Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-25T03:54:29.970Z Has data issue: false hasContentIssue false

Chapter 19 - Cognitive and behavioral abnormalities of vascular cognitive impairment

Published online by Cambridge University Press:  01 December 2016

Bruce L. Miller
Affiliation:
University of California, San Francisco
Bradley F. Boeve
Affiliation:
Mayo Clinic, Minnesota
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pasquier, F, Leys, D (1997). Why are stroke patients prone to develop dementia? J Neurol 244(3):135–42.Google ScholarPubMed
Bowler, JV, Hachinski, V (1995). Vascular cognitive impairment: a new approach to vascular dementia. Baillires Clin Neurol 4(2):357–76.CrossRefGoogle Scholar
Lee, DY, Lee, JH, Ju, YS et al. (2002). The prevalence of dementia in older people in an urban population of Korea: the Seoul study. J Am Geriatr Soc 50(7):1233–9.CrossRefGoogle Scholar
Zhang, ZX, Zahner, GE, Roman, GC et al. (2005). Dementia subtypes in China: prevalence in Beijing, Xian, Shanghai, and Chengdu. Arch Neurol 62(3):447–53.CrossRefGoogle ScholarPubMed
Dong, MJ, Peng, B, Lin, XT et al. (2007). The prevalence of dementia in the People’s Republic of China: a systematic analysis of 1980–2004 studies. Age Ageing 36(6):619–24.CrossRefGoogle ScholarPubMed
Yanagihara, T (2002). Vascular dementia in Japan. Ann N Y Acad Sci 977:24–8.CrossRefGoogle ScholarPubMed
Kokmen, E, Whisnant, JP, O’Fallon, WN, Chu, CP, Beard, CM (1996). Dementia after ischemic stroke: a populationbased study in Rochester, Minnesota (1960–1984). Neurology 46:154–9.CrossRefGoogle Scholar
Andersen, G, Vestergaard, K, Riis, JY, Ingeman-Nielsen, M (1996). Intellectual impairment in the first year following stroke, compared to an age-matched population sample. Cerebrovasc Dis 6:363–9.CrossRefGoogle Scholar
Tatemichi, TK, Paik, M, Bagiella, E et al. (1994). Risk of dementia after stroke in a hospitalized cohort: results of a longitudinal study. Neurology 44:1885–91.CrossRefGoogle Scholar
Gorelick, PB, Scuteri, A, Black, SE et al. (2011) Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. AHA/ASA Scientific Statement. Stroke. 42(9):2672–713.Google Scholar
American Psychiatric Association (1994). Diagnostic and Statistical Manual of Mental Disorders, 4th edn. Washington, DC: American Psychiatric Association.Google Scholar
World Health Organization (1993). International Classification of Disease (ICD-1 0): Classification of Mental and Behavioral Disorders. Diagnostic Criteria for Research. Geneva: World Health Organization.CrossRefGoogle ScholarPubMed
Chui, HC, Victoroff, JI, Margolin, D et al. (1992). Criteria for the diagnosis of ischemic vascular dementia proposed by the State of California Alzheimer’s Disease Diagnostic and Treatment Centers. Neurology 42:473–80.Google Scholar
Roman, GC, Tatemichi, TK, Erkinjuntti, T et al. (1993). Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology 31:269–82.Google ScholarPubMed
Roman, GC, Tatemichi, TK, Erkinjuntti, T et al. (1993). Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology 43:250–60.Google ScholarPubMed
Roman, GC, Tatemichi, TK, Erkinjuntti, T et al. (1993). Vascular dementia: diagnostic criteria for research studies - Report of the NINDS-AIREN International Workshop. Neurology 43:1609–11.CrossRefGoogle ScholarPubMed
Hachinski, VC, Iliff, LD, Zilhka, E et al. (1975). Cerebral blood flow in dementia. Arch Neurol 32(9):632–7.CrossRefGoogle ScholarPubMed
Moroney, JT, Bagiella, E, Desmond, DW et al. (1997). Meta-analysis of the Hachinski Ischemic Score in pathologically verified dementias. Neurology 49:1096–105.Google ScholarPubMed
De Reuck, J, Sieben, G, De Coster, W, van der Eecken, H (1981). Stroke pattern and topography of cerebral infarcts. A clinicopathological study. Eur Neural 20(5):411–15.CrossRefGoogle ScholarPubMed
Erkinjuntti, T (1987). Types of multi-infarct dementia. Acta Neurol Scand 75(6):391–9.Google ScholarPubMed
Erkinjuntti, T, Sawada, T, Whitehouse, PJ (1999). The Osaka Conference on Vascular Dementia 1998. Alzheimer Dis Assoc Disord 13(Suppl 3):S1–3.CrossRefGoogle ScholarPubMed
Benson, DF, Cummings, JL (1982). Angular gyrus syndrome simulating Alzheimer’s disease. Arch Neurol 39(10):616–20.CrossRefGoogle ScholarPubMed
Tatemichi, TK, Foulkes, MA, Mohr, JP et al. (1990). Dementia in stroke survivors in the Stroke Data Bank cohort. Prevalence, incidence, risk factors, and computed tomographic findings. Stroke 21(6):858–66.Google Scholar
Brust, J, Sawada, T, Kazui, S (2001). Anterior cerebral artery. In Stroke Syndrome, 2nd edn, eds. Bogousslavsky, J, Caplan, L. Cambridge, UK: Cambridge University Press, 439–60.CrossRefGoogle Scholar
Absher, JR, Cummings, JL (1995). Neurobehavioral examination of frontal lobe functions. Aphasiology 9:181–92.CrossRefGoogle ScholarPubMed
Cummings, JL (1993). Frontal-subcortical circuits and human behavior. Arch Neurol 50(8):873–80.CrossRefGoogle ScholarPubMed
Hahm, DS, Kang, Y, Cheong, SS, Na, DL (2001). A compulsive collecting behavior following an A-com aneurysmal rupture. Neurology 56(3):398400.CrossRefGoogle ScholarPubMed
Lhermitte, F, Pillon, B, Serdaru, M (1986). Human autonomy and the frontal lobes. Part I: imitation and utilization behavior: a neuropsychological study of 75 patients. Ann Neurol 19(4): 326–34.CrossRefGoogle ScholarPubMed
Lhermitte, F (1983). “Utilization behaviour” and its relation to lesions of the frontal lobes. Brain 106(Pt 2):237–55.Google Scholar
Tranel, D (1994). “Acquired sociopathy”: the development of sociopathic behavior following focal brain damage. Prog Exp Pers Psychopathol Res 285–311.Google Scholar
Gazzaniga, MS, lvry, RB, Mangun, GR (2002). Emotion. In Cognitive Neuroscience: The Biology of the Mind 2nd edn, ed. Gazzaniga, MS, Ivry, RB, Mangun, GR. New York: WW Norton, 537–76.CrossRefGoogle Scholar
Heilman, KM, Watson, RT (1991). Intentional motor disorders. In Frontal Lobe Function and Dysfunction, ed. Levin, HS, Eisenberg, HM, Benton, AL. New York: Oxford University Press, pp. 199213.Google Scholar
Wernicke, E (1874). Der Aphasische Symptomenkomplex. Breslau: Cohn and Weigart.Google ScholarPubMed
Geschwind, N (1965). Disconnexion syndromes in animals and man. I. Brain 88(2):237–94.Google ScholarPubMed
Geschwind, N (1965). Disconnexion syndromes in animals and man. II. Brain 88(3):585644.CrossRefGoogle ScholarPubMed
Heilman, KM, van den Abell, T (1979). Right hemispheric dominance for mediating cerebral activation. Neuropsychologia 17(3–4):315–21.CrossRefGoogle ScholarPubMed
Meador, KJ, Watson, RT, Bowers, D, Heilman, KM (1986). Hypometria with hemispatial and limb motor neglect. Brain 109(Pt 2):293305.CrossRefGoogle ScholarPubMed
Heilman, KM, Bowers, D, Coslett, HB, Whelan, H, Watson, RT (1985). Directional hypokinesia: prolonged reaction times for leftward movements in patients with right hemisphere lesions and neglect. Neurology 35(6):855–9.CrossRefGoogle ScholarPubMed
Kertesz, A, Nicholson, I, Cancelliere, A, Kassa, K, Black, SE (1985). Motor impersistence: a right hemisphere syndrome. Neurology 35(5):662–6.CrossRefGoogle ScholarPubMed
Sandson, J, Albert, ML (1987). Perseveration in behavioral neurology. Neurology 37(11):1736–41.Google Scholar
Kolb, B, Whishaw, IQ (2003). Disconnection syndromes. In Fundamentals of Human Neuropsychology, 5th edn, ed. Kolb, B, Whishaw, IQ. New York: Worth, pp. 426–46.CrossRefGoogle ScholarPubMed
Seo, SW, Jung, K, You, H et al. (2007). Dominant limb motor impersistence associated with callosal disconnection. Neurology 68(11):862–4.CrossRefGoogle Scholar
Starkstein, SE, Robinson, RG (1991). The role of the frontal lobes in affective disorder following stroke. In Frontal Lobe Function and Dysfunction, ed. Levin, HS, Eisenberg, HM, Benton, AL. New York: Oxford University Press, pp. 288303.Google Scholar
Damasio, AR, Anderson, SW (2003). The frontal lobes. In Clinical Neuropsychology, 4th edn, ed. Heilman, KM, Valenstein, E. New York: Oxford University Press, 404–46.CrossRefGoogle Scholar
Andrew, J, Nathan, PW (1964). Lesion on the anterior frontal lobes and disturbances of micturition and defecation. Brain 87:233–62.Google Scholar
Ropper, AH, Brown, RH, Brown, RJ (2005). Disorders of speech and language. Adams and Victor’s Principles of Neurology, 8th edn. New York: McGraw-Hill, pp. 413–32.CrossRefGoogle ScholarPubMed
Zangwill, OL (1979). Two cases of crossed aphasia in dextrals. Neuropsychologia 17(2):167.Google Scholar
Broca, P (1977). Remarks on the seat of the faculty of articulate speech, followed by the report of a case of aphemia (loss of speech). In Neurologic Classics in Modern Translation, eds. Rottenberg, DA, Hochberg, FH. New York: Hafner Press, 136–49.Google Scholar
Damasio, H (1981). Cerebral localization of the aphasias. In Acquired Aphasia, ed. Sarno, MT. Orlando, FL: Academic Press, pp. 2755.Google Scholar
Benson, DF (1988). Classical syndromes of aphasia. In Handbook of Neuropsychology, vol.l, eds. Boiler, F, Grafman, J. Amsterdam: Elsevier Science, 267280.Google Scholar
Damasio, H, Damasio, AR (1983). The localization of lesions in conduction aphasia. In Localization and Neuroimaging in Neuropsychology, ed. Kertesz, A. Orlando, FL: Academic Press, pp. 231–43.Google Scholar
Devinsky, O (1992). Aphasia. In Behavioral Neurology 100 Maxims. St. Louis MO: Mosby Year Book, 88130.CrossRefGoogle ScholarPubMed
Freedman, M, Alexander, MP, Naeser, MA (1984). Anatomic basis of transcortical motor aphasia. Neurology 34(4): 409–17.CrossRefGoogle ScholarPubMed
Alexander, MP, Hiltbrunner, B, Fischer, RS (1989). Distributed anatomy of transcortical sensory aphasia. Arch Neurol 46(8):885–92.CrossRefGoogle Scholar
Mesulam, MM, van Hoesen, GW, Pandya, DN, Geschwind, N (1977). Limbic and sensory connections of the inferior parietal lobule (area PG) in the Rhesus monkey: a study with a new method for horseradish per oxidase histochemistry. Brain Res 136(3):393414.CrossRefGoogle Scholar
Gerstmann, J (1940). Syndrome of finger agnosia, disorientation for right and left, agraphia and acalculia. Arch Neurol Psychiatry 44:398408.CrossRefGoogle ScholarPubMed
Benton, AL, Varney, NR, Hamsher, KD (1978). Visuospatial judgment. A clinical test. Arch Neurol 35(6):364–7.CrossRefGoogle ScholarPubMed
Heilman, KM, van den Abell, T (1980). Right hemisphere dominance for attention: the mechanism underlying hemispheric asymmetries of inattention (neglect). Neurology 30(3):327–30.Google Scholar
Benton, AL, Tranel, D (1993). Visuoperceptual, visuospatial, and visuoconstructive disorders. In Clinical Neuropsychology 3rd edn, eds. Heilman, KM and Valenstein, E. New York: Academic Press, 165213.Google Scholar
Farah, MJ (2003). Disoders of visual-spatial perception and cognition. In Clinical Neuropsychology. 4th edn, ed. Heilman, KM, Valenstein, E. New York: Oxford University Press, pp. 146–60.CrossRefGoogle Scholar
Heilman, KM, Rothi, LJG (2003). Apraxia. In Clinical Neuropsychology, 4th edn, ed. Heilman, KM, Valenstein, E. New York: Oxford University Press, pp. 215–35.CrossRefGoogle Scholar
Heilman, KM, Rothi, LJG (2003). Neglect and related disorders. In Clinical Neuropsychology, 4th edn, ed. Heilman, KM, Valenstein, E. New York: Oxford University Press, pp. 296346.CrossRefGoogle ScholarPubMed
Mort, DJ, Malhotra, P, Mannan, SK et al. (2003). The anatomy of visual neglect. Brain 126:1986–97.Google ScholarPubMed
Vallar, G, Bottini, G, Paulesu, E (2003). Neglect syndromes: the role of the parietal cortex. Adv Neurol 93 :293319.CrossRefGoogle Scholar
Karnath, HO, Fruhmann Berger, M, Kuker, W, Rorden, C (2004). The anatomy of spatial neglect based on voxel-wise statistical analysis: a study of 140 patients. Cereb Cortex 14:1164–72.CrossRefGoogle ScholarPubMed
Karnath, HO, Zopf, R, Johannsen, L et al. (2005). Normalized perfusion MRI to identify common areas of dysfunction: patients with basal ganglia neglect. Brain 128:2462–9.CrossRefGoogle ScholarPubMed
Hillis, AE, Newhart, M, Heidler, J et al. (2005). Anatomy of spatial attention: insights from perfusion imaging and hemispatial neglect in acute stroke. J Neurosci 25:3161–7.Google Scholar
Babinski, J (1914). Contribusion a l’etude des troubles mentaux clans l’hemiplegie organique cerebrate (anosognosie). Rev Neural 27:845–7.CrossRefGoogle Scholar
Beschin, N, Robertson, IH (1997). Personal versus extrapersonal neglect: a group study of their dissociation using a reliable clinical test. Cortex 33(2):379–84.CrossRefGoogle ScholarPubMed
Tucker, DM, Watson, RT, Heilman, KM (1977). Discrimination and evocation of affectively intoned speech in patients with right parietal disease. Neurology 27(10):947–50.CrossRefGoogle ScholarPubMed
Ross, ED (1981). The aprosodias. Functional–anatomic organization of the affective components of language in the right hemisphere. Arch Neurol 38(9):561–9.CrossRefGoogle ScholarPubMed
Mesulam, MM, Waxman, SG, Geschwind, N, Sabin, TD (1976). Acute confusional states with right middle cerebral artery infarctions. J Neurol Neurosurg Psychiatry 39(1):84–9.CrossRefGoogle ScholarPubMed
Mori, E, Yamadori, A (1987). Acute confusional state and acute agitated delirium. Occurrence after infarction in the right middle cerebral artery territory. Arch Neurol 44(11):1139–43.CrossRefGoogle Scholar
Starkstein, SE, Robinson, RG, Price, TR (1987). Comparison of cortical and subcortical lesions in the production of poststroke mood disorders. Brain 110(Pt 4): 1045–59.CrossRefGoogle ScholarPubMed
Kim, JS, Choi-Kwon, S (2000). Poststroke depression and emotional incontinence: correlation with lesion location. Neurology 54(9):1805–10.CrossRefGoogle ScholarPubMed
Fisher, CM (1986). The posterior cerebral artery syndrome. Can J Neurol Sci 13(3):232–9.CrossRefGoogle ScholarPubMed
Critchley, M (1951). Types of visual perseveration: “paliopsia” and “illusory visual spread”. Brain 74(3):267–99.CrossRefGoogle Scholar
Lance, JW (1976). Simple formed hallucinations confined to the area of a specific visual field defect. Brain 99(4):719–34.CrossRefGoogle Scholar
Brust, JC, Behrens, MM (1977). “Release hallucinations” as the major symptom of posterior cerebral artery occlusion: a report of 2 cases. Ann Neurol 2(5):432–6.CrossRefGoogle Scholar
De Renzi, E, Zambolin, A, Crisi, G (1987). The pattern of neuropsychological impairment associated with left posterior cerebral artery infarcts. Brain 110(Pt 5):1099–116.CrossRefGoogle ScholarPubMed
Geschwind, N, Fusillo, M (1966). Color-naming defects in association with alexia. Arch Neurol 115(2):137–46.Google Scholar
Kertesz, A, Sheppard, A, MacKenzie, R (1982). Localization in transcortical sensory aphasia. Arch Neurol 39(8):475–8.CrossRefGoogle ScholarPubMed
Luders, H, Lesser, RP, Hahn, J et al. (1991). Basal temporal language area. Brain 114(Pt 2):743–54.CrossRefGoogle ScholarPubMed
Kwon, JC, Lee, HJ, Chin, J et al. (2002). Hanja alexia with agraphia after left posterior inferior temporal lobe infarction: a case study. J Korean Med Sci 17(1):91–5.CrossRefGoogle ScholarPubMed
Kawamura, M, Hirayama, K, Hasegawa, K, Takahashi, N, Yamaura, A (1987). Alexia with agraphia of kanji (Japanese morphograms). J Neurol Neurosurg Psychiatry 50(9):1125–9.CrossRefGoogle ScholarPubMed
Soma, Y, Sugishita, M, Kitamura, K, Maruyama, S, Imanaga, H (1989). Lexical agraphia in the Japanese language. Pure agraphia for Kanji due to left posteroinferior temporal lesions. Brain 112(Pt 6): 1549–61.Google ScholarPubMed
Benson, DF, Marsden, CD, Meadows, JC (1974). The amnesic syndrome of posterior cerebral artery occlusion. Acta Neurol Scand 50(2):133–45.Google ScholarPubMed
Kanwisher, N, McDermott, J, Chun, MM (1997). The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17(11):4302–11.CrossRefGoogle ScholarPubMed
Piercy, MF, Hecaen, H, de Ajuriaguerra, J (1960). Constructional apraxia associated with unilateral cerebral lesions. Brain 83:225–42.CrossRefGoogle ScholarPubMed
Fisher, CM (1982). Disorientation for place. Arch Neurol 39(1):33–6.CrossRefGoogle ScholarPubMed
Park, KC, Jeong, Y, Hwa Lee, B et al. (2005). Left hemispatial visual neglect associated with a combined right occipital and splenial lesion: another disconnection syndrome, Neurocase 11(5):310–18.Google ScholarPubMed
Park, KC, Lee, BH, Kim, EJ et al. (2006). Deafferentation disconnection neglect induced by posterior cerebral artery infarction. Neurology 66(1):5661.CrossRefGoogle ScholarPubMed
Poppel, E, Held, R, Frost, D (1973). Residual visual function after brain wounds involving the central visual pathways in man. Nature 243(5405):295–6.CrossRefGoogle ScholarPubMed
Aldrich, MS, Alessi, AG, Beck, RW, Gilman, S (1987). Cortical blindness: etiology, diagnosis, and prognosis. Ann Neurol 21(2):149–58.CrossRefGoogle ScholarPubMed
Ungerleider, LG, Mishkin, M (1982). Two cortical visual systems. In Analysis of Visual Behavior, ed. Ingle, DJ, Goodale, MA, Mansfield, RJW. Cambridge, MA: MIT Press, pp. 549–86.Google Scholar
Hecaen, H, de Ajuriaguerra, J (1954). Balint’s syndrome (psychic paralysis of visual fixation) and its minor forms. Brain 77(3):373400.CrossRefGoogle ScholarPubMed
Albert, ML, Soffer, D, Silverberg, R, Reches, A (1979).The anatomic basis of visual agnosia. Neurology 29(6):876–9.CrossRefGoogle ScholarPubMed
Damasio, A, Yamada, T, Damasio, H, Corbett, J, McKee, J (1980). Central achromatopsia: behavioral, anatomic, and physiologic aspects. Neurology 30(10):1064–71.CrossRefGoogle ScholarPubMed
Damasio, AR, Damasio, H, van Hoesen, GW (1982). Prosopagnosia: anatomic basis and behavioral mechanisms. Neurology 32(4):331–41.CrossRefGoogle ScholarPubMed
Ringelstein, EB, Zeumer, H, Angelou, D (1983). The pathogenesis of strokes from internal carotid artery occlusion. Diagnostic and therapeutical implications. Stroke 14(6):867–75.CrossRefGoogle ScholarPubMed
Ringelstein, EB, Berg-Dammer, E, Zeumer, H (1983). The so-called atheromatous pseudo-occlusion of the internal carotid artery. A diagnostic and therapeutical challenge. Neuroradiology 25(3):147–55.CrossRefGoogle Scholar
Bogousslavsky, J, Regli, F (1986). Unilateral watershed cerebral infarcts. Neurology 36(3):373–7.CrossRefGoogle ScholarPubMed
Bogousslavsky, J, Regli, F (1992). Centrum ovale infarcts: subcortical infarction in the superficial territory of the middle cerebral artery. Neurology 42(10):1992–8.Google ScholarPubMed
Hashiguchi, S, Mine, H, Ide, M, Kawachi, Y (2000). Watershed infarction associated with dementia and cerebral atrophy. Psychiatry Clin Neurosci 54(2): 163–8.CrossRefGoogle ScholarPubMed
Antonelli Incalzi, R, Marra, C, Giordano, A et al. (2003). Cognitive impairment in chronic obstructive pulmonary disease: A neuropsychological and SPECT study. J Neurol 250(3):325–32.CrossRefGoogle ScholarPubMed
Lass, P, Buscombe, JR, Harber, M, Davenport, A, Hilson, AJ (1999). Cognitive impairment in patients with renal failure is associated with multiple-infarct dementia. Clin Nucl Med 24:561–5.CrossRefGoogle ScholarPubMed
Zuccala, G, Onder, G, Pedone, C (2001). For the GIFAONLUS Study Group. Hypotension and cognitive impairment: selective association in patients with hearing failure. Neurology 57(11):1986–92.CrossRefGoogle Scholar
Tsuda, Y, Yamada, K, Hayakawa, T et al. (1994). Cortical blood flow and cognition after extracranial-intracranial bypass in a patient with severe carotid occlusive lesions. Acta Neurochir (Wien) 129(3–4):198204.CrossRefGoogle Scholar
Roman, GC (2004). Brain hypoperfusion: a critical factor in vascular dementia. Neurol Res 26:454–8.CrossRefGoogle ScholarPubMed
Pullicino, PM, Caplan, LR, Hommel, M (1993). Advances in Neurology, Vol. 62: Cerebral Small Artery Disease. New York: Raven Press.Google Scholar
Crystal, HA, Dickson, DW, Sliwinski, MJ et al. (1993). Pathological markers associated with normal aging and dementia in the elderly. Ann Neurol 34:566–73.CrossRefGoogle ScholarPubMed
Kumral, E, Evyapan, D, Balkir, K (1999). Acute caudate vascular lesions. Stroke 30(1): 100–8.CrossRefGoogle ScholarPubMed
Mendez, MF, Adams, NL, Lewandowsky, K (1989). Neurobehavioral changes associated with caudate lesions. Neurology 39:349–54.CrossRefGoogle ScholarPubMed
Caplan, LR, Schmahmann, JD, Kase, CS et al. (1990). Caudate infarcts. Arch Neurol 47:133–43.CrossRefGoogle ScholarPubMed
Kawamura, M, Takahashi, N, Hirayama, K (1988). Hemichorea and its denial in a case of caudate infarction diagnosed by magnetic resonance imaging. J Neurol Neurosurg Psychiatry 51:590–1.CrossRefGoogle Scholar
Richfield, EK, Twyman, R, Berent, S (1987). Neurological syndrome following bilateral damage to the head of the caudate nuclei. Ann Neurol 22:768–71.CrossRefGoogle Scholar
Meguro, K, Meguro, M, Akanuma, K (2012). Recurrent delusional ideas due to left caudate head infarction, without dementia. Psychogeriatrics 12:5861.CrossRefGoogle ScholarPubMed
Pozzilli, C, Passafiume, D, Bastianello, S, D’Antona, R, Lenzi, GL (1987). Remote effects of caudate hemorrhage: a clinical and functional study. Cortex 23:341–9.CrossRefGoogle ScholarPubMed
McMurtray, AM, Sultzer, DL, Monserratt, L, Yeo, T, Mendez, MF (2008). Content-specific delusions from right caudate lacunar stroke: association with prefrontal hypometabolism. J Neuropsychiatry Clin Neurosci 20:62–7.CrossRefGoogle ScholarPubMed
Alexander, MP, Naeser, MA, Palumbo, CL (1987). Correlation of subcortical CT lesion sites and aphasia profiles. Brain 110:961–91.CrossRefGoogle ScholarPubMed
Bhatia, KP, Marsden, CD (1994). The behavioural and motor consequences of focal lesions of the basal ganglia in man. Brain 117(Pt 4):859–76.CrossRefGoogle ScholarPubMed
Maraganore, DM, Harding, AE, Marsden, CD (1991). A clinical and genetic study of familial Parkinson’s disease. Mov Disord 6(3):205–11.CrossRefGoogle ScholarPubMed
Laplane, D, Attal, N, Sauron, B, de Billy, A, Dubois, B (1992). Lesions of basal ganglia due to disulfiram neurotoxicity. J Neurol Neurosurg Psychiatry 55(10):925–9.CrossRefGoogle ScholarPubMed
Kim, SH, Park, KH, Sung, YH, Lee, YB, Park, HM, Shin, DJ (2008). Dementia mimicking a sudden cognitive and behavioral change induced by left globus pallidus infarction: review of two cases. J Neurol Sci 272:178–82.CrossRefGoogle ScholarPubMed
Tatemichi, TK, Desmond, DW, Prohovnik, I et al. (1992a). Confusion and memory loss from capsular genu infarction: a thalamocortical disconnection syndrome? Neurology 42:1966–79.CrossRefGoogle ScholarPubMed
Kooistra, CA, Heilman, KM (1988). Memory loss from a subcortical white matter infarct. J Neural Neurosurg Psychiatry 51:866–9.CrossRefGoogle ScholarPubMed
Lai, C, Okada, Y, Sadoshima, S et al. (1990). A case of left internal capsular infarction with auditory hallucination and peculiar amnesia and dysgraphia. No To Shinkei 42:873–77.Google ScholarPubMed
Terao, Y, Bandou, M, Nagura, H et al. (1991). Persistent amnestic syndrome due to infarction of the genu of the left internal capsule. Rinsho Shinkeigaku 31:1002–6.Google ScholarPubMed
Chukwudelunzu, FE, Meschia, JF, Graff-Radford, NR, Lucas, JA (2001). Extensive metabolic and neuropsychological abnormalities associated with discrete infarction of the genu of the internal capsule. J Neurol Neurosurg Psychiatry 71(5):658–62.CrossRefGoogle ScholarPubMed
Yamanaka, K, Fukuyama, H, Kimura, J (1996). Abulia from unilateral capsular genu infarction: report of two cases. J Neurol Sci 143:181–4.CrossRefGoogle ScholarPubMed
Bogousslavsky, J, Regli, F (1990). Capsular genu syndrome. Neurology 40:1499–502.CrossRefGoogle ScholarPubMed
Oh, JH, Ahn, BY, Jo, MK et al. (2011). Obsessive-compulsive behavior disappearing after left capsular genu infarction. Case Rep Neurol 3:1820.CrossRefGoogle ScholarPubMed
Tatemichi, TK, Steinke, W, Duncan, C et al. (1992b). Paramedian thalamopeduncular infarction: clinical syndromes and magnetic resonance imaging. Ann Neurol 32(2):162–71.CrossRefGoogle ScholarPubMed
Klingler, J, Gloor, P (1960). The connections of the amygdala and of the anterior temporal cortex in the human brain. J Camp Neurol 115:333–69.CrossRefGoogle ScholarPubMed
Krettek, JE, Price, JL (1977). The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. J Camp Neurol 171:157–91.CrossRefGoogle ScholarPubMed
Nieuwenhuys, R, Voogd, J, van Huijzen, C (1988). The Human Central Nervous System: A Synopsis and Atlas. New York: Springer-Verlag.CrossRefGoogle ScholarPubMed
Hwang, W, Oh, YA, Jang, SM et al. (2010). A case report of three-dimensional fiber tractography of anterior thalamic radiation in a capsular genu infarction. Demen Neurocog Disord 9:36–9.CrossRefGoogle Scholar
von Cramon, DY, Hebel, N, Schuri, U (1985). A contribution to the anatomical basis of thalamic amnesia. Brain 108(Pt 4):9931008.Google Scholar
Graff-Radford, NR, Tranel, D, van Hoesen, GW, Brandt, JP (1990). Diencephalic amnesia. Brain 113(Pt 1):125.CrossRefGoogle Scholar
Aggleton, JP, Saunders, RC (1997). The relationships between temporal lobe and diencephalic structures implicated in anterograde amnesia. Memory: 5:4971.CrossRefGoogle ScholarPubMed
Ghika-Schmid, F, Bogousslavsky, J (2000). The acute behavioral syndrome of anterior thalamic infarction: a prospective study of 12 cases. Ann Neurol 48(2):220–7.CrossRefGoogle ScholarPubMed
Carrera, E, Michel, P, Bogousslavsky, J (2004). Anteromedian, central, and posterolateral infarcts of the thalamus: three variant types. Stroke 35:2826–31.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Benson, DF, Djenderedjian, A, Miller, EL et al. (1996). Neural basis of confabulation. Neurology 46:1239–43.CrossRefGoogle ScholarPubMed
Nishio, Y, Hashimoto, M, Ishii, K, Mori, E (2011). Neuroanatomy of a neurobehavioral disturbance in the left anterior thalamic infarction. J Neurol Neurosurg Psychiatry 82:1195–200.CrossRefGoogle ScholarPubMed
Muneoka, K, Igawa, M, Kida, J, Mikami, T, Ishihara, I, Uchida, J, Uchida, S, Hirasawa, H (2008). In a case of Alzheimer’s disease, aggressiveness disappeared after an infarction in the anterior thalamic nucleus. Cerebrovasc Dis 26:664–5.CrossRefGoogle ScholarPubMed
van der Werf, YD, Witter, MP, Uylings, HB, Jolles, J (2000). Neuropsychology of infarctions in the thalamus: a review. Neuropsychologia 38(5):613–27.CrossRefGoogle Scholar
Daum, I, Ackermann, H (1994). Frontal-type memory impairment associated with thalamic damage. Int J Neurosci 77(3–4):187–98.CrossRefGoogle ScholarPubMed
Linek, V, Sonka, K, Bauer, J (2005). Dysexecutive syndrome following anterior thalamic ischemia in the dominant hemisphere. J Neurol Sci 229–230:117–20.CrossRefGoogle ScholarPubMed
Carrera, E, Bogousslavsky, J (2006). The thalamus and behavior: effects of anatomically distinct strokes. Neurology 66:1817–23.Google ScholarPubMed
Kim, EJ, Lee, DK, Kang, DH et al. (2005). Ipsilateral ptosis associated with anterior thalamic infarction. Cerebrovasc Dis 20:410–11.CrossRefGoogle ScholarPubMed
Castaigne, P, Lhermitte, F, Buge, A et al. (1981). Paramedian thalamic and midbrain infarct: clinical and neuropathological study. Ann Neurol 10:127–48.CrossRefGoogle ScholarPubMed
Graff-Radford, NR, Damasio, H, Yamada, T, Eslinger, PJ, Damasio, AR (1985). Nonhaemorrhagic thalamic infarction. Clinical, neuropsychological and electrophysiological findings in four anatomical groups defined by computerized tomography. Brain 108(Pt 2):485516.CrossRefGoogle ScholarPubMed
Bogousslavsky, J, Regli, F, Uske, A (1988). Thalamic infarcts: clinical syndromes, etiology, and prognosis. Neurology 38(6):837–48.CrossRefGoogle ScholarPubMed
Chung, CS, Caplan, LR, Han, W et al. (1996). Thalamic haemorrhage. Brain 119(Pt 6): 1873–86.CrossRefGoogle ScholarPubMed
Schmahmann, JD (2003). Vascular syndromes of the thalamus. Stroke 34:2264–78.CrossRefGoogle ScholarPubMed
Hermann, DM, Siccoli, M, Brugger, P, Wachter, K, Mathis, J, Achermann, P, Bassetti, CL (2008). Evolution of neurological, neuropsychological and sleep-wake disturbances after paramedian thalamic stroke. Stroke 39:62–8.CrossRefGoogle ScholarPubMed
Weidauer, S, Nichtweiss, M, Zanella, FE, Lanfermann, H (2004). Assessment of paramedian thalamic infarcts: MR imaging, clinical features and prognosis. Eur Radiol 14(9):1615–26.CrossRefGoogle ScholarPubMed
Mennemeier, M, Fennell, E, Valenstein, E, Heilman, KM (1992). Contributions of the left intralaminar and medial thalamic nuclei to memory. Comparisons and report of a case. Arch Neurol 49(10):1050–8.CrossRefGoogle ScholarPubMed
Perren, F, Clarke, S, Bogousslavsky, J (2005). The syndrome of combined polar and paramedian thalamic infarction. Arch Neurol 62:1212–16.CrossRefGoogle ScholarPubMed
Eslinger, PJ, Warner, GC, Grattan, LM, Easton, JD (1991). “Frontal lobe” utilization behavior associated with paramedian thalamic infarction. Neurology 41 (3):450–2.CrossRefGoogle ScholarPubMed
Muller, A, Baumgartner, RW, Rohrenbach, C, Regard, M (1999). Persistent Kluver-Bucy syndrome after bilateral thalamic infarction. Neuropsychiatry Neuropsychol Behav Neurol 12(2):136–9.CrossRefGoogle ScholarPubMed
Crail-Melendez, D, Atriano-Mendieta, C, Carrillo-Meza, R, Ramirez-Bermudez, J 2013. Schizophrenia-like psychosis associated with right lacunar thalamic infarct. Neurocase 19:22–6.Google ScholarPubMed
Ioannidis, AE, Kimiskidis, VK, Loukopoulou, E et al. (2013). Apathy, cognitive dysfunction and impaired social cognition in a patient with bilateral thalamic infarction. Neurocase 19:513–20.CrossRefGoogle ScholarPubMed
van der Werf YD, Scheltens P, Lindeboom, J et al. (2003b). Deficits of memory, executive functioning and attention following infarction in the thalamus; a study of 22 cases with localised lesions. Neuropsychologia 41:1330–44.CrossRefGoogle Scholar
Botez, MI, Barbeau, A (1971). Role of subcortical structures, and particularly of the thalamus, in the mechanisms of speech and language. A review. Int J Neurol 8:300–20.Google Scholar
Fisher, CM (1965). Lacunes: small deep cerebral infarcts. Neurology 15:774–84.Google ScholarPubMed
Pantoni, L, Garcia, JH (1997). Pathogenesis of leukoaraiosis: a review. Stroke. 28:652–9.CrossRefGoogle ScholarPubMed
Thore, CR, Anstrom, JA, Moody, DM et al. (2007). Morphometric analysis of arteriolar tortuosity in human cerebral white matter of preterm, young, and aged subjects. J Neuropathol Exp Neurol 66:337–45.CrossRefGoogle ScholarPubMed
Scheltens, P, Barkhof, F, Leys, D, Wolters, EC, Ravid, R, Kamphorst, W. (1995) Histopathologic correlates of white matter changes on MRI in Alzheimer’s disease and normal aging. Neurology 45:883–8.Google Scholar
Moody, DM, Brown, WR, Challa, VR, Ghazi-Birry, HS, Reboussin, DM (1997). Cerebral microvascular alterations in aging, leukoaraiosis, and Alzheimer’s disease. Ann N Y Acad Sci 826:103–16.CrossRefGoogle ScholarPubMed
Gao, FQ, van Gaal, S. L-CNRJSCBJBS. Does variable progression of incidental white matter hyperintensities in AD relate to venous insufficiency? Alzheimer’s and Dementia. 2008;4 (Suppl):T368–69.CrossRefGoogle Scholar
Erkinjuntti, T, Inzitari, D, Pantoni, L et al. (2000). Research criteria for subcortical vascular dementia in clinical trials. J Neural Transm Suppl 59:2330.Google ScholarPubMed
Hijdra, A, Verbeeten, B Jr., Verhulst, JAPM (1990). Relation of leukoaraiosis to lesion type in stroke patients. Stroke 21:890–4.CrossRefGoogle ScholarPubMed
Tatemichi, TK, Desmond, DW, Paik, M et al. (1993). Clinical determinants of dementia related to stroke. Ann Neurol 33(6):568–75.CrossRefGoogle ScholarPubMed
Lee, JH, Kim, SH, Kim, GH et al. (2011) Identification of pure subcortical vascular dementia using 11C-Pittsburgh compound B. Neurology 5;77(1):1825.CrossRefGoogle ScholarPubMed
Kim, CH, Seo, SW, Kim, GH et al. (2012). Cortical thinning in subcortical vascular dementia with negative 11C-PiB PET. J Alzheimers Dis 31(2):315–23.CrossRefGoogle Scholar
Kim, HJ, Kang, SJ, Kim, C et al. (2013). The effects of small vessel disease and amyloid burden on neuropsychiatric symptoms: a study among patients with subcortical vascular cognitive impairments. Neurobiol Aging 34(7):1913–20.Google ScholarPubMed
Dubois, B, Slachevsky, A, Litvan, I, Pillon, B (2000). The FAB: a frontal assessment battery at bedside. Neurology 55(11):1621–6.CrossRefGoogle ScholarPubMed
Desmond, DW, Erkinjuntti, T, Sano, M et al. (1999). The cognitive syndrome of vascular dementia: implications for clinical trials. Alzheimer Dis Assoc Disord 13(Suppl 3):S21–9.Google ScholarPubMed
Yoon, CW, Shin, JS, Kim, HJ et al. (2013) Cognitive deficits of pure subcortical vascular dementia vs. Alzheimer disease: PiB-PET-based study. Neurology 80(6):569–73.CrossRefGoogle ScholarPubMed
Stuss, DT, Cummings, JL (1990). Subcortical vascular dementias. In Subcortical Dementia, ed. Cummings, JL. New York: Oxford University Press, pp. 145–63.Google Scholar
Pantoni, L, Garcia, JH, Brown, GG (1996). Vascular pathology in three cases of progressive cognitive deterioration. J Neurol Sci 135:131–9.CrossRefGoogle ScholarPubMed
Roman, GC (1987). Senile dementia of the Bingswanger type: a vascular form of dementia in the elderly. JAMA 258:1782–8.CrossRefGoogle Scholar
Kim, SH, Seo, SW, Go, SM et al. (2011) Pyramidal and extrapyramidal scale (PEPS): a new scale for the assessment of motor impairment in vascular cognitive impairment associated with small vessel disease. Clin Neurol Neurosurg. 113(3):181–7.CrossRefGoogle ScholarPubMed
Cummings, JL, Benson, DF (1983). Dementia: A Clinical Approach. Boston, MA: Butterworth.Google Scholar
Baddeley, A (1986). Working Memory. New York: Oxford University Press.Google ScholarPubMed
Mega, MS, Cummings, JL (1994). Frontal subcortical circuits and neuropsychiatric disorders. J Neuropsychiatry Clin Neurosci 6:358–70.Google ScholarPubMed
Damasio, AR (1998). The somatic marker hypothesis and the possible functions of the prefrontal cortex. In The Prefrontal Cortex. Executive and Cognitive Functions, ed. Roberts, AC, Robbins, TW, Weiskrantz, L. New York: Oxford University Press, 3650.CrossRefGoogle Scholar
Lamar, M, Podell, K, Carew, TG et al. (1997). Perseverative behavior in Alzheimer’s disease and subcortical ischemic vascular dementia. Neuropsychology 11(4):523–34.CrossRefGoogle ScholarPubMed
Eslinger, PJ, Grattan, LM (1993). Frontal lobe and frontalstriatal substrates for different forms of human cognitive flexibility. Neuropsychologia 31(1):1728.CrossRefGoogle ScholarPubMed
Boone, KB, Miller, BL, Lesser, IM et al. (1992). Neuropsychological correlates of white-matter lesions in healthy elderly subjects: a threshold effect. Arch Neurol 49:549–54.CrossRefGoogle ScholarPubMed
Looi, JC, Sachdev, PS (1999). Differentiation of vascular dementia from AD on neuropsychological tests. Neurology 53(4):670–8.CrossRefGoogle ScholarPubMed
Tierney, MC, Black, SE, Szalai, JP et al. (2001). Recognition memory and verbal fluency differentiate probable Alzheimer disease from subcortical ischemic vascular dementia. Arch Neurol 58(10):1654–9.CrossRefGoogle ScholarPubMed
Lafosse, JM, Reed, BR, Mungas, D et al. (1997). Fluency and memory differences between ischemic vascular dementia and Alzheimer’s disease. Neuropsychology 11(4):514–22.CrossRefGoogle ScholarPubMed
Schmidtke, K. Hill, M (2002). Neuropsychological differentiation of small vessel disease, Alzheimer’s disease and mixed dementia. J Neurol Sci 17(22):203–4.Google Scholar
Vuorinen, E, Laine, M, Rinne, J (2000). Common pattern of language impairment in vascular dementia and in Alzheimer disease. Alzheimer Dis Assoc Disord 14(2):81–6.CrossRefGoogle ScholarPubMed
Baillon, S, Muhommad, S, Marudkar, M et al. (2003). Neuropsychological performance in Alzheimer’s disease and vascular dementia: comparisons in a memory clinic population. Int J Geriatr Psychiatry 18:602–8.CrossRefGoogle Scholar
Cannata, AP, Alberoni, M, Franceschi, M, Mariani, C (2002). Frontal impairment in subcortical ischemic vascular dementia in comparison to Alzheimer’s disease. Dement Geriatr Cogn Disord 13:101–11.CrossRefGoogle ScholarPubMed
Aharon-Peretz, J, Kliot, D, Tamer, R (2000). Behavioral differences between white matter lacunar dementia and Alzheimer’s disease: a comparison on the neuropsychiatric inventory. Dement Geriatr Cogn Disord 11(5):294–8.CrossRefGoogle ScholarPubMed
Fuh, JL, Wang, SJ, Cummings, JL (2005). Neuropsychiatric profiles in patients with Alzheimer’s disease and vascular dementia. J Neurol Neurosurg Psychiatry 76(10):1337–41.CrossRefGoogle ScholarPubMed
Padovani, A, Di Piero, V, Bragoni, M et al. (1995). Patterns of neuropsychological impairment in mild dementia: a comparison between Alzheimer’s disease and multi-infarct dementia. Acta Neurol Scand 92(6):433–42.Google ScholarPubMed
Shimokawa, A, Yatomi, N, Anamizu, S et al. (2000). Comprehension of emotions: comparison between Alzheimer type and vascular type dementias. Dement Geriatr Cogn Disord 11(5):268–74.CrossRefGoogle ScholarPubMed
Rockwood, K, Bowler, J, Erkinjuntti, T, Hachinski, V, Wallin, A (1999). Subtypes of vascular dementia. Alzheimer Dis Assoc Disord 13(Suppl 3):S59–65.Google ScholarPubMed
Seo, SW, Ahn, J, Yoon, U et al. (2010). Cortical thinning in vascular mild cognitive impairment and vascular dementia of subcortical type. J Neuroimaging 20(1):3745.CrossRefGoogle ScholarPubMed
Seo, SW, Cho, SS, Park, A, Chin, J, Na, DL (2009). Subcortical vascular versus amnestic mild cognitive impairment: comparison of cerebral glucose metabolism. J Neuroimaging 19(3):213–19.CrossRefGoogle ScholarPubMed
Galluzzi, S, Sheu, CF, Zanetti, 0, Frisoni, GB (2005). Distinctive clinical features of mild cognitive impairment with subcortical cerebrovascular disease. Dement Geriatr Cogn Disord 19(4):196203.CrossRefGoogle ScholarPubMed
Park, JH, Seo, SW, Kim, C et al. (2014) Effects of cerebrovascular disease and amyloid beta burden on cognition in subjects with subcortical vascular cognitive impairment. Neurobiol Aging 35(1):254–60.CrossRefGoogle ScholarPubMed
Kim, SH, Kang, HS, Kim, HJ et al. (2013) Neuropsychiatric predictors of conversion to dementia both in patients with amnestic mild cognitive impairment and those with subcortical vascular MCI. Clin Neurol Neurosurg 115(8):1264–70.CrossRefGoogle ScholarPubMed
Bogousslavsky, J, Regli, F, Assal, G (1986). The syndrome of unilateral tuberothalamic artery territory infarction. Stroke 17:434–41.CrossRefGoogle ScholarPubMed
Heilman, KM, Rothi, LJ, Valenstein, E (1982). Two forms of ideomotor apraxia. Neurology 32(4):342–6.CrossRefGoogle Scholar
Na, DL, Adair, JC, Williamson, DJ et al. (1998). Dissociation of sensory-attentional from motor-intentional neglect. J Neurol Neurosurg Psychiatry 64(3):331–8.CrossRefGoogle ScholarPubMed
Ogden, JA (1985). Anterior-posterior interhemispheric differences in the loci of lesions producing visual hemineglect. Brain Cogn 4:5975.CrossRefGoogle ScholarPubMed
Guberman, A, Stuss, D (1983). The syndrome of bilateral paramedian thalamic infarction. Neurology 33(5):540–6.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×