Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T10:00:08.081Z Has data issue: false hasContentIssue false

5 - Bayesian experimental design and model selection forecasting

Published online by Cambridge University Press:  11 April 2011

Roberto Trotta
Affiliation:
Astrophysics, Department of Physics, Oxford University, Keble Road, Oxford OX1 3RH, UK; and Astrophysics Group, Imperial College London, Blackett Laboratory, London SW7 2AZ, UK
Martin Kunz
Affiliation:
Astronomy Centre, University of Sussex, Brighton BN1 9QH, UK
Pia Mukherjee
Affiliation:
Astronomy Centre, University of Sussex, Brighton BN1 9QH, UK
David Parkinson
Affiliation:
Astronomy Centre, University of Sussex, Brighton BN1 9QH, UK
Michael P. Hobson
Affiliation:
University of Cambridge
Andrew H. Jaffe
Affiliation:
Imperial College of Science, Technology and Medicine, London
Andrew R. Liddle
Affiliation:
University of Sussex
Pia Mukherjee
Affiliation:
University of Sussex
David Parkinson
Affiliation:
University of Sussex
Get access

Summary

Introduction

Common applications of Bayesian methods in cosmology involve the computation of model probabilities and of posterior probability distributions for the parameters of those models. However, Bayesian statistics is not limited to applications based on existing data, but can equally well handle questions about expectations for the future performance of planned experiments, based on our current knowledge.

This is an important topic, especially with a number of future cosmology experiments and surveys currently being planned. To give a taste, they include: large-scale optical surveys such as Pan-STARRS (Panoramic Survey Telescope and Rapid Response System), DES (the Dark Energy Survey) and LSST (Large Synoptic Survey Telescope), massive spectroscopic surveys such as WFMOS (Wide-Field Fibrefed Multi-Object Spectrograph), satellite missions such as JDEM (the Joint Dark Energy Explorer) and EUCLID, continental-sized radio telescopes such as SKA (the Square Kilometer Array) and future cosmic microwave background experiments such as B-Pol searching for primordial gravitational waves. As the amount of available resources is limited, the question of how to optimize them in order to obtain the greatest possible science return, given present knowledge, will be of increasing importance.

In this chapter we address the issue of experimental forecasting and optimization, starting with the general aspects and a simple example. We then discuss the so-called Fisher Matrix approach, which allows one to compute forecasts rapidly, before looking at a real-world application. Finally, we cover forecasts of model comparison outcomes and model selection Figures of Merit.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×