatory governance among local units.Footnote 47 At a national level, centralised coordination is a component of leadership capacity to ensure accountability, distribute resources, and facilitate communication and information sharing across local units. According to Ansell and Gash, facilitative leadership is important for bringing together stakeholders, promoting the representation of disadvantaged groups, and facilitating dialogue and trust-building in the collaborative processes.Footnote 48 Trust-building requires commitment and mutual recognition of interdependence, shared understanding of the problem in question and common values, and face-to-face dialogue. Senior leadership and supportive policy and infrastructure are recognised as building blocks for embedding patient and public engagement in a health research system.Footnote 49

12.5 Conclusion

In this chapter, we have discussed the potentials and challenges of involving patients and publics as stewards or governors of health research, whether within a broad health system, a research network, or a specific organisation. We have also outlined some of the conditions and institutional design elements that may impede or facilitate the engagement of patients and publics in governance structures, focusing on issues of power/resource imbalances, representativeness, relationships, trust and leadership support. Some conditions and institutional design elements are necessary for the implementation of participatory governance, but our discussion is not intended to be comprehensive or prescriptive. In particular, we are not proposing a specific governance structure or body as an ideal. Governance structures can vary in their purposes and constituencies. With rapid scientific advances and potential for unanticipated ethical and social issues, a multi-stakeholder governance structure needs to contain an element of reflexivity and adaptivity to evolve in ways that are respectful of diverse needs and interests while responding to changes. Moreover, the literature on patient and public engagement has documented the need for rigorous evaluation of the impact of engagement on healthcare and health research, especially given the problems of inconsistent terminology and lack of validated frameworks and tools to evaluate patient and public engagement.Footnote 50 Stronger evidence of the impact and outcomes, both intended and unintended, of patient and public engagement may help normalise the role of patients and publics as partners in health research regulation.

1 P. Beresford, ‘User Involvement in Research and Evaluation: Liberation or Regulation?’, (2002) Social Policy & Society, 1(2), 95105.

2 C. Barnes, ‘What a Difference a Decade Makes: Reflections on Doing ‘Emancipatory’ Disability Research’, (2003) Disability & Society, 18(1), 317; S. Epstein, ‘The Construction of Lay Expertise: AIDS Activism and the Forging of Credibility in the Reform of Clinical Trials’, (1995) Science, Technology, & Human Values, 20(4), 408437.

3 J. Thompson et al., ‘Health Researchers’ Attitudes towards Public Involvement in Health Research’, (2009) Health Expectations, 12(2), 209220.

4 E. Vayena and A. Blassimme, ‘Health Research with Big Data: Time for Systemic Oversight’, (2018) Journal of Law, Medicine & Ethics, 46(1), 119129.

5 Footnote Ibid., 120.

6 J. P. Woolley et al., ‘Citizen Science or Scientific Citizenship? Disentangling the Uses of Public Engagement Rhetoric in National Research Initiatives’, (2016) BMC Medical Ethics, 17(33), 117.

7 The US PMI was launched in 2015 with the aims of advancing precision medicine in health and healthcare. A cornerstone of the initiative is the All of Us Research Program, a longitudinal project aiming to enroll 1 million volunteers to contribute their genetic data, biospecimens and other health data to a centralised national database. ‘National Institutes of Health’, www.allofus.nih.gov/.

8 S. Sterckx et al., ‘“You Hoped We Would Sleep Walk into Accepting the Collection of Our Data”: Controversies Surrounding the UK care.data Scheme and Their Wider Relevance for Biomedical Research’, (2016) Medicine, Health Care, and Philosophy, 19(2), 177190.

9 W. Burke et al., ‘Informed Consent in Translational Genomics: Insufficient without Trustworthy Governance’, (2018) Journal of Law, Medicine & Ethics, 46(1), 7986; A. Cambon-Thomsen et al., ‘Trends in the Ethical and Legal Frameworks for the Use of Human Biobanks’, (2007) European Respiratory Journal, 30(2), 373382; E. Wright Clayton and A. L. McGuire, ‘The Legal Risks of Returning Results of Genomic Research’, (2012) Genetics in Medicine, 14(4), 473477

10 E. S. Dove, ‘Biobanks, Data Sharing, and the Drive for a Global Privacy Governance Framework’, (2015) Journal of Law, Medicine & Ethics, 43(4), 675689.

11 Burke et al., ‘Informed Consent’, 83–85; K. C. O’Doherty et al., ‘From Consent to Institutions: Designing Adaptive Governance for Genomic Biobanks’, (2011) Social Science & Medicine, 73(3), 367374; Vayena and Blasimme, ‘Health Research with Big Data’, 123–127.

12 G. Laurie, ‘What Does It Mean to Take an Ethics+ Approach to Global Biobank Governance?’, (2017) Asian Bioethics Review, 9(4), 285300.

13 G. Stoker, ‘Governance as Theory: Five Propositions’, (1998) International Social Science Journal, 50(155), 1728.

14 E. Barbazza and J. E. Tello, ‘A Review of Health Governance: Definitions, Dimensions and Tools to Govern’, (2014) Health Policy, 116(1), 111; F. A. Miller et al., ‘Public Involvement in Health Research Systems: A Governance Framework’, (2018) Health Research Policy and Systems, 16(1), 115.

15 Barbazza and Tello, ‘Health Governance’, 3.

16 Stoker, ‘Governance as Theory’, 21–24.

17 T. Pang et al., ‘Knowledge for Better Health – A Conceptual Framework and Foundation for Health Research Systems’, (2003) Bulletin of the World Health Organization, 81(11), 815820.

18 Institute of Medicine, Best Care at Lower Cost: The Path to Continuously Learning Health Care in America (Washington, DC: National Academies Press, 2013).

19 K. H. Chuong et al., ‘Human Microbiome and Learning Healthcare Systems: Integrating Research and Precision Medicine for Inflammatory Bowel Disease’, (2018) OMICS: A Journal of Integrative Biology, 22(20), 119126; S. M. Greene et al., ‘Implementing the Learning Health System: From Concept to Action’, (2012) Annals of Internal Medicine, 157(3), 207210; W. Psek et al., ‘Operationalizing the Learning Health Care System in an Integrated Delivery System’, (2015) eGEMs, 3(1), 111.

20 Psek et al., ‘Learning Health Care System’.

21 Pang et al., ‘Health Research Systems’, 816–818.

22 A. Fung and E. O. Wright (eds), Deepening Democracy: Institutional Innovations in Empowered Participatory Governance (New York, NY: Verso, 2003).

23 Footnote Ibid., p. 5.

24 C. Ansell and A. Gash, ‘Collaborative Governance in Theory and Practice’, (2008) Journal of Public Administration Research and Theory, 18(4), 543571, 544.

25 F. Fischer, ‘Participatory Governance: From Theory to Practice’ in D. Levi-Faur (ed.), The Oxford Handbook of Governance (New York, NY: Oxford University Press, 2012), pp. 458471.

26 Y. Yishai, ‘Participatory Governance in Public Health: Choice, but No Voice’ in D. Levi-Faur (ed.), The Oxford Handbook of Governance (New York, NY: Oxford University Press, 2012), pp. 527539.

27 J. P. Domecq et al., ‘Patient Engagement in Research: A Systematic Review’, (2014) Health Services Research, 14(89), 19; G. Green, ‘Power to the People: To What Extent has Public Involvement in Applied Health Research Achieved This?’, (2016) Research Involvement and Engagement, 2(28), 113; P. R. Ward et al., ‘Critical Perspectives on ‘Consumer Involvement’ in Health Research: Epistemological Dissonance and the Know-Do Gap’, (2009) Journal of Sociology, 46(1), 6382.

28 E. Manafo et al., ‘Patient Engagement in Canada: A Scoping Review of the ‘How’ and ‘What’ of Patient Engagement in Health Research’, (2018) Health Research Policy and Systems, 16(1), 111; Woolley et al., ‘Citizen Science’, 5.

29 Burke et al., ‘Translational Genomics’, 84; Vayena and Blasimme, ‘Health Research with Big Data’, 125.

30 S. M. Dry et al., ‘Community Recommendations on Biobank Governance: Results from a Deliberative Community Engagement in California’, (2017) PLoS ONE, 12(2), e0172582; K. C. O’Doherty et al., ‘Involving Citizens in the Ethics of Biobank Research: Informing Institutional Policy through Structured Public Deliberation’, (2012) Social Science & Medicine, 75(9), 16041611; J. E. Olson and others, ‘The Mayo Clinic Biobank: A Building Block for Individualized Medicine’, (2013) Mayo Clinic Proceedings, 88(9), 952962; J. Teng et al., ‘Sharing Linked Data Sets for Research: Results from A Deliberative Public Engagement Event in British Columbia, Canada’, (2019) International Journal of Population Data Science, 4(1), 13.

31 O’Doherty et al., ‘Adaptive Governance’, 368.

32 M. J. Murtagh et al., ‘Better Governance, Better Access: Practising Responsible Data Sharing in the METADAC Governance Infrastructure’, (2018) Human Genomics, 12(1), 112.

33 Fung and Wright, Deepening Democracy, p. 24.

34 Thompson et al., ‘Health Researchers’ Attitudes’; Ward et al., ‘Critical Perspectives’.

35 F. A. Miller et al., ‘Public Involvement and Health Research System Governance: Qualitative Study’, (2018) Health Research Policy and Systems, 16(1), 115.

36 Miller et al., ‘Health Research Systems’, 4–5.

37 W. B. Nowell et al., ‘Patient Governance in a Patient-Powered Research Network for Adult Rheumatologic Conditions’, (2018) Medical Care, 56(10 Suppl 1), S16S21.

38 Fung and Wright, Deepening Democracy, p. 34.

39 Miller et al., ‘Health Research System Governance’, 7; Green, ‘Power to the People’, 10.

40 Epstein, ‘The Construction of Lay Expertise’, 417–426; J. Thompson et al., ‘Credibility and the ‘Professionalized’ Lay Expert: Reflections on the Dilemmas and Opportunities of Public Involvement in Health Research’, (2012) Health, 16(6), 602618.

41 Nowell et al., ‘Patient Governance’, S21.

42 Fung and Wright, Deepening Democracy, pp. 20–24.

43 For an example, see A. P. Boyer et al., ‘Multilevel Approach to Stakeholder Engagement in the Formulation of a Clinical Data Research Network’, (2018) Medical Care, 56(10 Suppl 1), S22S26.

44 K. S. Kimminau et al., ‘Patient vs. Community Engagement: Emerging Issues’, (2018) Medical Care, 56(10 Suppl 1), S53S57.

45 Woolley et al., ‘Citizen Science or Scientific Citizenship’, 11.

46 See Kimminau et al., ‘Patient vs. Community Engagement’, for a comparison of the two.

47 Fung and Wright, Deepening Democracy, pp. 21–22.

48 Ansell and Gash, ‘Collaborative Governance’, 554–555.

49 Miller et al., ‘Health Research System Governance’, 6–7.

50 Manafo et al., ‘Patient Engagement’, 4–7. Also, Aitken and Cunningham-Burley, Chapter 11, this volume.

13 Risk-Benefit Analysis

Carl H. Coleman
13.1 Introduction

This chapter explores the concept of risk-benefit analysis in health research regulation, as well as ethical and practical questions raised by identifying, quantifying, and weighing risks and benefits. It argues that the pursuit of objectivity in risk-benefit analysis is ultimately futile, as the very concepts of risk and benefit depend on attitudes and preferences about which reasonable people disagree. Building on the work of previous authors, the discussion draws on contemporary examples to show how entities reviewing proposed research can improve the process of risk-benefit assessment by incorporating diverse perspectives into their decision-making and engaging in a systematic analytical approach.

13.2 Identifying Risks

The term ‘risk’ refers to the possibility of experiencing a harm. The concept incorporates two different dimensions: (1) the magnitude or severity of the potential harm; and (2) the likelihood that this harm will occur. The significance of a risk depends on the interaction of these two considerations. Thus, a low chance of a serious harm, such as death, would be considered significant, as would a high chance of a lesser harm, such as temporary pain.

In the context of research, the assessment of risk focuses on the additional risks participants will experience as a result of participating in a study, which will often be less than the total level of risks to which participants are exposed. For example, a study might involve the administration of various standard-of-care procedures, such as biopsies or CT scans. If the participants would have received these same procedures even if they were not participating in the study, the risks of those interventions would not be taken into account in the risk-benefit analysis. As a result, it is possible that a study comparing two interventions that are routinely used in clinical practice could be considered low risk, even if the interventions themselves are associated with a significant potential for harm. This is the case with a significant proportion of research conducted in ‘learning health systems’, which seek to integrate research into the delivery of healthcare. Because many of the research activities in such systems involve the evaluation of interventions patients would be undergoing anyway, the risks of the research are often minimal, even when the risks of the interventions themselves may be high.Footnote 1

The risks associated with health-related research are not limited to potential physical injuries. For example, in some studies, participants may be asked to engage in discussions of emotionally sensitive topics, such as a history of previous trauma. Such discussions entail a risk of psychological distress. In other studies, a primary risk is the potential for unauthorised disclosure of sensitive personal information, such as information about criminal activity, or stigmatised conditions such as HIV, or mental disorders. If such disclosures occur, participants could suffer adverse social, legal, or economic consequences.

Research-related risks can extend beyond the individuals participating in a study. For example, studies of novel interventions for preventing or treating infectious diseases could affect the likelihood that participants will transmit the disease to third parties.Footnote 2 Similarly, studies in which psychiatric patients are taken off their medications could increase the risk that participants will engage in violent behaviour.Footnote 3 Third-party risks are an inherent feature of research on genetic characteristics, given that information about individuals’ genomes necessarily has implications for their blood relatives.Footnote 4 Thus, if a genetic study results in the discovery that a participant is genetically predisposed to a serious disease, other persons who did not consent to participate in the study might be confronted with distressing, and potentially stigmatising, information that they never wanted to know.

In some cases, third-party risks extend beyond individuals to broader social groups. As the Council for International Organizations of Medical Sciences (CIOMS) has recognised, research on particular racial or ethnic groups ‘could indicate – rightly or wrongly – that a group has a higher than average prevalence of alcoholism, mental illness or sexually transmitted disease, or that it is particularly susceptible to certain genetic disorders’,Footnote 5 thereby exposing the group to potential stigma or discrimination. One example was a study in which researchers took blood samples from members of the Havasupai tribe in an effort to identify a genetic link to type 2 diabetes. After the study was completed, the researchers used the blood samples for a variety of unrelated studies without the tribe members’ informed consent, including research related to schizophrenia, inbreeding and migration patterns. Tribe members claimed that the schizophrenia and inbreeding studies were stigmatising, and that they never would have agreed to participate in the migration research because it conflicted with the tribe’s origin story, which maintained that the tribe had originated in the Grand Canyon. The researcher institution reached a settlement with the tribe that included monetary compensation and a formal apology.Footnote 6

Despite the prevalence of third-party risks in research, most ethics codes and regulations do not mention risks to anyone other than research participants. This omission is striking given that some of these same sources explicitly state that benefits to non-participants should be factored into the risk-benefit analysis. A notable exception is the EU Clinical Trials Regulation, which states that the anticipated benefits of the study must be justified by ‘the foreseeable risks and inconveniences’,Footnote 7 without specifying that those risks and inconveniences must be experienced by the participants themselves.

In addition to omitting any reference to third-party risks, the US Federal Regulations on Research With Human Participants state that entities reviewing proposed research ‘should not consider possible long-range effects of applying knowledge gained in the research (e.g. the possible effects of the research on public policy) as among those research risks that fall within the purview of its responsibility’.Footnote 8 This provision is intended ‘to prevent scientifically valuable research from being stifled because of how sensitive or controversial findings might be used at a social level’.Footnote 9

13.3 Identifying Benefits

The primary potential benefit of research is the production of generalisable knowledge – i.e. knowledge that has relevance beyond the specific individuals participating in the study. For example, in a clinical trial of an investigational drug, data sufficient to establish the drug’s safety and efficacy would be a benefit of research. Data showing that an intervention is not safe or effective – or that it is inferior to the existing standard of care – would also count as a benefit of research, as such knowledge can protect future patients from potentially harmful and/or ineffective treatments they might otherwise undergo.

Whether a study has the potential to produce generalisable knowledge depends in part on how it is designed. The randomised controlled clinical trial (RCT) is often described as the ‘gold standard’ of research, as it includes methodological features designed to eliminate bias and control for potential confounding variables.Footnote 10 However, in some types of research, conducting an RCT may not be a realistic option. For example, if researchers want to understand the impact of different lifestyle factors on health, it might not be feasible to randomly assign participants to engage in different behaviours, particularly over a long period of time.Footnote 11 In addition, ethical considerations may sometimes preclude the use of RCTs. For example, researchers investigating the impact of smoking on health could not ethically conduct a study in which non-smokers are asked to take up smoking.Footnote 12 In these situations, alternative study designs may be used, such as cohort or case-control studies. These alternative designs can provide valuable scientific information, but the results may be prone to various biases, a factor that should be considered in assessing the potential benefits of the research.Footnote 13

A recent example of ethical challenges to RCTs arose during the Ebola outbreak of 2013–2016, when the international relief organisation Médicins Sans Frontières refused to participate in any RCTs of experimental Ebola treatments. The group argued that it would be unethical to withhold the experimental interventions from persons in a control group when ‘conventional care offers little benefit and mortality is extremely high’.Footnote 14 The difficulty with this argument was that, in the context of a rapidly evolving epidemic, the results of studies conducted without concurrent control groups would be difficult to interpret, meaning that an ineffective or even harmful intervention could erroneously be deemed effective. Some deviations from the ‘methodologically ideal approach’, such as the use of adaptive trial designs, could have been justified by the need ‘to accommodate the expectations of participants and to promote community trust’.Footnote 15 However, any alternative methodologies would need to offer a reasonable likelihood of producing scientifically valid information, or else it would not have been ethical to expose participants to any risk at all.

The potential benefit of scientific knowledge also depends on the size of a study, as studies with very small sample sizes may lack sufficient statistical power to produce reliable information. Some commentators maintain that underpowered studies lack any potential benefit, making them inherently unethical.Footnote 16 Others point out that small studies might be unavoidable in certain situations, such as research on rare diseases, and that their results can still be useful, particularly when they are aggregated using Bayesian techniques.Footnote 17

Often, choices about study design can require trade-offs between internal and external validity. While an RCT with tightly controlled inclusion and exclusion requirements is the most reliable way to establish whether an experimental intervention is causally linked to an observable result – thereby producing a high level of internal validity – if the study population does not reflect the diversity of patients in the real world, the results might have little relevance to clinical practice – thereby producing a low level of external validity.Footnote 18 In assessing the potential benefits of a study, decision-makers should take both of these considerations into account.

In addition to the potential benefit of generalisable knowledge, some research also offers potential benefits to the individuals participating in the study. Benefits to study participants can be divided into ‘direct’ and ‘indirect’ (or ‘collateral’) benefits.Footnote 19 Direct benefits refer to those that result directly from the interventions being studied, such as an improvement in symptoms that results from taking an investigational drug. In some studies, there is no realistic possibility that participants will directly benefit from the study interventions; this would be the case in a Phase I drug study involving healthy volunteers, where the purpose is simply to identify the highest dose humans can tolerate without serious side effects. Indirect benefits include those that result from ancillary features of the study, such as access to free health screenings, as well as the psychological benefits that some participants receive from engaging in altruistic activities. Study participants may also consider any payments or other remuneration they receive in exchange for their participation as a type of research-related benefit.

Most commentators take the position that only potential direct benefits to participants and potential contributions to generalisable knowledge should be factored into the risk-benefit analysis. The concern is that, otherwise, ‘simply increasing payment or adding more unrelated services could make the benefits outweigh even the riskiest research’.Footnote 20 Other commentators reject this position on the ground that it is not consistent with the ethical imperative to respect participants’ autonomy, and that it could preclude studies that would advance the interests of participants, investigators, and society.Footnote 21 The US Food and Drug Administration has stated that payments to participants should not be considered in the context of risk-benefit assessment,Footnote 22 but it has not taken a position on consideration of other indirect benefits, such as access to free health screenings.

13.4 Quantifying Risks and Benefits

Once the risks and benefits of a proposed study have been identified, the next step is to quantify them. Doing this is complicated by the fact that the significance of a particular risk or benefit is highly subjective. For example, a common risk in health-related research is the potential for unauthorised disclosure of participants’ medical records. This risk could be very troubling to individuals who place a high degree of value on personal privacy, but for persons who share intimate information freely, the risk of unauthorised disclosure might be a minor concern. In fact, in some studies, the same experience might be perceived by some participants as a harm and by others as a benefit. For example, in a study in which participants are asked to discuss prior traumatic experiences, some participants might experience psychological distress, while others might welcome the opportunity to process past experiences with a sympathetic listener.Footnote 23

In addition to differing attitudes about the potential outcomes of research, individuals differ in their perceptions about risk-taking itself. Many people are risk averse, meaning that they would prefer to forego a higher potential benefit if it enables them to reduce the potential for harm. Others are risk neutral, or even risk preferring. Similarly, individuals exhibit different levels of willingness to trade harmful outcomes for good ones.Footnote 24 For example, some people are willing to tolerate medical treatments with significant side effects, such as chemotherapy, because they place greater value on the potential therapeutic benefits. Others place greater weight on avoiding pain or discomfort and would be disinclined to accept high-risk interventions even when the potential benefits are substantial.

Another challenge in attempting to quantify risks and benefits is that the way that risks and benefits are perceived can be influenced by a variety of cognitive biases. For example, one study asked subjects to imagine that they had lung cancer and had to decide between surgery and radiation. One group was told that 68 per cent of surgical patients survived after one year, while a second group was told that 32 per cent of surgical patients died after one year. Even though the information being conveyed was identical, framing the information in terms of a risk of death increased the number of subjects who chose radiation from 18 per cent to 44 per cent.Footnote 25 Another common cognitive bias is the ‘availability heuristic’, which leads people to attach greater weight to information that is readily called to mind.Footnote 26 For example, if a well-known celebrity recently died after being implanted with a pacemaker, the risk of pacemaker-related deaths may be perceived as greater than it actually is.

Individuals’ perceptions of risks and benefits can also be influenced by their level of social trust, which has been defined as ‘the willingness to rely on those who have the responsibility for making decisions and taking actions related to the management of technology, the environment, medicine, or other realms of public health and safety’.Footnote 27 In particular, research suggests that, when individuals are considering the risks and benefits of new technologies, their level of social trust has ‘a positive influence on perceived benefits and a negative influence on perceived risks’.Footnote 28 This is not surprising: those who trust that decision-makers will act in their best interests are less likely to be fearful of changes, while those who lack such trust are more likely to be worried about the potential for harm (see Aitken and Cunningham-Burley, Chapter 11, in this volume).

Compounding these subjective variables is the fact that risk-benefit analysis typically takes place against a backdrop of scientific uncertainty. This is true for all risk-benefit assessments, but it is especially pronounced in research, as the very reason research is conducted is to fill an evidentiary gap. While evaluators can sometimes rely on prior research, including animal studies, to identify the potential harms and benefits of proposed studies, most health-related research takes place in highly controlled environments, over short periods of time. As a result, prior research results are unlikely to provide much information about rare safety risks, long-term dangers or harms and benefits that are limited to discrete population subgroups.

13.5 Weighing Risks and Benefits

Those responsible for reviewing proposed research must ultimately weigh the risks and benefits to determine whether the relationship between them is acceptable. This process is complicated by the fact that risks and benefits often cannot be measured on a uniform scale. First, ‘risks and benefits for subjects may affect different domains of health status’,Footnote 29 as when a risk of physical injury is incurred in an effort to achieve a potential psychological benefit. Second, ‘risks and benefits may affect different people’;Footnote 30 risks are typically borne by the participants in the research, but most of the benefits will be experienced by patients in the future.

Several approaches have been suggested for systematising the process of risk-benefit analysis in research. The first, and most influential, approach is known as ‘component analysis’. This approach calls on decision-makers to independently assess the risks and potential benefits of each intervention or procedure to be used in a study, distinguishing those that have the potential to provide direct benefits to participants (‘therapeutic’) from those that are administered solely for the purpose of developing generalisable knowledge (‘non-therapeutic’). For therapeutic interventions, there must be genuine uncertainty regarding the relative therapeutic benefits of the intervention as compared to those of the standard of care for treating the participants’ condition or disorder (a standard known as ‘clinical equipoise’Footnote 31). For non-therapeutic interventions, the risks must be minimised to the extent consistent with sound scientific design, and the remaining risks must be reasonable in relation to the knowledge that is expected to result. In addition, when a study involves a vulnerable population, such as children or adults who lack decision-making capacity, the risks posed by nontherapeutic procedures may not exceed a ‘minor increase above minimal risk’.Footnote 32

Component analysis has been influential, but it is not universally supported. Some critics maintain that the distinction between therapeutic and non-therapeutic procedures is inherently ambiguous, as ‘all interventions offer at least some very low chance of clinical benefit’.Footnote 33 Others argue that the approach’s reliance on clinical equipoise rests on the mistaken assumption that researchers have a duty to promote each participant’s medical best interests, which conflates the ethics of research with those of clinical care.Footnote 34

One alternative to component analysis is known as the ‘net risk test’, which is based on the principle that the fundamental ethical requirement of research is ‘to protect research participants from being exposed to excessive risks of harm for the benefit of others’.Footnote 35 The approach has four elements. First, for each procedure involved in a study, the risks to participants should be minimised and the potential clinical benefits to participants enhanced, to the extent doing so is consistent with the study’s scientific design. Second, instead of clinical equipoise, the approach requires that, ‘when compared to the available alternatives, a research procedure must not present an excessive increase in risk, or an excessive decrease in potential benefit, for the participant’.Footnote 36 Third, to the extent particular procedures involve greater risks than benefits, those net risks ‘must be justified by the expected knowledge gained from using that procedure in the study’.Footnote 37 Finally, the cumulative net risks of all of the procedures in a study must not be excessive.Footnote 38

Both component analysis and the net risk test can add structure to the process of risk-benefit analysis by focusing attention on the risks and potential benefits of each intervention in a study. The advantage of this approach is that it reduces the likelihood that potential direct benefits from one intervention will be used as a justification for exposing participants to risks from unrelated interventions that offer no direct benefits. However, neither approach eliminates the need for subjective determinations. Under component analysis, the principle of clinical equipoise offers a benchmark for judging the risks and potential benefits of therapeutic procedures, but for non-therapeutic procedures, the only guidance offered is that the risks must be ‘reasonable’ in relation to the knowledge expected to result. The net benefit test dispenses with clinical equipoise entirely, instead relying on a general principle of avoiding ‘excessive risk’. Whether a particular mix of risks and potential benefits is ‘reasonable’ or ‘excessive’ is ultimately left to the judgment of those charged with reviewing the study.

Most regulations and ethics codes provide little guidance on the process of weighing the risks and potential benefits of research. The primary exception is the CIOMS guidelines, which adopts what it describes as a ‘middle ground’ between component analysis and the net risk test. In most respects, the CIOMS approach reflects component analysis, including its reliance on clinical equipoise as a standard for evaluating interventions or procedures that have the potential to provide direct benefits to participants. However, the guidelines also call for a judgment that ‘the aggregate risks of all research interventions or procedures … must be considered appropriate in light of the potential individual benefits to participants and the scientific social value of the research’,Footnote 39 a requirement that mirrors the final step of the net risk test.

Neither component analysis nor the net risk test explicitly sets an upper limit on permissible risk, at least in studies involving competent adults. However, one of the developers of component analysis has stated that ‘the notion of excessive net risks, and the underlying ethical principle of non-exploitation, clearly impose a cap on the risks that individuals are allowed to assume for the benefit of others’.Footnote 40 The notion of an upper limit on risk also appears in several ethical guidelines. For example, the CIOMS guidelines state that ‘some risks cannot be justified, even when the research has great social and scientific value and adults who are capable of giving informed consent would give their voluntary, informed consent to participate in the study’.Footnote 41 Similarly, the European Commission has suggested that certain ‘threats to human dignity and shared values’ should never be traded against the potential scientific benefits of research, including ‘commonly shared values like privacy or free movement … certain perceptions of the integrity of a person (e.g. cloning, technological modifications) … [and] widely shared view[s] of our place in the world (e.g. inhumane treatment of animals or threat to biodiversity)’.Footnote 42

In light of the inherent ambiguities involved in weighing the risks and benefits of research, the results of risk-benefit assessments can be heavily influenced by the type of decision-making process used. The next section looks at these procedural issues more closely.

13.6 Procedural Issues in Risk-Benefit Analysis

In most health-related research, the process of risk-benefit assessment is undertaken by interdisciplinary bodies known as research ethics committees (RECs), research ethics boards (REBs), or institutional review boards (IRBs). These committees make judgments based on predictions about the preferences and attitudes of typical research participants, which do not necessarily reflect how the actual participants would react to particular risk-benefit trade-offs.Footnote 43 In addition, because few committees rely on formal methods of risk-benefit analysis, decisions are likely to be influenced by individual members’ personal attitudes and cognitive biases.Footnote 44 For this reason, it is not surprising that different committees’ assessments of the risks and potential benefits of identical situations exhibit widespread variation.Footnote 45

Some commentators have proposed techniques to promote greater consistency in risk-benefit assessments. For example, it has been suggested that committees issue written assessments that could be entered into searchable databases.Footnote 46 Others have called on committees to engage in a formal process of ‘evidence-based research ethics review’, in which judgments about risks and potential benefits would be informed by a systematic retrieval and critical appraisal of the best available evidence.Footnote 47

Outside of research ethics, a variety of techniques have been developed to systematise the process of risk-benefit analysis. For example, several quantitative approaches to risk-benefit assessment exist, such as the Quality-Adjusted Time Without Symptoms and Toxicity (Q-TWIST) test, which ‘compares therapies in terms of achieved survival and quality-of-life outcomes’,Footnote 48 or the ‘standard gamble’, which assigns utility values to health outcomes based on individuals’ stated choice between hypothetical health risks.Footnote 49 Committees reviewing proposed studies can draw on these quantitative analyses when relevant ones exist.

In some cases, formal consultation with the community from which participants will be drawn can be an important component of assessing risks and benefits. For example, in the study of Havasupai tribe members discussed above, prior consultation with the community could have alerted researchers to the fact that research on migration patterns was threatening to the tribe’s cultural beliefs. In cancer research, consultation with patient advocacy groups may help identify concerns about potential adverse effects that might not have been sufficiently considered by the researchers.Footnote 50 Further lessons might be learned from the the analysis by Chuong and O'Doherty, Chapter 12, this volume.

13.7 Conclusion

Risk-benefit analysis is a critical part of the process of evaluating the ethical acceptability of health-related research. The primary challenge in risk-benefit assessment arises from the fact that perceptions about risks and potential benefits are inherently subjective. Those charged with assessing the ethical acceptability of research should make efforts to incorporate as many different perspectives into the process as possible, to ensure that their decisions do not simply reflect their own idiosyncratic views.

1 J. Lantos et al., ‘Considerations in the Evaluation and Determination of Minimal Risk in Pragmatic Clinical Trials’, (2015) Clinical Trials, 12(5), 485493.

2 N. Eyal et al., ‘Risk to Study Nonparticipants: A Procedural Approach’, (2018) Proceedings of the National Academy of Sciences, 115(32), 80518053.

3 G. DuVal, ‘Ethics in Psychiatric Research: Study Design Issues’, (2004) Canadian Journal of Psychiatry, 49(1), 5559.

4 A. McGuire et al., ‘Research Ethics and the Challenge of Whole-Genome Sequencing’, (2008) Nature Reviews Genetics, 9(2), 152156.

5 Council for International Organizations of Medical Sciences, ‘International Ethical Guidelines for Health-Related Research Involving Humans’, (CIOMS, 2016), p. 13.

6 M. Mello and L. Wolf, ‘The Havasupai Indian Tribe Case: Lessons for Research Involving Stored Biologic Samples’, (2010) New England Journal of Medicine, 363(3), 204207.

7 Article 28 of the European Union Clinical Trials Regulation 536/2014, OJ 2014 No. L 158/1.

8 The Federal Policy for the Protection of Human Subjects (‘Common Rule’), 45 C.F.R. § 46.111(a)(2) (1991).

9 A. London et al., ‘Beyond Access vs. Protection in Trials of Innovative Therapies’, (2010) Science, 328(5980), 829830, 830.

10 J. Grossman and F. Mackenzie, ‘The Randomized Controlled Trial: Gold Standard, or Merely Standard?’, (2005) Perspectives in Biology & Medicine, 48(4), 516534.

11 J. Younge et al., ‘Randomized Study Designs for Lifestyle Interventions: A Tutorial’, (2015) International Journal of Epidemiology, 44(6), 20062019.

12 C. J. Mann, ‘Observational Research Methods. Research Design II: Cohort, Cross Sectional, and Case-Control Studies’, (2003) Emergency Medicine Journal, 20(1), 5460.

13 D. Grimes and K. Schulz, ‘Bias and Causal Associations in Observational Research’, (2002) Lancet, 359(9302), 248252.

14 C. Adebamowo et al., ‘Randomised Controlled Trials for Ebola: Practical and Ethical Issues’, (2014) Lancet, 384(9952), 14231424, 1423.

15 C. Coleman, ‘Control Groups on Trial: The Ethics of Testing Experimental Ebola Treatments’, (2016) Journal of Biosecurity, Biosafety and Biodefense Law, 7(1), 324, 8.

16 E. Emanuel et al., ‘What Makes Clinical Research Ethical?’, (2000) JAMA, 283(20), 27012711.

17 R. Lilford and A. Stevens, ‘Underpowered Studies’, (2002) British Journal of Surgery, 89(2), 129131.

18 B. Freedman and S. Shapiro, ‘Ethics and Statistics in Clinical Research: Towards a More Comprehensive Examination’, (1994) Journal of Statistical Planning and Inference, 42(1), 223240.

19 N. King, ‘Defining and Describing Benefit Appropriately in Clinical Trials’, (2000) Journal of Law, Medicine & Ethics, 28(4), 332343.

20 Emanuel et al., ‘What Makes Clinical Research Ethical?’, 2705.

21 See, e.g. A. Wertheimer, ‘Is Payment a Benefit?’, (2013) Bioethics, 27(2), 105116.

22 US Food and Drug Administration, ‘Payment and Reimbursement to Research Subjects’, (US Food and Drug Administration, 2018), www.fda.gov/regulatory-information/search-fda-guidance-documents/payment-and-reimbursement-research-subjects.

23 T. Opsal et al., ‘“There Are No Known Benefits …” Considering the Risk/Benefit Ratio of Qualitative Research’, (2016) Qualitative Health Research, 26(8), 11371150.

24 C. Troche et al., ‘Evaluation of Therapeutic Strategies: A New Method for Balancing Risk and Benefit’, (2000) Value in Health, 3(1), 1222.

25 P. Slovic, ‘Trust, Emotion, Sex, Politics, and Science: Surveying the Risk-Assessment Battlefield’, (1999) Risk Analysis, 19(4), 689701.

26 T. Pachur et al., ‘How Do People Judge Risks: Availability Heuristic, Affect Heuristic, or Both?’, (2012) Journal of Experimental Psychology: Applied, 18(3), 314330.

27 M. Siegrist et al., ‘Salient Value Similarity, Social Trust, and Risk/Benefit Perception’, (2000) Risk Analysis, 20(3), 353362, 354.

28 Footnote Ibid., 358.

29 D. Martin et al., ‘The Incommensurability of Research Risks and Benefits: Practical Help for Research Ethics Committees’, (1995) IRB: Ethics & Human Research, 17(2), 810, 9.

31 B. Freedman, ‘Equipoise and the Ethics of Clinical Research’, (1987) New England Journal of Medicine, 317(3), 141145.

32 C. Weijer, ‘The Ethical Analysis of Risks and Potential Benefits in Human Subjects Research: History, Theory, and Implications for US Regulation’ in National Bioethics Advisory Commission, Ethical and Policy Issues in Research Involving Human Participants. Volume II – Commissioned Papers and Staff Analysis (Bethesda, MD: National Bioethics Advisory Commission), pp. 129, p. 24.

33 A. Rid and D. Wendler, ‘Risk-Benefit Assessment in Medical Research – Critical Review and Open Questions’, (2010) Law, Probability and Risk, 9(3–4), 151177, 157.

34 Footnote Ibid., 158.

35 Footnote Ibid., 164.

38 D. Wendler and F. Miller, ‘Assessing Research Risks Systematically: The Net Risks Test’, (2007) Journal of Medical Ethics, 33(8), 481486.

39 Council for International Organizations of Medical Sciences, ‘International Ethical Guidelines’, xi, 9.

40 Wendler and Miller, ‘Assessing Research Risks Systematically’, 165.

41 Council for International Organizations of Medical Sciences, ‘International Ethical Guidelines’, 10.

42 European Commission Directorate-General for Research and Innovation, ‘Research and Innovation, Research, Risk-Benefit Analyses, and Ethical Issues’, (European Union, 2013).

43 M. Meyer, ‘Regulating the Production of Knowledge: Research Risk-Benefit Analysis and the Heterogeneity Problem’, (2013) Administrative Law Review, 65(2), 241242.

44 C. Coleman, ‘Rationalizing Risk Assessment in Human Subject Research’, (2004) Arizona Law Review, 46(1), 151.

45 T. Caulfield, ‘Variation in Ethics Review of Multi-Site Research Initiatives’, (2011) Amsterdam Law Forum, 3(1), 85100.

46 Coleman, ‘Rationalizing Risk Assessment’, 1176–1179.

47 E. Anderson and J. DuBois, ‘Decision-Making with Imperfect Knowledge: A Framework for Evidence-Based Research Ethics’, (2012) Journal of Law, Medicine and Ethics, 40(4), 951966.

48 Troche et al., ‘Evaluation of Therapeutic Strategies’, 13.

49 S. van Osch and A. Stiggelbout, ‘The Construction of Standard Gamble Utilities’, (2008) Health Economics, 17(1), 3140.

50 N. Dickert and J. Sugarman, ‘Ethical Goals of Community Consultation in Research’, (2005) American Journal of Public Health, 95(7), 11231127.

14 The Regulatory Role of Patents in Innovative Health Research and Its Translation from the Laboratory to the Clinic

Dianne Nicol and Jane Nielsen
14.1 Introduction

Regulators must ensure that innovative health research is safe and undertaken in accordance with laws, ethical norms and social values, and that it is translated into clinical outcomes that are safe, effective and ethically appropriate. But they must also ensure that innovative health research and translation (IHRT) is directed towards the most important health needs of society. Through the patent system, regulators provide an incentive-based architecture for this to occur by granting a temporary zone of exclusivity around patented products and processes. Patents thus have the effect of devolving control over IHRT pathways to patentees and to those to whom patentees choose to license their patent rights.

The sage words of Stephen Hilgartner set the backdrop for this chapter: ‘Patents do not just allocate economic benefits; they also allocate leverage in negotiations that shape the technological and social orders that govern our lives’.Footnote 1 Patents have been granted for many – if not all – of the major recent innovations in health research, from the earliest breakthroughs like recombinant DNA technology, the polymerase chain reaction, the Harvard Oncomouse and the BRCA gene sequences, through to a whole variety of viruses, monoclonal antibodies, receptors and vectors, thousands of DNA sequences, embryonic stem cell technology, intron sequence analysis, genome editing technologies and many more.Footnote 2 These innovations have laid the foundations for whole new health research pathways, from basic research, through applied research, to diagnostic and therapeutic end points.