Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T17:37:10.566Z Has data issue: false hasContentIssue false

5 - Temperature effects on biodegradation of petroleum contaminants in cold soils

Published online by Cambridge University Press:  22 August 2009

Anne Gunn Rike
Affiliation:
Dept. of Environmental Technology, Norwegian Geotechnical Institute, PO Box 3930, Ullevaal Stadion, N-0806 Oslo, Norway
Silke Schiewer
Affiliation:
Dept. of Civil and Environmental Engineering, University of Alaska Fairbanks, PO Box 755900, Fairbanks AK 99775, USA
Dennis M. Filler
Affiliation:
Dept. of Civil and Environmental Engineering, University of Alaska Fairbanks, PO Box 755900, Fairbanks AK 99775, USA
Dennis M. Filler
Affiliation:
University of Alaska, Fairbanks
Ian Snape
Affiliation:
Australian Antarctic Division, Tasmania
David L. Barnes
Affiliation:
University of Alaska, Fairbanks
Get access

Summary

Introduction

Bioremediation in cold climates is frequently regarded with skepticism. Owners of polluted sites and regulatory agencies may doubt the effectiveness of biological degradation at near freezing temperatures. While it is true that biodegradation rates decrease with decreasing temperatures, this does not mean that bioremediation is inappropriate for cold regions. Microbial degradation of hydrocarbons occurs even around 0 °C (Chapter 4). In remote alpine, Arctic, and Antarctic locations, excavation and shipping of contaminated soil may be prohibitively expensive. Bioremediation may be the most cost-effective alternative. This chapter discusses microbial adaptation to cold temperatures as well as results of laboratory and field studies of bioremediation at low temperatures.

Microorganisms can grow at temperatures ranging from subzero to more than 100 °C. Microbes are divided into four groups based on the range of temperature at which they can grow. The psychrophiles grows at temperatures below 20 °C, the mesophiles between 20 °C and 44 °C, the thermophiles between 45 °C and 70 °C, and the hyperthermophiles require growth temperatures above 70 °C to over 110 °C. The term “cold-adapted microorganisms” (CAMs) is frequently used for describing bacteria growing at or close to zero degrees Celsius. Depending on the cardinal temperatures (the minimal, the optimal, and the maximum growth temperature), CAMs can be classified as psychrophiles or psychrotrophs. Morita's (1975) definition, which holds that psychrophiles have a maximum growth temperature of less than 20 °C and an optimal growth temperature of less than 15 °C, while psychrotrophs have a maximum temperature of 40 °C and an optimal growth temperature higher than 15 °C, is widely accepted.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×