Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T23:37:19.150Z Has data issue: false hasContentIssue false

5 - The Garamantes from Fewet (Ghat, Fazzan, Libya)

A Skeletal Perspective

from Part I - Burial Practices in the Central Sahara

Published online by Cambridge University Press:  21 June 2019

M. C. Gatto
Affiliation:
University of Leicester
D. J. Mattingly
Affiliation:
University of Leicester
N. Ray
Affiliation:
University of Oxford
M. Sterry
Affiliation:
University of Durham
Get access

Summary

The distribution of funerary stone structures in the Saharan landscape has been a subject of interest for the Italian-Libyan Archaeological Mission in the Tadrart Akakus and Massak since the early ’90sThis archaeological evidence gave witness to an enduring human settlement, lasting at least from the Pastoral period to Proto-historical times, and played an important role in the definition of the cultural identities of the local groups,while representing a source of information about population features and dynamics.In the twentieth century, only a few excavations were carried out in cemeteries located in Fazzan. In 1997, as part of an interdisciplinary project focused on Holocene environment and human settlement until the rise of the Garamantian civilisation, our mission started a systematic survey and excavation of funerary structures in the Wadi Tanzzuft. The 2004–06 investigation of Fewet necropolis needs to be viewed in this framework.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acsàdi, G. and Nemeskèri, J. 1970. History of Human Life Span and Mortality. Budapest: Akàdemiai Kiadò.Google Scholar
Alhaique, F. 2013. The faunal remains. In Mori 2013a: 191–98.Google Scholar
Allen, J. A. 1877. The influence of physical conditions on the genesis of the species. Radical Review 1: 108–40.Google Scholar
Ammerman, A. J. and Cavalli-Sforza, L. L. 1984. The Neolithic Transition and the Genetics of Populations in Europe. Princeton, New York: Princeton University Press.Google Scholar
Anderson, J. E. 1968. Late Palaeolithic skeletal remains from Nubia. In Wendorf, F. (ed.), The Prehistory of Nubia 2, Dallas: Southern Methodist University Press, 9961040.Google Scholar
Armelagos, G. J. and Rose, J. C. 1972. Factors contributing to antemortem tooth loss in population from prehistoric Nubia. American Journal of Physical Anthropology 37: 428.Google Scholar
Arrighetti, B., Reale, B., Ricci, F. and Borgognini Tarli, S. 2002. Skeletal markers of stress at Site 96/129. In di Lernia, and Manzi 2002: 261–68.Google Scholar
Auerbach, B. M. and Ruff, C. B. 2006. Limb bone bilateral asymmetry: variability and commonality among modern humans. Journal of Human Evolution 50: 203–18.Google Scholar
Barbujani, G., Pilastro, A., De Domenico, S. and Renfrew, C. 1994. Genetic variation in North Africa and Eurasia: Neolithic demic diffusion vs. Paleolithic colonisation. American Journal of Physical Anthropology 95: 137–54.Google Scholar
Belcastro, M. G., Mariotti, V., Facchini, F. and Bonfiglioli, B. 2004. Proposal of a data collection form to record dento-alveolar features. Application to two Roman skeletal samples from Italy. Collegium Antropologicum 28.1: 161–77.Google Scholar
Benagiano, A. 1977. Patologia Odontostomatologica. Roma: Utet.Google Scholar
Benuš, R., Obertová, Z. and Masnicová, S. 2010. Demographic, temporal and environmental effects on the frequency of cribra orbitalia in three early medieval populations from western Slovakia. Journal of Comparative Human Biology 61: 178–90.Google Scholar
Berry, A. C. and Berry, R. J. 1967. Epigenetic variation in the human cranium. Journal of Anatomy 101: 361–79.Google Scholar
Biasutti, R. (ed.). 1967. Le Razze e i Popoli della Terra 2 (3), Africa. Torino: Unione Tipografico/Editrice Torinese.Google Scholar
Bocquet, J. P. and Masset, C. 1977. Estimateurs en paléodemographie. L’Homme 17: 6590.Google Scholar
Bogin, B., Varela Silva, M. I. and Rios, L. 2007. Life history trade-offs in human growth: adaptation or pathology? American Journal of Human Biology 19: 631–42.Google Scholar
Borgognini Tarli, S. and Pacciani, E. 1993. I resti umani nello scavo archeologico. Metodiche di recupero e studio. Roma: Bulzoni editore.Google Scholar
Buzon, M. R. 2006. Health of the non-elites at Tombos: Nutritional and disease stress in New Kingdom Nubia. American Journal of Physical Anthropology 130: 2637.Google Scholar
Calcagno, J. M. 1986. Dental reduction in post-Pleistocene Nubia. American Journal of Physical Anthropology 70: 349–63.Google Scholar
Carli-Thiele, P. and Schultz, M. 1997. Microscopic differential diagnosis of so called cribra orbitalia, a contribution to the etiology of orbital porotic hyperostosis. American Journal of Physical Anthropology 24: 88.Google Scholar
Camps, G. 1979. Manuel de recherche préhistorique. Paris: Doin.Google Scholar
Canci, A. and Minozzi, S. 2005. Archeologia dei resti umani. Dallo scavo al laboratorio. Roma: Carocci editore.Google Scholar
Chamla, M. C. 1968. Les populations anciennes du Sahara et des régions limitrophes. Etude des restes osseux humains néolithique et protohistoriques. Mémoire Centre Recherche Anthropologique Préhistorique Ethnologique. Paris: Arts et Métiers.Google Scholar
Chamla, M. C. 1970. Les hommes épipaléolithiques de Columnata (Algérie occidentale), Etude anthropologique. Mémoire Centre Recherche Anthropologique Préhistorique Ethnologique. Paris: Arts et Métiers.Google Scholar
Clarke, N. G., Carey, S. E., Srikandi, W., Hirsch, R. S. and Leppard, P. I. 1986. Periodontal diseases in ancient populations. American Journal of Physical Anthropology 71: 173–83.CrossRefGoogle ScholarPubMed
Colaruotolo, P. 2007. Dalle ossa allo stile di vita. Indicatori di stress funzionale nello scheletro post-craniale di due popolazioni del Fezzan dal periodo pastorale (Takarkori, 7000–4000 anni b.p.) all’epoca protostorica dei Garamanti dello Wadi el-Agiàl. Unpublished MA Degree Thesis, Sapienza Università di Roma.Google Scholar
Corruccini, R. S., Handler, J. S. and Jacobi, K. B. 1985. Chronological distribution of enamel hypoplasia and weaning in Carribean slave population. Human Biology 57: 699711.Google Scholar
Cremaschi, M. and di Lernia, S. 2001. Environment and settlements in the Mid-Holocene paleo-oasis of Wadi Tanezzuft (Libyan Sahara). Antiquity 75: 815–25.Google Scholar
Dal Poz, M., Ricci, F., Reale, B., Malvone, M., Salvadei, L. and Manzi, G. 2001. Paleobiologia della popolazione altomedioevale di San Lorenzo di Quingentole, Mantova. Cranio e scheletro postcraniale. In Manicardi, A. (ed.), San Lorenzo di Quingentole. Archeologia, storia ed antropologia, Documenti di Archeologia 25, Mantova: SAP, 151–98.Google Scholar
Daniels, C. M. 1989. Excavation and fieldwork amongst the Garamantes. Libyan Studies 20: 4561.Google Scholar
di Lernia, S. 1999. Discussing pastoralism. The case of the Acacus and surroundings (Libyan Sahara). Sahara 11: 720.Google Scholar
di Lernia, S. and Manzi, G. 1998. Funerary practices and anthropological features at 8000–5000 bp. Some evidence from central-southern Acacus (Libyan Sahara). In Cremaschi, M. and di Lernia, S. (eds), Wadi Teshuinat. Palaeoenvironment and Prehistory in Southwestern Fezzan (Libyan Sahara), CNR Quaderni di Geodinamica Alpina e Quaternaria, Milano 7, Firenze: Edizioni all’Insegna del Giglio, 217–42.Google Scholar
di Lernia, S. and Tafuri, M. A. 2013. Persistent deathplaces and mobile landmarks: The Holocene mortuary and isotopic record from Wadi Takarkori (SW Libya). Journal of Anthropological Archaeology 32.1: 115.Google Scholar
di Lernia, S. and Manzi, G. (eds). 2002. Sand, Stones, and Bones. The Archaeology of Death in the Wadi Tanezzuft Valley (5000–2000 BP). AZA 3. Firenze: Edizioni all’Insegna del Giglio.Google Scholar
Destro-Bisol, G., Donati, F., Coia, V., Boschi, I., Verginelli, F., Caglia, A., Tofanelli, S., Spedini, G. and Capelli, C. 2004. Variation of female and male lineages in sub-Saharan populations: the importance of sociocultural factors. Molecular Biology and Evolution 21: 1673–82.Google Scholar
Dutour, O. 1989. Hommes fossiles du Sahara. Peuplements holocènes du Mali septentrional. Paris: Editions du CNRS.Google Scholar
Eshed, V., Ghoper, A., Galili, E. and Hershkovitz, I. 2004. Musculoskeletal stress markers in Natufian hunter-gatherers and Neolithic farmers in the Levant: the upper limb. American Journal of Physical Anthropology 123: 303–15.Google Scholar
Fazekas, I. G and Kósa, F. 1978. Forensic Fetal Osteology. Budapest: Akadémiai Kiadó.Google Scholar
Ferembach, D., Schwidetzky, I. and Stloukal, M. 1979. Raccomandazioni per la determinazione dell’età e del sesso sullo scheletro. Rivista di Antropologia 60: 551.Google Scholar
Formicola, V. and Giannecchini, M. 1999. Evolutionary trends of stature in Upper Paleolithic and Mesolithic Europe. Human Evolution 36: 319–33.Google ScholarPubMed
France, D. L. and Horn, A. D. 1988. Lab Manual and Workbook for Physical Anthropology. St. Paul, New York, Los Angeles, San Francisco: West Publishing Company.Google Scholar
Goose, D. H. 1963. Dental measurement: an assessment of its value anthropological studies. In Brothwell, D. R. (ed.), Dental Anthropology, London: Pergamon, 125–48.Google Scholar
Hall, R. L. 1982. Sexual dimorphism for size in seven nineteenth century northwest coast populations. Human Biology 50: 159–71.Google Scholar
Hammer, Ø., Harper, D. A. T. and Ryan, P. D. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4.1: 19.Google Scholar
Hanihara, T., Ishida, H. and Dodo, Y. 2003. Characterization of biological diversity through analysis of discrete cranial traits. American Journal of Physical Anthropology 121: 241–51.Google Scholar
Hauser, G. and De Dtefano, G. F. 1989. Epigenetic Variants of the Human Skull. Stuttgart: Schweizerbart.Google Scholar
Hengen, O. P. 1971. Cribra orbitalia, pathogenesis and probable etiology. Homo 22: 5775.Google Scholar
Henschen, F. 1961. Cribra cranii, a skull condition said to be of racial or geographical nature. Pathological Microbiology 21: 724–29.Google Scholar
Herhkovitz, I., Rothschilds, B. M., Latimer, B., Dutour, O., Leonetti, G., Greenwald, C. M., Rothschilds, C. and Jellema, L. M. 1997. Recognition of sickle cell anemia in skeletal remains of children. American Journal of Physical Anthropology 104: 213–26.Google Scholar
Hillson, S. W. 1996. Dental Anthropology. Cambridge: Cambridge University Press.Google Scholar
Holland, T. D. and O’Brien, M. J. 1997. Parasites, porotic hyperostosis, and the implications of changing perspectives. American Antiquity 62.2: 183–93.Google Scholar
Irish, J. D. 1998. Ancestral dental traits in recent Sub-Saharan Africans and the origins of modern humans. Journal of Human Evolution 34: 8198.CrossRefGoogle ScholarPubMed
Kelley, M. A. and Larsen, C. S. 1991. Advances in Dental Anthropology. New York: Wiley-Liss.Google Scholar
Kellock, W. L. and Parsons, P. A. 1970. Variation of minor non-metrical cranial variants in Australian aborigines. American Journal of Physical Anthropology 32: 409–22.Google Scholar
Krogman, W. M. and Iscan, Y. M. (eds). 1986. The Human Skeleton in Forensic Medicine. Springfield: C.C. Thomas.Google Scholar
Leschi, L. 1945. La Mission scientifique du Fezzân. Archéologie. Travaux de l’Institut de Recherches Sahariennes 3: 183–86.Google Scholar
Liverani, M. (ed.). 2003. Arid Lands in Roman Times. Papers from the International Conference (Rome, July, 9th–10th 2001). AZA 4. Firenze: All’Insegna del Giglio.Google Scholar
Liverani, M. (ed.). 2006. Aghram Nadharif. The Barkat Oasis (Sha’abiya of Ghat, Libyan Sahara) in Garamantian Times. AZA 5. Firenze: All’Insegna del Giglio.Google Scholar
Liverani, M. 2007. Cronologia e periodizzazione dei Garamanti. Acquisizioni e prospettive. Athenaeum 95: 633–62.Google Scholar
Liverani, M., Barbato, L., Castelli, R., Cancellieri, E. and Putzolu, C. 2013. The survey of the Fewet necropolis, in Mori 2013a: 199252.Google Scholar
Lovejoy, C. O. 1985. Dental wear in the Libben population: its functional pattern and role in the determination of adult skeletal age at death. American Journal of Physical Anthropology 68: 4756.Google Scholar
Manouvrier, L. 1893. La determination de la taille d’apres le grands os des membres. Bulletin et Mémoires de la Société d’Anthropologie de Paris 4: 347.Google Scholar
Manzi, G. 2003. ‘Epigenetic’ cranial traits, Neanderthals and the origin of Homo sapiens. Rivista di antropologia 81: 5768.Google Scholar
Manzi, G. and Passerello, P. 1999. Human remains, deciduous and permanent teeth. In di Lernia, S. (ed.), The Uan Afuda Cave. Hunter-Gatherer Societies of Central Sahara, AZA 1, Firenze: All’Insegna del Giglio, 203–07.Google Scholar
Manzi, G. and Ricci, F. 2003. Population of the Roman Era in the central Sahara: skeletal samples from the Fezzan (south-western Libya) in a diachronic perspective. In Liverani 2003: 1522.Google Scholar
Manzi, G. and Vienna, A. 1997. Cranial non-metric traits as indicators of hypostosis or hyperostosis. Rivista di Antropologia 75: 4161.Google Scholar
Manzi, G., Vienna, A. and Hauser, G. 1996. Developmental stress and cranial hypostosis by epigenetic trait occurrence and distribution: an exploratory study on the Italian Neanderthals. Journal of Human Evolution 30: 511–27.Google Scholar
Martin, R. and Saller, K. 1957. Lehrbuch der Anthropologie Band I e Band II. Stuttgart: Fischer.Google Scholar
Mattingly, D. J. 2003. Religious and funerary structures. In Mattingly, D. J. (ed.), The Archaeology of Fazzan, Volume 1: Synthesis, London: Society for Libyan Studies, Department of Antiquities, 177234.Google Scholar
Mattingly, D. J. 2007. The African way of death: burial rituals beyond the Roman Empire. In Stone and Stirling 2007: 138–63.Google Scholar
Mattingly, D. J. (ed.). 2010. The Archaeology of Fazzan. Volume 3, Excavations carried out by Daniels, C. M.. London: Society for Libyan Studies, Department of Antiquities.Google Scholar
Meindl, R. S. and Lovejoy, C. O. 1985. Ectocranial suture closure: a revised method for the determination of skeletal age at death based on lateral-anterior sutures. American Journal of Physical Anthropology 68: 4756.Google Scholar
Mercuri, A. M., Bosi, G. and Buldrini, F. 2013. Seeds, fruits and charcoal from the Fewet compound. In Mori 2013a: 177–90.Google Scholar
Mittler, D. M. and Van Gerven, D. P. 1994. Developmental, diachronic, and demographic analysis of cribra orbitalia in the Medieval Christian populations of Kulubnarti. American Journal of Physical Anthropology 93: 287–97.Google Scholar
Mori, L. (ed.). 2013a. Life and Death of a Rural Village in Garamantian Times. Archaeological Investigations in the Oasis of Fewet (Libyan Sahara). AZA 6. Firenze: All’Insegna del Giglio.Google Scholar
Mori, L. 2013b. The survey in the Tan Ataram area. In Mori 2013a: 7178.Google Scholar
Mori, L. and Ricci, F. 2013. The excavation of the Fewet necropolis. In Mori 2013a: 253318.Google Scholar
Mori, L., Gatto, M. C. and Ottomano, C. 2013a. Excavations and soundings at Tan Afella. In Mori 2013a: 3370.Google Scholar
Mori, L., Gatto, M. C., Ricci, F. and Zerboni, A. 2013b. Life and death at Fewet. In Mori 2013a: 375–87.Google Scholar
Nikita, E., Crivellaro, F., Stock, J., Foley, R. and Lahr, M. M. 2010. Human skeletal remains. In Mattingly, D. J. (ed.), The Archaeology of Fazzan, Volume 3, Excavation of C. M. Daniels, London: Society for Libyan Studies, Department of Antiquities, 375408.Google Scholar
Nikita, E., Siew, Y. Y., Stock, J., Mattingly, D. J. and Mirazon Lahr, M. M. 2011. Activity patterns in the Sahara desert: an interpretation based on cross-sectional geometric properties. American Journal of Physical Anthropology 146: 423–34.Google Scholar
Nikita, E., Mattingly, D. J. and Lahr, M. M. 2012. Sahara: barrier or corridor? Nonmetric cranial traits and biological affinities of North African Late Holocene populations. American Journal of Physical Anthropology 147: 280–92.Google Scholar
Ortner, D. 2003. Identification of Pathological Conditions in Human Skeletal Remains. New York: Academic Press.Google Scholar
Ortner, D. J., Butler, W., Cafarella, J. and Milligan, L. 2001. Evidence of probable scurvy in subadults from archaeological sites in North America. American Journal of Physical Anthropology 114: 343–51.Google Scholar
Ossenberg, N. S. 1970. The influence of artificial cranial deformation on discontinuous morphological traits. American Journal of Physical Anthropology 33: 357–72.Google Scholar
Pace, B., Sergi, S. and Caputo, G. 1951. Scavi Sahariani. Ricerche nell’Uadi el-Agial e nell’Oasi di Gat. Monumenti antichi 41: 150549.Google Scholar
Paris, F. 1984. La région d’In Gall-Tegidda-n-Tesemt (Niger, programme archéologique d’urgence 1977–1981). III : Les sépultures du Néolithique final à l’Islam. Études nigériennes 50. Niamey: Inst. de Rech. en Sci. Hum.Google Scholar
Pearson, O. M., Cordero, R. B. and Busby, A. M. 2006. How different were Neanderthals’ habitual activities? A comparative analysis with diverse groups of recent humans. In Harvati, K. and Harrison, T. (eds), Neanderthals Revisited: New Approaches and Perspectives, New York: Springer, 135–56.Google Scholar
Pitre, M. C., Stark, R. J., Gatto, M. C. 2016. First probable case of scurvy in ancient Egypt at Nag el-Qarmila, Aswan. International Journal of Paleopathology 13: 1119.Google Scholar
Pomeroy, E. and Zakrzewski, S. R. 2009. Sexual dimorphism in diaphyseal cross-sectional shape in the Medieval Muslim population of Ecija, Spain, and Anglo-Saxon Great Chesterford, UK. International Journal of Osteoarchaeology 19: 5065.Google Scholar
Puccioni, N. 1967. I nomadi del Sahara. In Biasutti, R. (ed.), Le razze e i popoli della Terra 2 (3), Unione Torino: Tipografico/Editrice Torinese, 154–82.Google Scholar
Raxter, M. H. 2011. Egyptian Body Size: A Regional and Worldwide Comparison. PhD Dissertation, University of South Florida, http://scholarcommons.usf.edu/etd/3305.Google Scholar
Ricci, F., Manzi, G., Fornai, C., Vecchi, F. and Passarello, P. 2002. The human skeletal remains: inventory and inferences. In di Lernia, and Manzi 2002: 217–50.Google Scholar
Ricci, F., Fornai, C., Tiesler Blos, V., Rickards, O., di Lernia, S. and Manzi, G. 2008. Evidence of artificial cranial deformation from the later prehistory of the Acacus Mts. (South-Western Libya, Central Sahara). International Journal of Osteoarchaeology 18: 372–91.Google Scholar
Ricci, F., Tafuri, M. A., Di Vincenzo, F. and Manzi, G. 2013. The human skeletal sample from Fewet. In Mori 2013a: 319–62.Google Scholar
Ricci, R., Mancinelli, D., Vargiu, R., Cucina, A., Santandrea, E., Capelli, A. and Catalano, P. 1997. Pattern of porotic hyperostosis and quality of life in a II century A.D. farm near Rome. Rivista di Antropologia 75: 112.Google Scholar
Robledo, B., Trancho, G. J. and Brothwell, D. 1995. Cribra orbitalia: health indicator in the late roman population of Cannington (Sommerset, Great Britain). Journal of Paleopathology 7: 185–93.Google Scholar
Ruff, C. B. 1987. Sexual dimorphism in human lower limb bone structure: relationship to subsistence strategy and sexual division of labor. Journal of Human Evolution 16: 391416.Google Scholar
Ruff, C. B. and Hayes, W. C. 1983. Cross-sectional geometry of Pecos Pueblo femora and tibiae – a biomechanical investigation: I. Method and general patterns of variation. American Journal of Physical Anthropology 60: 359–81.Google Scholar
Salvadei, L., Ricci, F. and Manzi, G. 2001. Porotic hyperostosis as a marker of health and nutritional conditions during childhood: studies at the transition between Imperial Rome and the Early Middle Ages. American Journal of Physical Anthropology 13: 709–17.Google Scholar
Schultz, A. H. 1937. Proportion, variability and asymmetries of the long bone of the limbs and the clavicles in man and apes. Journal of Anatomy 9: 281328.Google Scholar
Schultz, M. 1993. Vestiges of non-specific inflammations of the skull in prehistoric and historic populations. A contribution to palaeopathology. In Kaufmann, B. (ed.), Anthropologische Beitrage 4A/B, Aesch: Anthropologisches Forschungsinstitut Aesch and Anthropologische Gesellschaft in Basel, 184.Google Scholar
Seielstad, M. T., Minch, E. and Cavalli-Sforza, L. L. 1998. Genetic evidence for a higher female migration rate in humans. Nature Genetics 20: 278–80.Google Scholar
Sergi, S. 1951. I resti scheletrici delle antiche popolazioni del Fezzan ed il tipo dei Garamanti. In Pace, Sergi, and Caputo 1951, 443542.Google Scholar
Shaw, C. N. and Stock, J. T. 2009. Intensity, repetitiveness, and directionality of habitual adolescent mobility patterns influence the tibial diaphysis morphology in athletes. American Journal of Physical Anthropology 140: 149–59.Google Scholar
Sjøvold, T. 1984. A report on the heritability of some cranial measurements and non-metric traits. In van Vark, G. N., and Howells, W. W. (eds), Multivariate statistics in physical anthropology, Dordrecht: D. Reidel, 223–46.Google Scholar
Sparacello, V. and Marchi, D. 2008. Mobility and subsistence economy: a diachronic comparison between two groups settled in the same geographic area (Liguria, Italy). American Journal of Physical Anthropology 136: 485–95.Google Scholar
Sperduti, A., Manzi, G., Salvadei, L. and Passarello, P. 1995. I Longobardi di La Selvicciola (Ischia di Castro, Viterbo). Morfologia e morfometria scheletrica. Rivista di Antropologia 73: 265–79.Google Scholar
Starling, A. 2005. Dental Indicators of Health and Stress in Ancient Egypt and Nubia. Unpublished MPhil thesis, University of Cambridge, UK.Google Scholar
Stloukal, M. and Hanakova, H. 1978. Die Länge der Langsknochen altslawischer Bevölkerungen unter besonderer Berücksichtigung von Wachstumsfragen. Homo 29: 5369.Google Scholar
Stock, J. and Pfeiffer, S. 2001. Linking structural variability in long bone diaphysis to habitual behaviors: Foragers from the Southern African Later Stone Age and the Andaman Islands. American Journal of Physical Anthropology 115: 337–48.Google Scholar
Stock, J., O’Neill, M. C., Ruff, C. B., Zabecki, M., Shackelford, L. and Rose, J. C. 2011. Body size, skeletal biomechanics and habitual activity from the Late Palaeolithic to the Mid-Dynastic Nile Valley. In Pinhasi, R. and Stock, J. (eds), Human Bioarchaeology of the Transition to Agriculture, London: Wiley, 347–67.Google Scholar
Stone, D. L. and Stirling, L. M. (eds). 2007. Mortuary Landscapes of North Africa. Toronto: University of Toronto Press.Google Scholar
Stuart-Macadam, P. 1985. Porotic hyperostosis: representative of a childhood condition. American Journal of Physical Anthropology 66: 391–98.Google Scholar
Stuart-Macadam, P. 1987. Porotic hyperostosis: new evidence to support the anemia theory. American Journal of Physical Anthropology 74: 521–26.Google Scholar
Suckling, G. W. 1989. Developmental defects of enamel. Historical and present-day perspectives on their pathogenesis. Advances in Dental Research 3.2: 8794.Google Scholar
Sullivan, A. 2005. Prevalence and etiology of acquired anemia in Medieval York, England. American Journal of Physical Anthropology 128: 252–72.Google Scholar
Tafuri, M. A., Bentley, R. A., Manzi, G. and di Lernia, S. 2006. Mobility and kinship in the prehistoric Sahara: Strontium isotope analysis of Holocene human skeletons from the Acacus Mountains (south-western Libya). Journal of Anthropological Archaeology 25: 390402.Google Scholar
Tafuri, M. A., Pelosi, A., Ricci, F., Manzi, G. and Castorina, F. 2013. The preliminary isotope investigation. In Mori 2013a, 363–67.Google Scholar
Tilkens, M. J., Wall-Scheffler, C., Weaver, T. D. and Steudel-Numbers, K. 2007. The effects of body proportions on thermoregulation: an experimental assessment of Allen’s rule. Journal of Human Evolution 53.3: 286–91.Google Scholar
Todd, T. W. 1920. Age changes in the pubic bone: I. The male White pubis. American Journal of Physical Anthropology 3: 285334.Google Scholar
Ubelaker, D. V. 1989. Human Skeletal Remains. Excavation, Analysis, Interpretation. Washington, D.C.: Taraxacum.Google Scholar
van der Veen, M. 1992. Garamantian agriculture: the plant remains from Zinchecra, Fezzan. Libyan Studies 23: 739.Google Scholar
van der Veen, M. 1995. Ancient agriculture in Libya: a review of the evidence. Acta Palaeobotanica 35.1: 8598.Google Scholar
Vercellotti, G., Stout, S. D., Boano, R. and Sciulli, P. W. 2011. Intrapopulation variation in stature and body proportions: social status and sex differences in an Italian medieval population (Trino Vercellese, VC). American Journal of Physical Anthropology 145: 203–14.Google Scholar
Walker, P. L., Bathurst, R. R., Richman, R., Gjerdrum, T. and Andrushko, V. A. 2009. The causes of porotic hyperostosis and cribra orbitalia: A reappraisal of the iron-deficiency anemia hypothesis. American Journal of Physical Anthropology 139: 109–25.Google Scholar
Wapler, U., Crubézy, E. and Schultz, M. 2004. Is cribra orbitalia synonymous with anemia? Analysis and interpretation of cranial pathology in Sudan. American Journal of Physical Anthropology 123: 333–39.Google Scholar
Weiss, E. 2003. Effects of rowing on humeral strength. American Journal of Physical Anthropology 121: 293302.Google Scholar
Wescott, D. J. 2006. Effect of mobility on femur midshaft external shape and robusticity. American Journal of Physical Anthropology 130: 201–13.Google Scholar
Wijsman, E. M. and Neves, W. A. 1986. The use of nonmetric variation in estimating human population admixture: a test case with Brazilian blacks, whites and mulattos. American Journal of Physical Anthropology 70: 395405.Google Scholar
Zakrzewski, S. R. 2003. Variation in ancient Egyptian stature and body proportion. American Journal of Physical Anthropology 121: 219–29.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×