Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T10:42:02.338Z Has data issue: false hasContentIssue false

10 - By wind, wings or water: body size, dispersal and range size in aquatic invertebrates

Published online by Cambridge University Press:  02 December 2009

Simon D. Rundle
Affiliation:
University of Plymouth
David T. Bilton
Affiliation:
University of Plymouth
Andrew Foggo
Affiliation:
University of Plymouth
Alan G. Hildrew
Affiliation:
Queen Mary University of London
David G. Raffaelli
Affiliation:
University of York
Ronni Edmonds-Brown
Affiliation:
University of Hertfordshire
Get access

Summary

Introduction

The past 15 years have seen a dramatic increase in the study of large-scale patterns and processes in ecology under the banner of macroecology (Brown & Maurer, 1989). Organismal body size is one of the key components of many of these studies, and the distribution of body size and its relationship with range size and abundance figure extensively in the macroecological literature (Gaston & Blackburn, 2000; Blackburn & Gaston, 2003; Gaston, 2003). Body size is also the central component of the ‘three-quarters scaling law’, which predicts that metabolism scales to body mass0.75 (e.g. Gillooly et al., 2001) and is seeing increasing use in ecological predictions, including those concerning trophic interactions (Woodward et al., 2005), population dynamics (Marquet et al., 2005), species diversity (Allen, Brown & Gillooly, 2002) and energy flow (Enquist et al., 2003); indeed, the scaling of metabolism with body mass has also recently been used in attempts to make macroecological predictions (e.g. Jetz et al., 2004).

Despite the recent surge of interest in large-scale ecological patterns, aquatic ecologists have been slow to take up the concept of macroecology. It could perhaps be argued that much of the aquatic ‘community ecology’ over the past couple of decades, relating assemblage composition in aquatic systems to environmental variables, was macroecology of sorts. However, this research has rarely progressed to examine over-arching patterns and their potential underlying mechanisms, and is therefore somewhat limited in how it can inform general ecological theory.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, J. C. (2005) OdonataCentral: an online resource for the Odonata of North America. Austin, Texas. Available at http://www.odonatacentral.com. (Accessed April 18, 2005.)
Allen, A. P., Brown, J. H. & Gillooly, J. F. (2002). Global biodiversity, biochemical kinetics and the energetic-equivalence rule. Science, 297, 1545–1548.CrossRefGoogle ScholarPubMed
Angelibert, S. & Giani, N. (2003). Dispersal characteristics of three odonate species in a patchy habitat. Ecography, 26, 13–20.CrossRefGoogle Scholar
Askew, R. R. (1988). The Dragonfiles of Europe. Colchester: Harley Books.Google Scholar
Berryman, A. A. (2002). Population: a central concept for ecology? Oikos, 97, 439–442.CrossRefGoogle Scholar
Bilton, D. T., Freeland, J. R. & Okamura, B. (2001). Dispersal in freshwater invertebrates. Annual Review of Ecology and Systematics, 32, 159–181.CrossRefGoogle Scholar
Bilton, D. T., Paula, J. & Bishop, J. D. D. (2002). Dispersal, genetic differentiation and speciation in estuarine organisms. Estuarine, Coastal and Shelf Science, 55, 937–952.CrossRefGoogle Scholar
Blackburn, T. M. & Gaston, K. J. (2003). Macroecology Concepts and Consequences. Oxford: Blackwell Science.Google Scholar
Bohonak, A. J. (1999). Effect of insect-mediated dispersal on the genetic structure of postglacial water mite populations. Heredity, 82, 451–461.CrossRefGoogle ScholarPubMed
Bohonak, A. J., Smith, B. P. & Thornton, M. (2004). Distributional, morphological and genetic consequences of dispersal for temporary pond water mites. Freshwater Biology, 49, 170–180.CrossRefGoogle Scholar
Brendonck, L. & Meester, L. (2003). Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment. Hydrobiologia, 491, 65–84.CrossRefGoogle Scholar
Brendonck, L. & Riddoch, B. J. (1999). Wind-borne short-range egg dispersal in anostracans (Crustacea: Branchiopoda). Biological Journal of the Linnean Society, 67, 87–95.CrossRefGoogle Scholar
Brown, J. H. & Maurer, B. A. (1989). Macroecology: the division of food and space among species on continents. Science, 243, 1145–1150.CrossRefGoogle ScholarPubMed
Bullock, J. M., Kenward, R. E. & Hails, R. S. (eds.) (2002). Dispersal Ecology. Oxford: Blackwell Science.Google Scholar
Cáceres, C. E. (1998). Interspecific variation in the abundance, production, and emergence of Daphnia diapausing eggs. Ecology, 79, 1699–1710.CrossRefGoogle Scholar
Cáceres, C. E. & Soluk, D. A. (2002). Blowing in the wind: a field test of overland dispersal and colonization by aquatic invertebrates. Oecologia, 131, 402–408.CrossRefGoogle ScholarPubMed
Camus, A. P. & Lima, M. (2002). Populations, metapopulations, and the open-closed dilemma: the conflict between operational and natural population concepts. Oikos, 97, 433–438.CrossRefGoogle Scholar
Chia, F. S. (1974). Classification and adaptive significance of developmental patterns in marine invertebrates. Thalassia Jugoslavica, 10, 121–130.Google Scholar
Clobert, J., Danchin, E., Dhondt, A. A. & Nichols, J. D (eds.) (2001). Dispersal. Oxford: Oxford University Press.Google Scholar
Cohen, G. M. & Shurin, J. B. (2003). Scale-dependence and mecanisms of dispersal in freshwater zooplankton. Oikos, 103, 603–617.CrossRefGoogle Scholar
Collin, R. (2003). Worldwide patterns in mode of development in calyptraeid gastropods. Marine Ecology Progress Series, 247, 103–122.CrossRefGoogle Scholar
Compton, S. G. (2002). Sailing with the wind: dispersal by small flying insects. In Dispersal Ecology, ed. Bullock, J. M., Kenward, R. E. and Hails, R. S.. Oxford: Blackwell Science, pp. 113–133.Google Scholar
Costa, F. O., Neuparth, T., Theodorakis, C. W., Costa, M. H. & Shugart, L. R. (2004). RAPD analysis of southern populations of Gammarus locusta: comparison with allozyme data and ecological inferences. Marine Ecology Progress Series, 277, 197–207.CrossRefGoogle Scholar
Dahms, H.-U. (1995). Dormancy in the Copepoda – an overview. Hydrobiologia, 306, 199–211.CrossRefGoogle Scholar
Darwin, C. (1859). On the Origin of Species by Means of Natural Selection. London: John Murray.Google Scholar
Meester, L., Gomez, A., Okamura, B. & Schwenk, K. (2002). The monopolization hypothesis and the dispersal-gene flow paradox in aquatic organisms. Acta Oecologica, 23, 121–135.CrossRefGoogle Scholar
Stasio, B. T. (1989). The seed bank of a freshwater crustaean: copepodology for the plant ecologist. Ecology, 70, 1377–1389.CrossRefGoogle Scholar
Dumont, H. J. (1994). The distribution and ecology of the fresh- and brackish-water medusae of the world. Hydrobiologia, 272, 1–12.CrossRefGoogle Scholar
Eckert, G. L. (1999). A comparative analysis of egg size in marine invertebrates: relationships with development mode, planktonic period and adult size. American Zoologist, 39, 39.Google Scholar
Eckert, G. L. (2003). Effects of the planktonic period on marine population fluctuations. Ecology, 84, 372–383.CrossRefGoogle Scholar
Ellington, C. P. (1991). Limitation on animal flight performance. Journal of Experimental Biology, 160, 71–91.Google Scholar
Emlet, R. B. (1995). Developmental mode and species geographic range in regular sea-urchins (Echinodermata, Echinoidea). Evolution, 49, 476–489.CrossRefGoogle Scholar
Emlet R. B., McEdward L. B. & Strathmann R. R. (1987). Echinoderm larval ecology viewed from the egg. In Echinoderm Studies, vol. 2, ed. Jangoux, M. and Lawrence, J. M., Rotterdam: Balkema, pp. 55–136.Google Scholar
Enquist, B. J., Economo, E. P., Huxman, T. E.et al. (2003). Scaling metabolism from organisms to ecosystems. Nature, 423, 639–642.CrossRefGoogle Scholar
Fenner, M. & Thompson, K. (2005). The Ecology of Seeds. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Ferriere, R., Belthoff, J. R., Olivieri, I. & Krackow, S. (2000). Evolving dispersal: where to go next? Trends in Ecology and Evolution, 15, 5–7.CrossRefGoogle ScholarPubMed
Figuerola, J., Green, A. J. & Michot, T. C. (2005). Invertebrate eggs can fly: evidence of waterfowl-mediated gene flow in aquatic invertebrates. American Naturalist, 165, 274–280.Google ScholarPubMed
Finlay, B. J. (2002). Global dispersal of free-living microbial eukaryote species. Science, 296, 1061–1063.CrossRefGoogle ScholarPubMed
Foggo, A., Frost, M. T. & Attrill, M. J. (2003). Abundance-occupancy patterns in British estuarine macroinvertebrates. Marine Ecology Progress Series, 265, 297–302.CrossRefGoogle Scholar
Galassi, D. M. P., Dole-Olivier, M-J. & Laurentiis, P. (1999). Phylogeny and biogeography of the genus Pseudectinosoma and description of Pseudectinosoma janineae sp. N. (Crustacea, Copepoda, Ectinosomatidae). Zoologica Scripta, 28, 289–303.CrossRefGoogle Scholar
Galassi, D. M. P., Marmonier, P., Dole-Olivier, M-J. & Rundle, S. D. (2002). Microcrustacea. In Freshwater Meiofauna Biology and Ecology, ed. Rundle, S. D., Robertson, A. L. and Schmid-Araya, J. M.. Leiden: Backhuys Publishers, pp. 135–175.Google Scholar
Gaston, K. J. (2003). The Structure and Dynamics of Geographic Ranges. Oxford: Oxford University Press.Google Scholar
Gaston, K. J. & Blackburn, T. M. (2000). Pattern and Process in Macroecology. Oxford: Blackwell Science.CrossRefGoogle Scholar
Gillooly, J. F. & Dodson, S. I. (2000). Latitudinal patterns in the size distribution and seasonal dynamics of new world, freshwater cladocerans. Limnology and Oceanography, 45, 22–30.CrossRefGoogle Scholar
Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. (2001). Effects of size and temperature on metabolic rate. Science, 293, 2248–2251.CrossRefGoogle ScholarPubMed
Goddard, J. H. R. (2004). Developmental mode in benthic opisthobranch molluscs from the northeast Pacific Ocean: feeding in a sea of plenty. Canadian Journal of Zoology, 82, 1954–1968.CrossRefGoogle Scholar
Goodwin, N. B., Dulvy, N. K. & Reynolds, J. D. (2005). Macroecology of live-bearing in fishes: latitudinal and depth range comparisons with egg-laying relatives. Oikos, 110, 209–218.CrossRefGoogle Scholar
Grantham, B. A., Eckert, G. L. & Shanks, A. L. (2003). Dispersal potential of marine invertebrates in diverse habitats. Ecological Applications, 13, Supplement: S108–S116.CrossRefGoogle Scholar
Green, A. J. & Figuerola, J. (2005). Recent advances in the study of long-distance dispersal of aquatic invertebrates by birds. Diversity and Distributions, 11, 149–156.CrossRefGoogle Scholar
Grimm, V., Reise, K. & Strasser, M. (2003). Marine metapopulations: a useful concept? Helgoland Marine Research, 56, 222–228.Google Scholar
Guitiérrez, D. & Menéndez, R. (1997). Patterns in the distribution, abundance and body size of carabid beetles (Coleoptera: Caraboidea) in relation to dispersal ability. Journal of Biogeography, 24, 903–914.CrossRefGoogle Scholar
Hairston, N. G. J. & Cáceres, C. E. (1996). Distribution of crustacean diapause: micro- and macroevolutionary pattern and process. Hydrobiologia, 320, 27–44.CrossRefGoogle Scholar
Hairston, N. G. J., Brunt, R. A., Kearns, C. M. & Engstrom, D. R. (1995). Age and survivorship of diapausing eggs in a sediment egg bank. Ecology, 76, 1706–1711.CrossRefGoogle Scholar
Hansen, T. A. (1978). Larval dispersal and species longevity in lower tertiary gastropods. Science, 199, 885–887.CrossRefGoogle ScholarPubMed
Harrison, J. F. & Roberts, S. P. (2000). Flight respiration and energetics. Annual Review of Physiology, 62, 179–205.CrossRefGoogle ScholarPubMed
Harvey, P. H. & Pagel, M. D. (1991). The Comparative Method in Evolutionary Biology. Oxford: Oxford University Press.Google Scholar
Hebert, P. D. N. & Finston, T. L. (1996). Genetic differentiation in Daphnia obtusa: a continental perspective. Freshwater Biology, 35, 311–321.CrossRefGoogle Scholar
Jablonski, D. (1986). Larval ecology and macroevolution in marine-invertebrates. Bulletin of Marine Science, 39, 565–587.Google Scholar
Jeffery, C. H. & Emlet, R. B. (2003). Macroevolutionary consequences of developmental mode in temnopleurid echinoids from the tertiary of southern Australia. Evolution, 57, 1031–1048.CrossRefGoogle ScholarPubMed
Jetz, W., Carbone, C., Fulford, J. & Brown, J. H. (2004). The scaling of animal space use. Science, 306, 266–268.CrossRefGoogle ScholarPubMed
Johnson, C. G. (1969). Migration and Dispersal of Insects by Flight. London: Methuen & Co.Google Scholar
Kelaher, B. P. (2005). Does colonization contribute to spatial patterns of common invertebrates in coralline algal turf? Austral Ecology, 30, 40–48.CrossRefGoogle Scholar
Kohn, A. J. & Perron, F. E. (1994). Life History and Biogeography: Patterns in Conus. Oxford: Oxford University Press, pp. 57–67.Google Scholar
Korovchinsky, N. M. & Boikova, O. S. (1996). The resting eggs of Ctenopoda (Crustacea: Branchiopoda): a review. Hydrobiologia, 320, 131–140.CrossRefGoogle Scholar
Largier, J. L. (2003). Considerations in estimating larval dispersal distances from oceanographic data. Ecological Applications, 13, S71–S89.CrossRefGoogle Scholar
Levin, S., Cohen, D. & Hastings, A. (1984). Dispersal strategies in patchy environments. Journal of Population Biology, 26, 165–191.CrossRefGoogle Scholar
Levin, S. A., Muller-Landau, H. C., Nathan, R. & Chave, J. (2003). The ecology and evolution of seed dispersal: a theoretical perspective. Annual Review of Ecology and Systematics, 34, 575–604.CrossRefGoogle Scholar
Levitan, D. R. (2000). Optimal egg size in marine invertebrates: theory and phylogenetic analysis of the critical relationship between egg size and development time in echinoids. American Naturalist, 156, 175–192.CrossRefGoogle ScholarPubMed
Llodra, E. R. (2002). Fecundity and life-history strategies in marine invertebrates. Advances in Marine Biology, 43, 87–170.CrossRefGoogle Scholar
Louette, G. & Meester, L. (2005). High dispersal capacity of cladoceran zooplankton in newly founded communities. Ecology, 86, 353–359.CrossRefGoogle Scholar
Maguire, B. Jr. (1963). The passive dispersal of small aquatic organisms and their colonisation of isolated bodies of water. Ecological Monographs, 33, 161–185.CrossRefGoogle Scholar
Malmqvist, B. (2000). How does wing length relate to distribution patterns of stoneflies (Plecoptera) and mayflies (Ephemeroptera)? Biological Conservation, 93, 271–276.CrossRefGoogle Scholar
Marden, J. H. (1987). Maximum lift production during takeoff in flying animals. Journal of Experimental Biology, 130, 235–258.Google Scholar
Marden, J. H. (1994). From damselflies to pterosaurs: how burst and sustainable flight performance scale with size. American Journal of Physiology, 266, R1077–R1084.Google ScholarPubMed
Marquet, P. A., Quinones, R. A., Abades, S.et al. (2005). Scaling and power-laws in ecological systems. Journal of Experimental Biology, 208, 1749–1769.CrossRefGoogle ScholarPubMed
Marshall, D. J. & Keough, M. J. (2003a). Variation in the dispersal potential of non-feeding invertebrate larvae: the desperate larva hypothesis and larval size. Marine Ecology Progress Series, 255, 145–153.CrossRefGoogle Scholar
Marshall, D. J. & Keough, M. J. (2003b). Sources of variation in larval quality for free-spawning marine invertebrates: egg size and the local sperm environment. Invertebrate Reproduction and Development, 44, 63–70.CrossRefGoogle Scholar
McClain, C. R. & Rex, M. A. (2001). The relationship between dissolved oxygen concentration and maximum size in deep-sea turrid gastropods: an application of quantile regression. Marine Biology, 139, 681–685.Google Scholar
McLachlan, A. (1985). The relationship between habitat predictability and wing length in midges. Oikos, 44, 391–397.CrossRefGoogle Scholar
Meinkoth, N. A. (1981). National Audubon Society Field Guide to North American Seashore Creatures. New York: A. A. Knopf.Google Scholar
Mileikovsky, S. A. (1971). Types of larval development in marine bottom invertebrates, their distribution and ecology significance: a re-evaluation. Marine Biology, 10, 193–213.CrossRefGoogle Scholar
Miner, B. G., McEdward, L. A. & McEdward, L. R. (2005). The relationship between egg size and the duration of the facultative feeding period in marine invertebrate larvae. Journal of Experimental Marine Biology and Ecology, 321, 135–144.CrossRefGoogle Scholar
Moss, B. (1998). Ecology of Fresh Waters, Man and Medium, Past to Future. Oxford: Blackwell.Google Scholar
Moyse, J. & Tyler, P. A. (1990). Echinodermata. In The Marine Fauna of the British Isles and North-West Europe, Vol. 2., ed. Hayward, P. J. and Ryland, J. S.. Oxford: Clarendon Press.Google Scholar
Nathan, R., Perry, G., Cronin, J. T., Strand, A. E. & Cain, M. L. (2003). Methods for estimating long-distance dispersal. Oikos, 103, 261–273.CrossRefGoogle Scholar
Okamura, B. & Freeland, J. R. (2002). Gene flow and the evolutionary ecology of passively dispersing aquatic invertebrates. In Dispersal Ecology, ed. Bullock, J. M., Kenward, R. E. and Hails, R. S.. Oxford: Blackwell Science, pp. 194–216.Google Scholar
Paradis, E., Baillie, S. R., Sutherland, W. J. & Gregory, R. D. (1998). Patterns of natal dispersal in birds. Journal of Animal Ecology, 67, 518–536.CrossRefGoogle Scholar
Poulin, R. (1995). Clutch size and egg size in free-living and parasitic copepods: a comparative analysis. Evolution, 49, 325–336.CrossRefGoogle ScholarPubMed
Poulin, E., Boletzky, S. & Feral, J. P. (2001). Combined ecological factors permit classification of developmental patterns in benthic marine invertebrates: a discussion note. Journal of Experimental Marine Biology and Ecology, 257, 109–115.CrossRefGoogle ScholarPubMed
Proctor, V. W. & Malone, C. (1965). Further evidence of the passive dispersal of small aquatic organisms via the intestinal tract of birds. Ecology, 46, 728–729.CrossRefGoogle Scholar
Pyron, M. (1999). Relationships between geographical range size, body size, local abundance, and habitat breadth in North American suckers and sunfishes. Journal of Biogeography, 26, 549–558.CrossRefGoogle Scholar
Reaka, M. L. (1980). Geographic range, life history patterns, and body size in a guild of coral-dwelling mantis-shrimps. Evolution, 34, 1019–1030.CrossRefGoogle Scholar
Ribera, I. & Vogler, A. P. (2000). Habitat type as a determinant of species range sizes: the example of lotic-lentic differences in aquatic Coleoptera. Biological Journal of the Linnean Society, 71, 33–52.Google Scholar
Ribera, I., Foster, G. N. & Vogler, A. P. (2003). Does habitat use explain large scale species richness patterns of aquatic beetles in Europe? Ecography, 26, 145–152.CrossRefGoogle Scholar
Riddoch, B. J., Mpoloka, S. W. & Cantrell, M. (1994). Genetic variation and localized gene flow in the fairy shrimp, Branchipodopsis wolfi, in temporary rainwater pools in southern Botswana. In Genetics and Evolution of Aquatic Organisms, ed. Beaumant, A. R.. London: Chapman and Hall, pp. 96–102.Google Scholar
Roff, D. A. (1992). The Evolution of Life Histories: Theory and Analysis. London: Chapman and Hall.Google Scholar
Rosenfield, J. A. (2002). Pattern and process in the geographical ranges of freshwater fishes. Global Ecology and Biogeography, 11, 323–332.CrossRefGoogle Scholar
Rundle, S. D., Bilton, D. T. & Shiozawa, D. K. (2000). Global and regional patterns in lotic meiofauna. Freshwater Biology, 44, 123–134.CrossRefGoogle Scholar
Rundle, S. D., Robertson, A. L. & Schmid-Araya, J. M. (eds.) (2002a). Freshwater Meiofauna Biology and Ecology. Leiden: Backhuys Publishers.Google Scholar
Rundle, S. D., Bilton, D. T., Galassi, D. & Shiozawa, D. K. (2002b). The geographical ecology of freshwater meiofauna. In Freshwater Meiofauna Biology and Ecology, ed. Rundle, S. D., Robertson, A. L. and Schmid-Araya, J. M.. Leiden: Backhuys Publishers, pp. 279–293.Google Scholar
Rundle, S. D., Bilton, D. T., Abbott, J. C. & Foggo, A. (2007). Range size in North American Enallagma damselflies correlates with wing size. Freshwater Biology, 52, 471–477.CrossRef
Scheltema, R. S. (1989). Planktonic and non-planktonic development among prosobranch gastropods and its relationship to the geographic range of species. In Reproduction, Genetics and Distributions of Marine Organisms, ed. Ryland, J. S. and Tyler, P. A.. Fredensborg: Olsen and Olsen, pp. 183–188.Google Scholar
Schilder, R. J. & Marden, J. H. (2004). A hierarchical analysis of the scaling of force and power production by dragonfly flight motors. Journal of Experimental Biology, 207, 767–776.CrossRefGoogle ScholarPubMed
Sewell, M. A. (1994). Small-size, brooding, and protandry in the apodid sea-cucumber Leptosynapta clarki. Biological Bulletin, 187, 112–123.CrossRefGoogle ScholarPubMed
Shanks, A., Largier, J. & Brink, L. (2000). Demonstration of the onshore transport of larval invertebrates by the shoreward movement of an upwelling front. Limnology and Oceanography, 45, 230–236.CrossRefGoogle Scholar
Siegel, D. A., Kinlan, B. P., Gaylord, B. & Gaines, S. D. (2003). Lagrangian descriptions of marine larval dispersion. Marine Ecology Progress Series, 260, 83–96.CrossRefGoogle Scholar
Southwood, T. R. E. & Henderson, P. A. (2000). Ecological Methods, 3rd edn. Oxford: Blackwell Science.Google Scholar
Stoch, F. (2001). How many species of Diacyclops? New taxonomic characters and species richness in a freshwater cyclopid genus (Copepoda, Cyclopoida). Hydrobiologia, 453, 525–531.CrossRefGoogle Scholar
Strathmann, R. R. & Strathmann, M. F. (1982). The relationship between adult size and brooding in marine invertebrates. American Naturalist, 119, 91–101.CrossRefGoogle Scholar
Tanaka, S. & Suzuki, Y. (1998). Physiological trade-offs between reproduction, flight capability and longevity in a wing-dimorphic cricket, Modicogryllus confirmatus. Journal of Insect Physiology, 44, 121–129.CrossRefGoogle Scholar
Taylor, C. M. & Gotelli, N. J. (1994). The macroecology of Cyprinella: correlates of phylogeny, body size, and geographical range. American Naturalist, 144, 549–569.CrossRefGoogle Scholar
Thiel, M. & Gutow, L. (2005). The ecology of rafting in the marine environment-I – The floating substrata. Oceanography and Marine Biology: An Annual Review, 42, 181–263.Google Scholar
Travis, J. M. J. & Dytham, C. (1999). Habitat persistence, habitat availability and the evolution of dispersal. Proceedings of the Royal Society of London B, 266, 723–728.CrossRefGoogle Scholar
Turgeon, J., Stoks, R., Thum, R. A., Brown, J. M. & McPeek, M. A. (2005). Simultaneous quaternary radiations of three damselfly clades across the Holarctic. American Naturalist, 165, E78–E107.CrossRefGoogle ScholarPubMed
Vance, R. R. (1973). On reproduction strategies in marine benthic invertebrates. American Naturalist, 107, 339–352.CrossRefGoogle Scholar
Vandekerkhove, J., Declerck, S., Bendonck, L., et al. (2005). Hatching of cladoceran resting eggs: temperature and photoperiod. Freshwater Biology, 50, 96–104.CrossRefGoogle Scholar
Venable, D. L. & Lawlor, L. (1980). Delayed germination and dispersal in desert annuals: escape in space and time. Oecologia, 46, 272–282.CrossRefGoogle ScholarPubMed
Vogler, A. P. & Ribera, I. (2003). Evolutionary analysis of species richness patterns in aquatic beetles: why macroecology needs a historical perspective. In Macroecology Causes and Consequences, ed. Blackburn, T. M. and Gaston, K. J.. Oxford: Blackwell Science, pp. 17–30.Google Scholar
Wakeling, J. M. & Ellington, C. P. (1997). Dragonfly flight III. Lift and power requirements. Journal of Experimental Biology, 200, 583–600.Google ScholarPubMed
Wallace, A. R. (1876). The Geographical Distribution of Animals. London: MacMillan.Google Scholar
Wilkinson, D. M. (2001). What is the upper size limit for cosmopolitan distribution in free-living microorganisms? Journal of Biogeography, 28, 285–291.CrossRefGoogle Scholar
Woodward, G., Ebenman, B., Emmerson, M., et al. (2005). Body size in ecological networks. Trends in Ecology and Evolution, 20, 402–409.CrossRefGoogle ScholarPubMed
Yund, P. O. (2000). How severe is sperm limitation in natural populations of marine free-spawners? Trends in Ecology and Evolution, 15, 10–13.CrossRefGoogle ScholarPubMed
Zera, A. J. & Brink, T. (2000). Nutrient absorbtion and utilization by wing and flight muscle morphs of the cricket Gryllus firmu: implications for the trade-off between flight capability and early reproduction. Journal of Insect Physiology, 46, 1207–1218.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×