Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T18:39:11.027Z Has data issue: false hasContentIssue false

13 - Phylogeny and evolution of ferns: a paleontological perspective

Published online by Cambridge University Press:  11 August 2009

Gar W. Rothwell
Affiliation:
Department of Environmental and Plant Biology, University of Ohio, Athens, OH 45701, USA
Ruth A. Stockey
Affiliation:
Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
Tom A. Ranker
Affiliation:
University of Colorado, Boulder
Christopher H. Haufler
Affiliation:
University of Kansas
Get access

Summary

Introduction

Ferns traditionally have been identified as megaphyllous plants that reproduce by sporangia borne on leaves (i.e., fronds; Bower 1923; Kaplan and Groff, 1995). Although not all species have the entire set of characters, ferns typically are recognized by sporophytes that display unipolar growth (Rothwell, 1995), are dominated by fronds (Kaplan and Groff, 1995), and are devoid of secondary growth. Many have highly branched fronds, mesarch xylem maturation, and a rhizome stele that is dissected by leaf gaps. Plants that display various combinations of these features occur in the fossil record from the Middle Devonian (i.e., 390 million years ago) to the Recent, but there has been considerable systematic turnover with several prominent clades replacing one another through geological time (Rothwell, 1999). In practice, botanists have traditionally recognized as “ferns” those species that are left over after all other euphyllophytes have been removed to clades with clearly identifiable synapomorphies (Rothwell, 1999).

Up to the present, attempts to define ferns within a phylogenetic framework have met with only limited success (Figure 13.1) due to a combination of (1) limited information about many extinct ferns and fern-like plants, and (2) the restricted taxon sampling available for phylogenetic analyses that include only living species. The paleontological record of ferns is incomplete, and thus far has been sampled for only a small fraction of the available fossils (Stockey and Rothwell, 2006). This leaves us with an often confusing picture of inadequately known extinct species that can be difficult to comprehend and appreciate.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, H. N. and Kern, E. M. (1947). The Idaho tempskyas and associated fossil plants. Annals of the Missouri Botanical Garden, 34, 119–186.CrossRefGoogle Scholar
Axsmith, B. J., Krings, M., and Taylor, T. N. (2001). A filmy fern from the Upper Triassic of North Carolina (USA). American Journal of Botany, 88, 1558–1567.CrossRefGoogle Scholar
Bateman, R. M., Hilton, J., and Rudall, P. J. (2006). Morphological and molecular phylogenetic context of the angiosperms: contrasting the “top-down” and “bottom-up” approaches used to infer the likely characteristics of the first flowers. Journal of Experimental Botany, 57, 3471–3503.CrossRefGoogle ScholarPubMed
Berry, C. M. and Fairon-Demaret, M. (2002). The architecture of Pseudosporochnus nodosus Leclerq and Banks: a Middle Devonian cladoxylopsid from Belgium. International Journal of Plant Sciences, 163, 699–713.CrossRefGoogle Scholar
Berry, C. M. and Wang, Y. (2006). Eocladoxylon (Protopteridium) minimum (Halle) Koidzume from the Middle Devonian of Yunnan, China: an early Rhacophyton-like plant. International Journal of Plant Sciences, 167, 551–556.CrossRefGoogle Scholar
Bower, F. O. (1923). The Ferns, Vol. 1, Analytical Examination of the Criteria of Comparison. Cambridge: Cambridge University Press.
Bower, F. O. (1935). Primitive Land Plants. London: Macmillan.Google Scholar
Boyce, C. K. and Knoll, A. H. (2002). Evolution of developmental potential and the multiple independent origins of leaves in Paleozoic vascular plants. Paleobiology, 28: 70–100.2.0.CO;2>CrossRefGoogle Scholar
Cantrill, D. J. (1995). The occurrence of the fern Hausmannia Dunker (Dipteridaceae) in the Cretaceous of Alexander Island, Antarctica. Alcheringa, 19: 243–254.CrossRefGoogle Scholar
Cantrill, D. J. (1997). The pteridophyte Ashicaulis livingstonensis (Osmundaceae) from the Upper Cretaceous of Williams Point, Livingston Island, Antarctica. New Zealand Journal of Geology and Geophysics, 40, 315–323.CrossRefGoogle Scholar
Collinson, M. E. (2001). Cainozoic ferns and their distribution. Brittonia, 53, 173– 235.CrossRefGoogle Scholar
Crane, P. R., Herendeen, P., and Friis, E. M. (2004). Fossils and plant phylogeny. American Journal of Botany, 91, 1683–1699.CrossRefGoogle ScholarPubMed
Delevoryas, T., Taylor, T. N., and Taylor, E. L. (1992). A marattialean fern from the Triassic of Antarctica. Review of Palaeobotany and Palynology, 74, 101–107.CrossRefGoogle Scholar
Deng, S. (2002). Ecology of the early Cretaceous ferns of northeast China. Review of Palaeobotany and Palynology, 119, 93–112.CrossRefGoogle Scholar
Dennis, R. L. (1974). Studies of Paleozoic ferns: Zygopteris from the Middle and Late Pennsylvanian of the United States. Palaeontographica, 148B, 95–136.Google Scholar
DiMichele, W. A. and Phillips, T. L. (1977). Monocyclic Psaronius from the Lower Pennsylvanian of the Illinois Basin. Canadian Journal of Botany, 55, 2514–2524.CrossRefGoogle Scholar
Eggert, D. A. and Delevoryas, T. (1967). Studies of Paleozoic ferns: Sermaya, gen. nov. and its bearing on filicalean evolution in the Paleozoic. Palaeontographica, 120B, 169–180.Google Scholar
Eggert, D. A. and Taylor, T. N. (1966). Studies of Paleozoic ferns: on the genus: Tedelea gen. nov. Palaeontographica, 118B, 52–73.Google Scholar
Ehret, E. L. and Phillips, T. L. (1977). Psaronius root systems – morphology and development. Palaeontographica, 161B, 147–164.Google Scholar
Erwin, D. M. and Rothwell, G. W. (1989). Gillespiea randolphensis gen. et sp. nov. (Stauropteridales), from the Upper Devonian of West Virginia. Canadian Journal of Botany, 67, 3063–3077.CrossRefGoogle Scholar
Esau, K. (1943). Origin and development of primary vascular tissues in seed plants. The Botanical Review, 9, 125–206.CrossRefGoogle Scholar
Friedman, W. E., Moore, R. C., and Purugganan, M. D. (2004). The evolution of plant development. American Journal of Botany, 91, 1726–1741.CrossRefGoogle ScholarPubMed
Galtier, J. (1968). Un nouveau type de fructification filicinéenne du Carbonifère Inférieur. Comptes Rendues de l'Académie des Sciences de Paris, 266D, 1004–1007.Google Scholar
Galtier, J. (1981). Structures foliaires de fougères et Pteridospermales du Carbonifère Inférieur et leur signification évolutive. Palaeontographica, 180B, 1–38.Google Scholar
Gifford, E. M. and Foster, A. S. (1989). Morphology and Evolution of Vascular Plants, 3rd edn. New York: W. H. Freeman.Google Scholar
Greuter, W., McNeill, J., Barrie, F. R., Burdet, H. M., Demoulin, V., Filgueiras, T. S., Nicolson, D. H., Silva, P. C., Skog, J. E., Trehane, P., Turland, N. J., and Hawksworth, D. L. (ed.) (2000). International code of botanical nomenclature: Saint Louis code: adopted by the Sixteenth International Botanical Congress, St Louis, Missouri, July–August 1999. Königstein: Koeltz Scientific Books.Google Scholar
Hasebe, M. T., Wolf, P. G., Pryer, K. M., Ueda, K., Sano, R., Gastony, G. J., Yokoyama, J., Manhart, J. R., Murakami, N., Crane, E. H., Haufler, C. H., and Hauk, W. D. (1995). A global analysis of fern phylogeny based on rbcL nucleotide sequences. American Fern Journal, 85, 134–181.CrossRefGoogle Scholar
Hernandez-Castillo, G. R., Stockey, R. A., and Rothwell, G. W. (2006). Anemia quatsinoensis sp. nov. (Schizaeaceae), a permineralized fern from the Lower Cretaceous of Vancouver Island. International Journal of Plant Sciences, 167, 665–674.CrossRefGoogle Scholar
Hilton, J. (1999). A Late Devonian plant assemblage from the Avon Gorge, west England: taxonomic, phylogenetic and stratigraphic implications. Botanical Journal of the Linnean Society, 129, 1–54.CrossRefGoogle Scholar
Hoffman, G. L. and Stockey, R. A. (1994). Sporophytes, megaspores and massulae of Azolla stanleyi from the Paleocene Joffre Bridge locality, Alberta. Canadian Journal of Botany, 72, 301–308.CrossRefGoogle Scholar
Holmes, J. (1977). The Carboniferous fern Psalixochlaena cylindrica as found in Westphalian A coal balls from England. Part I. Structure and development of the cauline system. Palaeontographica, 164B, 33–75.Google Scholar
Holmes, J. (1981). The Carboniferous fern Psalixochlaena cylindrica as found in Westphalian A coal balls from England. Part II. Structure and development of the cauline system. Palaeontographica, 176B, 147–173.Google Scholar
Hu, S., Dilcher, D. L., Schneider, H., and Jarsen, D. M.. (2006). Eusporangiate ferns from the Dakota Formation, Minnesota, U.S.A. International Journal of Plant Sciences, 167, 579–589.CrossRefGoogle Scholar
Jennings, J. R. and Eggert, D. A. (1977). Preliminary report on permineralized Senftenbergia from the Chester Series of Illinois. Review of Palaeobotany and Palynology, 24, 221–225.CrossRefGoogle Scholar
Kaplan, D. R. and Groff, P. A. (1995). Developmental themes in vascular plants: functional and evolutionary significance. In Experimental and Molecular Approaches to Plant Biosystematics, ed. Hoch, P. C. and Stephenson, A. G.. St. Louis, MO: Missouri Botanical Garden, pp. 111–146.Google Scholar
Karafit, S. J., Rothwell, G. W., Stockey, R. A., and Nishida, H. (2006). Evidence for sympodial vascular architecture in a filicalean fern rhizome: Dickwhitea allenbyensis gen. et sp. nov. (Athyriaceae). International Journal of Plant Sciences, 167, 721–727.CrossRefGoogle Scholar
Kenrick, P. and Crane, P. R. (1997). The Origin and Early Diversification of Land Plants. Washington, DC: Smithsonian Institution Press.Google Scholar
Kramer, K. U. and Green, P. S. (1990). The Families and Genera of Vascular Plants, Vol. I, Pteridophytes and Gymnosperms. Berlin: Springer-Verlag.Google Scholar
Leclercq, S. and Banks, H. P. (1962). Pseudosporochnus nodosus sp. nov., a Middle Devonian plant with cladoxylalean affinities. Palaeontographica, 110B, 1–34.Google Scholar
Lovis, D. J. (1977). Evolutionary patterns and processes in ferns. In Advances in Botanical Research, ed. Preston, R. D. and Woolhouse, H. W.. London: Academic Press, pp. 229–440.Google Scholar
Lupia, R., Schneider, H.Moeser, G. M., Pryer, K. M., and Crane, P. R. (2000). Marsileaceae sporocarps and spores from the Late Cretaceous of Georgia, U.S.A. International Journal of Plant Sciences, 161, 976–988.CrossRefGoogle Scholar
Manchester, S. R. and Zavada, M. S. (1987). Lygodium foliage with intact sporophores from the Eocene of Wyoming. Botanical Gazette, 148, 392–399.CrossRefGoogle Scholar
Mickle, J. E. (1980). Ankyropteris from the Pennsylvanian of eastern Kentucky. Botanical Gazette, 141, 230–243.CrossRefGoogle Scholar
Mickle, J. E. (1984). Taxonomy of specimens of the Pennsylvanian age marattialean fern Psaronius from Ohio and Illinois. Illinois State Museum Scientific Paper, 19, 1–64.Google Scholar
Millay, M. A. (1997). A review of permineralized Euramerican Carboniferous tree ferns. Review of Palaeobotany and Palynology, 95, 191–209.CrossRefGoogle Scholar
Millay, M. A. and Rothwell, G. W. (1983). Fertile pinnae of Biscalitheca (Zygopteridales) from the Upper Pennsylvanian of the Appalachian Basin. Botanical Gazette, 144, 589–599.CrossRefGoogle Scholar
Millay, M. A. and Taylor, T. N. (1990). New fern stems from the Triassic of Antarctica. Review of Palaeobotany and Palynology, 62, 41–64.CrossRefGoogle Scholar
Mishler, B. D. (2000). Deep phylogenetic relationships among “plants” and their implications for classification. Taxon, 49, 133–155.CrossRefGoogle Scholar
Moran, R. C. (2004). A Natural History of Ferns. Portland, OR: Timber Press.Google Scholar
Morgan, J. (1959). The morphology and anatomy of American species of the genus Psaronius. Illinois Biological Monographs, 27, 1–108.Google Scholar
Nagalingum, N. S. (2007). Marsileaceaephyllum, a new genus for marsileaceous macrofossils: leaf remains from the Early Cretaceous (Albian) of southern Gondwana. Plant Systematics and Evolution, 264, 41–55.CrossRefGoogle Scholar
Ogura, Y. (1972). Comparative Anatomy of Vegetative Organs of the Pteridophytes, 2nd edn. Berlin: Borntraeger.Google Scholar
Phillips, T. L. and Galtier, J. (2005). Evolutionary and ecological perspectives of Late Paleozoic ferns. Part I. Zygopteridales. Review of Palaeobotany and Palynology, 135, 165–203.CrossRefGoogle Scholar
Phillips, T. L., Peppers, R. A., and DiMichele, W. A. (1985). Stratigraphic and interregional changes in Pennsylvanian coal-swamp vegetation: environmental inferences. International Journal of Coal Geology, 5, 43–109.CrossRefGoogle Scholar
Phipps, C. J., Taylor, T. N., Taylor, E. L.Cuneo, N. R., Boucher, L. D., and Xao, X. (1998). Osmunda (Osmundaceae) from the Triassic of Antarctica: an example of evolutionary stasis. American Journal of Botany, 85, 888–895.CrossRefGoogle ScholarPubMed
Pigg, K. B. and Rothwell, G. W. (2001). Anatomically preserved Woodwardia virginica (Blechnaceae) and a new filicalean fern from the Middle Miocene Yakima Canyon flora of central Washington, USA. American Journal of Botany, 88, 777–787.CrossRefGoogle Scholar
Pryer, K. M., Schneider, H., Smith, A. R., Cranfill, R., Wolf, P. G., Hunt, J. S., and Sipes, S. D. (2001). Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature, 409, 618–622.CrossRefGoogle ScholarPubMed
Raven, P. H., Evert, R. F., and Eichhorn, S. E. (2005). Biology of Plants, 7th edn. New York: W. H. Freeman.Google Scholar
Rößler, R. (2000). The late Palaeozoic tree fern Psaronius – an ecosystem unto itself. Review of Palaeobotany and Palynology, 108, 55–74.CrossRefGoogle Scholar
Rothwell, G. W. (1987). Complex Paleozoic Filicales in the evolutionary radiation of ferns. American Journal of Botany, 74, 458–461.CrossRefGoogle Scholar
Rothwell, G. W. (1991). Botryopteris forensis (Botryopteridaceae), a trunk epiphyte of the tree fern Psaronius. American Journal of Botany, 78, 782–788.CrossRefGoogle Scholar
Rothwell, G. W. (1995). The fossil history of branching: implications for the phylogeny of land plants. In Experimental and Molecular Approaches to Plant Biosystematics, ed. Hoch, P. C. and Stephenson, A. G.. St. Louis, MO: Missouri Botanical Garden, pp. 71–86.Google Scholar
Rothwell, G. W. (1996). Pteridophytic evolution: an often under appreciated phytological success story. Review of Palaeobotany and Palynology, 90, 209–222.CrossRefGoogle Scholar
Rothwell, G. W. (1999). Fossils and in the resolution of land plant phylogeny. The Botanical Review, 65: 188–218.CrossRefGoogle Scholar
Rothwell, G. W. and Good, C. W. (2000). Reconstructing the Pennsylvanian-age filicalean fern Botryopteris tridentata (Felix) Scott. International Journal of Plant Sciences, 161, 495–507.CrossRefGoogle ScholarPubMed
Rothwell, G. W. and Nixon, K. C. (2006). How does the inclusion of fossil data change our conclusions about the phylogenetic history of euphyllophytes? International Journal of Plant Sciences, 167, 737–749.CrossRefGoogle Scholar
Rothwell, G. W. and Stockey, R. A. (1989). Fossil Ophioglossales in the Paleocene of western North America. American Journal of Botany, 76, 637–644.CrossRefGoogle Scholar
Rothwell, G. W. and Stockey, R. A. (1991). Onoclea sensibilis in the Paleocene of North America, a dramatic example of structural and ecological stasis. Review of Palaeobotany and Palynology, 70, 113–124.CrossRefGoogle Scholar
Rothwell, G. W. and Stockey, R. A. (1994). The role of Hydropteris pinnata gen. et sp. nov. in reconstructing the cladistics of heterosporous ferns. American Journal of Botany, 81, 387–394.CrossRefGoogle Scholar
Rothwell, G. W. and Stockey, R. A. (2006). Combining the characters of Pteridaceae and tree ferns: Pterisorus radiata gen. et sp. nov., a permineralized Lower Cretaceous filicalean with radial sori. International Journal of Plant Sciences, 167, 695–701.CrossRefGoogle Scholar
Scheckler, S. E. (1974). Systematic characters of Devonian ferns. Annals of the Missouri Botanical Garden, 61, 462–473.CrossRefGoogle Scholar
Scheckler, S. E. (1986). Geology, floristics and paleoecology of Late Devonian coal swamps from Appalachian Laurentia (U.S.A.). Annales de la Société géologique de Belgique, 209, 209–222.Google Scholar
Schneider, H. K. Pryer, K. M., Cranfill, R, Smith, A. R., and Wolf, P. G. (2002). Evolution of vascular plant body plans: a phylogenetic perspective. In Developmental Genetics and Plant Evolution, ed. Cronk, Q. C. B., Bateman, R. M., and Hawkins, J. A.. New York: Taylor and Francis, pp. 330–364.Google Scholar
Serbet, R. and Rothwell, G. W. (1999). Osmunda cinnamomea (Osmundaceae) in the Upper Cretaceous of western North America: additional evidence for exceptional species longevity among filicalean ferns. International Journal of Plant Sciences, 160, 425–433.CrossRefGoogle Scholar
Serbet, R. and Rothwell, G. W. (2003). Anatomically preserved ferns from the Late Cretaceous of western North America: Dennstaedtiaceae. International Journal of Plant Sciences, 164, 1041–1051.CrossRefGoogle Scholar
Serbet, R. and Rothwell, G. W. (2006). Anatomically preserved ferns from the Late Cretaceous of western North America. II. Blechnaceae/Dryopteridaceae. International Journal of Plant Sciences, 167, 703–709.CrossRefGoogle Scholar
Skog, J. E. (2001). The biogeography of Mesozoic leptosporangiate ferns related to extant ferns. Brittonia, 53, 236–269.CrossRefGoogle Scholar
Skog, J. E. and Banks, H. P. (1973). Ibyka amphikoma gen. et sp. n., a new protoarticulate precursor from the late Middle Devonian of New York State. American Journal of Botany, 60, 366–380.CrossRefGoogle Scholar
Smith, A. R., Pryer, K. M., Schuettpelz, E., Korall, P., Schneider, H., and Wolf, P. G. (2006). A classification for extant ferns. Taxon, 55, 705–731.CrossRefGoogle Scholar
Smith, S. Y., Rothwell, G. W., and Stockey, R. A. (2003). Cyathea cranhamii sp. nov., anatomically preserved tree fern sori from the Lower Cretaceous of Vancouver Island, British Columbia. American Journal of Botany, 90, 755–760.CrossRefGoogle ScholarPubMed
Smith, S. Y., Stockey, R. A., and Rothwell, G. W. (2006). Trawetsia princetonensis gen. et sp. nov. (Blechnaceae): a permineralized fern from the Middle Eocene Princeton Chert. International Journal of Plant Sciences, 167, 711–719.CrossRefGoogle Scholar
Soria, A., Meyer-Berthaud, B., and Scheckler, S. E. (2001). Reconstructing the architecture and growth habit of Pietzschia levis sp. nov. (Cladoxylopsida) from the Late Devonian of southeastern Morocco. International Journal of Plant Sciences, 162, 911–926.CrossRefGoogle Scholar
Stein, W. E. (1981). Reinvestigation of Arachnoxylon kopfii from the Middle Devonian of New York State, USA. Palaeontographica, 177B, 90–117.Google Scholar
Stein, W. E. (1982). Iridopteris eriensis from the Middle Devonian of North America, with systematics of apparently related taxa. Botanical Gazette, 143, 401–416.CrossRefGoogle Scholar
Stein, W. E. and Hueber, F. M. (1989). The anatomy of Pseudosporochnus: P. hueberi from the Devonian of New York. Review of Palaeobotany and Palynology, 60, 311–359.CrossRefGoogle Scholar
Stein, W. E., Mannolini, F., Hernick, V. L., Landing, E., and Berry, C. M. (2007). Giant cladoxylopsid trees resolve the enigma of the Earth's earliest forest stumps at Gilboa. Nature, 446, 904–907.CrossRefGoogle ScholarPubMed
Stewart, W. N. (1964). An upward outlook in plant morphology. Phytomorphology, 14, 120–134.Google Scholar
Stewart, W. N. and Rothwell, G. W. (1993). Paleobotany and the Evolution of Plants, 2nd edn. Cambridge: Cambridge University Press.Google Scholar
Stidd, B. M. (1971). Morphology and anatomy of the frond of Psaronius. Palaeontographica, 134B, 87–123.Google Scholar
Stockey, R. A. and Rothwell, G. W. (2004). Cretaceous tree ferns of western North America: Rickwoodopteris hirsuta gen. et sp. nov. (Cyatheaceae s.l.). Review of Palaeobotany and Palynology, 132, 103–114.CrossRefGoogle Scholar
Stockey, R. A. and Rothwell, G. W. (2006). Introduction: evolution of modern ferns. International Journal of Plant Sciences, 167, 613–614.CrossRefGoogle Scholar
Stockey, R. A. and Smith, S. Y. (2000). A new species of Millerocaulis (Osmundaceae) from the Lower Cretaceous of California. International Journal of Plant Sciences, 161, 159–166.CrossRefGoogle ScholarPubMed
Stockey, R. A., Nishida, H., and Rothwell, G. W. (1999). Permineralized ferns from the Middle Eocene Princeton Chert. I. Makotopteris princetonensis gen et sp. nov. (Athyriaceae). International Journal of Plant Sciences, 160, 1047–1055.CrossRefGoogle Scholar
Stockey, R. A., Lantz, T. C., and Rothwell, G. W. (2006a). Speirseopteris orbiculata gen. et sp. nov. (Thelypteridaceae), a derived fossil filicalean from the Paleocene of western North America. International Journal of Plant Sciences, 167, 729–736.CrossRefGoogle Scholar
Stockey, R. A., Rothwell, G. W., and Little, S. A. (2006b). Relationships among fossil and living Dipteridaceae: anatomically preserved Hausmannia from the Lower Cretaceous of Vancouver Island. International Journal of Plant Sciences, 167, 649–663.CrossRefGoogle Scholar
Surange, K. R. (1952). The morphology of Stauropteris burntislandica P. Bertrand and its megasporangium Bensonites fusiformis R. Scott. Philosophical Transactions of the Royal Society of London, 237B, 73–91.CrossRefGoogle Scholar
Taylor, T. N. and Taylor, E. L. (1993). The Biology and Evolution of Fossil Plants. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Taylor, T. N., Kerp, H., and Hass, H. (2005). Life history biology of early land plants: deciphering the gametophyte phase. Proceedings of the National Academy of Sciences of the United States of America, 102, 5892–5897.CrossRefGoogle ScholarPubMed
Tidwell, W. D. and Ash, S. R. (1994). A review of selected Triassic to early Cretaceous ferns. Journal of Plant Research, 107, 417–442.CrossRefGoogle Scholar
Tomescu, A. M. F., Rothwell, G. W., and Trivett, M. L. (2006). Kaplanopteridaceae fam. nov., additional diversity in the inital radiation of filicalean ferns. International Journal of Plant Sciences, 167, 615–630.CrossRefGoogle Scholar
Trivett, M. L. and Rothwell, G. W. (1988). Modeling the growth architecture of fossil plants: a Paleozoic filicalean fern. Evolutionary Trends in Plants, 2, 25–29.Google Scholar
Trivett, M. L., Stockey, R. A., Rothwell, G. W., and Beard, G. (2006). Paralygodium vancouverensis sp. nov. (Schizaeaceae), additional evidence for filicalean diversity in the Paleogene of North America. International Journal of Plant Sciences, 167, 675–681.CrossRefGoogle Scholar
Vavrek, M. J., Stockey, R. A., and Rothwell, G. W. (2006). Osmunda vancouverensis sp. nov. (Osmundaceae), permineralized fertile frond segments from the Lower Cretaceous of British Columbia, Canada. International Journal of Plant Sciences, 167, 631–637.CrossRefGoogle Scholar
White, R. A. and Weidlich, W. H. (1995). Organization of the vascular system in stems of Diplazium and Blechnum (Filicales). American Journal of Botany, 82, 982–991.CrossRefGoogle Scholar
Yao, Z. and Taylor, T. N. (1988). On a new gleicheniaceous fern from the Permian of South China. Review of Palaeobotany and Palynology, 54, 121–134.Google Scholar
Yamada, T. and Kato, M. (2002). Regnellites nagashimae, gen. et sp. nov., the oldest macrofossil of Marsileaceae, from the Upper Jurassic and Lower Cretaceous of western Japan. International Journal of Plant Sciences, 163, 715–723.CrossRefGoogle Scholar
Yoshida, A., Nishida, H., and Nishida, M. (1997). Permineralized schizaeaceous fertile pinnules from the Upper Cretaceous of Hokkaido, Japan II. Paralygodium yezoense gen. et sp. nov. Research Institute for Evolutionary Biology Scientific Reports, 9, 1–10.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×