Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T21:02:07.264Z Has data issue: false hasContentIssue false

Section 2 - Respiratory Physiology

Published online by Cambridge University Press:  31 July 2019

David Chambers
Affiliation:
Salford Royal NHS Foundation Trust
Christopher Huang
Affiliation:
University of Cambridge
Gareth Matthews
Affiliation:
University of Cambridge
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Further reading

Lumb, A. B.. Functional anatomy of the respiratory tract. In: Lumb, A. B.. Nunn’s Applied Respiratory Physiology, 8th edition. London, Churchill Livingstone, 2016; 116.Google Scholar
Renda, T., Corrado, A., Iskandar, G., et al. High-flow nasal oxygen therapy in intensive care and anaesthesia. Br J Anaesth 2018; 120(1): 1827.CrossRefGoogle ScholarPubMed
Gustafsson, I. M., Lodenius, Å., Tunelli, J., et al. Apnoeic oxygenation in adults under general anaesthesia using transnasal humidified rapid-insufflation ventilatory exchange (THRIVE) – a physiological study. Br J Anaesth 2017; 118(4): 610–17.CrossRefGoogle ScholarPubMed
Mir, F., Patel, A., Iqbal, R., et al. A randomised controlled trial comparing transnasal humidified rapid insufflation ventilatory exchange (THRIVE) pre-oxygenation with facemask pre-oxygenation in patients undergoing rapid sequence induction of anaesthesia. Anaesthesia 2017; 72(4): 439–43.CrossRefGoogle ScholarPubMed
Martinez, G., Faber, P.. Obstructive sleep apnoea. Continuing Educ Anaesth Crit Care Pain 2011; 11(1): 58.CrossRefGoogle Scholar
Fogel, R. B., Malhotra, A., White, D. P.. Sleep. 2: Pathophysiology of obstructive sleep apnoea/hypopnoea syndrome. Thorax 2004; 59(2): 159–63.CrossRefGoogle ScholarPubMed
Ayappa, I., Rapoport, D. M.. The upper airway in sleep: physiology of the pharynx. Sleep Med Rev 2003; 7(1): 933.CrossRefGoogle ScholarPubMed
Hillman, D. R., Platt, P. R., Eastwood, P. R.. The upper airway during anaesthesia. Br J Anaesth 2003; 91(1): 31–9.CrossRefGoogle ScholarPubMed

Further reading

Lumb, A. B.. Elastic forces and lung volumes. In: Lumb, A. B.. Nunn’s Applied Respiratory Physiology, 8th edition. London, Churchill Livingstone, 2016; 1332.Google Scholar
Lumb, A. B.. Nonrespiratory functions in the lung. In: Lumb, A. B.. Nunn’s Applied Respiratory Physiology, 8th edition. London, Churchill Livingstone, 2016; 203–16.Google Scholar
Ashok, V., Francis, J.. A practical approach to adult one-lung ventilation. BJA Education 2018; 18(3): 6974.CrossRefGoogle ScholarPubMed
Spaeth, J., Ott, M., Karzai, W., et al. Double-lumen tubes and auto-PEEP during one-lung ventilation. Br J Anaesth 2016; 116(1): 122–30.CrossRefGoogle ScholarPubMed
Wilkes, A. R.. Heat and moisture exchangers and breathing system filters: their use in anaesthesia and intensive care. Part 1 – history, principles and efficiency. Anaesthesia 2011; 66(1): 31–9.Google ScholarPubMed
Mitzner, W.. Airway smooth muscle: the appendix of the lung. Am J Respir Crit Care Med 2004; 169(7): 787–90.CrossRefGoogle ScholarPubMed

Further reading

Lumb, A. B.. Oxygen. In: Lumb, A. B.. Nunn’s Applied Respiratory Physiology, 8th edition. London, Churchill Livingstone, 2016; 169202.Google Scholar
Herbert, L., Magee, P.. Circle systems and low-flow anaesthesia. BJA Education 2017; 17(9): 301–5.CrossRefGoogle Scholar
Dunn, J.-O. C., Mythen, M. G., Grocott, M. P.. Physiology of oxygen transport. BJA Education 2016; 16(10): 341–8.CrossRefGoogle Scholar
Gill, P., Martin, R. V.. Smoke inhalation injury. BJA Education 2015; 15(3): 143–8.Google Scholar
Wilson, M., Forsyth, P., Whiteside, J.. Haemoglobinopathy and sickle cell disease. Continuing Educ Anaesth Crit Care Pain 2010; 10(1): 24–8.CrossRefGoogle Scholar
Pitkin, A. D., Davies, N. J. H.. Hyperbaric oxygen therapy. Contin Educ Anaesth Crit Care Pain 2001; 1(5): 150–6.CrossRefGoogle Scholar

Further reading

Lumb, A. B.. Carbon dioxide. In: Lumb, A. B.. Nunn’s Applied Respiratory Physiology, 8th edition. London, Churchill Livingstone, 2016; 151–68.Google Scholar
Caulder, I., Pearce, A.. Physiology of apnoea and hypoxia. In: Core Topics in Airway Management, 2nd edition. Cambridge, Cambridge University Press, 2011; 918.Google Scholar
Arthurs, G. J., Sudhakar, M.. Carbon dioxide transport. Continuing Educ Anaesth Crit Care Pain 2005; 5(6): 207–10.CrossRefGoogle Scholar

Further reading

Lumb, A. B.. Diffusion of respiratory gases. In: Lumb, A. B.. Nunn’s Applied Respiratory Physiology, 8th edition. London, Churchill Livingstone, 2016; 137–50.Google Scholar
Dunn, J.-O. C., Mythen, M. G., Grocott, M. P.. Physiology of oxygen transport. BJA Education 2016; 16(10): 341–8.CrossRefGoogle Scholar
Gould, G., Pearce, A.. Assessment of suitability for lung resection. Continuing Educ Anaesth Crit Care Pain 2006; 6(3): 97100.Google Scholar
Agostoni, P., Bussotti, M., Cattadori, G., et al. Gas diffusion and alveolar–capillary unit in chronic heart failure. Eur Heart J 2006; 27(21): 2538–43.CrossRefGoogle ScholarPubMed

Further reading

Shaefi, S., Eikermann, M.. Analysing tidal volumes early after a positive end-expiratory pressure increase: a new way to determine optimal PEEP in the operating theatre? Br J Anaesth 2018; 120(4): 623–6.Google Scholar
Tusman, G., Sipmann, F. S., Bohm, S. H.. Rationale of dead space measurement by volumetric capnography. Anesth Analg 2012; 114(4): 866–74.Google Scholar
Raurich, J. M., Vilar, M., Colomar, A., et al. Prognostic value of the pulmonary dead-space fraction during the early and intermediate phases of acute respiratory distress syndrome. Respir Care 2010; 55(3): 282–7.Google Scholar

Further reading

Ray, K., Bodenham, A., Paramasivam, E.. Pulmonary atelectasis in anaesthesia and critical care. BJA Education 2014; 14(5): 236–45.Google Scholar
Kilpatrick, B., Slinger, P.. Lung protective strategies in anaesthesia. Br J Anaesth 2010; 105(Suppl. 1): i108–16.Google Scholar
O’Donnell, C. R., Bankier, A. A., Stiebellehner, L., et al. Comparison of plethysmograhic and helium dilution lung volumes: which is best for COPD? Chest 2010; 137(5): 1108–15.Google ScholarPubMed
Sirian, R., Wills, J.. Physiology of apnoea and the benefits of pre-oxygenation. Continuing Educ Anaesth Crit Care Pain 2009; 9(4): 105–8.CrossRefGoogle Scholar
The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared to traditional tidal volumes for acute lung injury and acute respiratory distress syndrome. N Engl J Med 2000; 342(18): 1301–8.Google Scholar
Newth, C. J. L., Enright, P., Johnson, R. L.. Multiple-breath nitrogen washout techniques: including measurements with patients on ventilators. Eur Respir J 1997; 10(9): 2174–85.CrossRefGoogle ScholarPubMed

Further reading

Portch, D., McCormick, B.. Pulmonary function tests and assessment for lung resection. Update Anaesth 2009; 25(1): 1321.Google Scholar
Hayes, D., Kraman, S. S.. The physiologic basis of spirometry. Respir Care 2009; 54(12): 1717–26.Google ScholarPubMed
Richards, K. J. C., Cohen, A. T.. Guillain–Barré syndrome. Continuing Educ Anaesth Crit Care Pain 2003; 3(2): 46–9.Google Scholar

Further reading

Lumb, A. B.. Distribution of pulmonary ventilation and perfusion. In: Lumb, A. B.. Nunn’s Applied Respiratory Physiology, 8th edition. London, Churchill Livingstone, 2016; 109–36.Google Scholar
Gossage, J. R., Kanj, G.. Pulmonary arteriovenous malformations. A state of the art review. Am J Respir Crit Care Med 1998; 158(2): 643–61.Google Scholar

Further reading

Lumb, A. B.. Distribution of pulmonary ventilation and perfusion. In: Lumb, A. B.. Nunn’s Applied Respiratory Physiology, 8th edition. London, Churchill Livingstone, 2016, 109–36.Google Scholar
West, J. B.. Ventilation/Blood Flow and Gas Exchange, 6th edition. Hoboken, Wiley-Blackwell, 1990.Google Scholar
Galvin, I., Drummond, G. B., Nirmalan, M.. Distribution of blood flow and ventilation in the lung: gravity is not the only factor. Br J Anaesth 2007; 98(4): 420–8.CrossRefGoogle Scholar
Mahajan, R. P.. Acute lung injury: options to improve oxygenation. Continuing Educ Anaesth Crit Care Pain 2005; 5(2): 52–5.CrossRefGoogle Scholar
Stratmann, G., Gregory, G. A.. Neurogenic and humoral vasoconstriction in acute pulmonary thromboembolism. Anesth Analg 2003; 97(2): 341–54.Google Scholar

Further reading

West, J. B.. Ventilation/Blood Flow and Gas Exchange, 6th edition. Hoboken, Wiley-Blackwell, 1990.Google Scholar
Galvin, I., Drummond, G. B., Nirmalan, M.. Distribution of blood flow and ventilation in the lung: gravity is not the only factor. Br J Anaesth 2007; 98(4): 420–8.Google Scholar

Further reading

Meng, L., Heerdt, P. M.. Perioperative goal-directed haemodynamic therapy based on flow parameters: a concept in evolution. Br J Anaesth 2016; 117(Suppl. 3): iii3–17.CrossRefGoogle ScholarPubMed
Hopker, J. G., Jobson, S.A., Pandit, J.J.. Controversies in the physiological basis of the ‘anaerobic threshold’ and their implications for clinical cardiopulmonary exercise testing. Anaesthesia 2011; 66(2): 111–23.Google Scholar
Lilly, C. M.. The PROCESS trial – a new era in sepsis management. N Engl J Med 2014; 370(18): 1683–93.Google Scholar
Agnew, N.. Preoperative cardiopulmonary exercise testing. Continuing Educ Anaesth Crit Care Pain 2010; 10(2): 33–7.Google Scholar
Rivers, E., Nguyen, B., Havstad, S., et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 2001; 345(19): 1368–77.CrossRefGoogle ScholarPubMed

Further reading

Cruickshank, S., Hirschauer, N.. The alveolar gas equation. Continuing Educ Anaesth Crit Care Pain 2004; 4(1): 24–7.CrossRefGoogle Scholar

Further reading

Hsia, C. C. W., Schmidt, A., Lambertz, M., et al. Evolution of air breathing: oxygen homeostasis and the transitions from water to land and sky. Compr Physiol 2013; 3(2): 849915.CrossRefGoogle ScholarPubMed

Further reading

Aliverti, A., Pedotti, A.. Mechanics of Breathing: New Insights from New Technologies, 2nd edition. Rome, Springer, 2014.Google Scholar
Wild, M., Alagesan, K.. PEEP and CPAP. Continuing Educ Anaesth Crit Care Pain 2001; 1(3): 8992.CrossRefGoogle Scholar

Further reading

Carter, A., Fletcher, S. J., Tuffin, R.. The effect of inner tube placement on resistance and work of breathing through tracheostomy tubes: a bench test. Anaesthesia 2013; 68(3): 276–82.Google Scholar
Farrow, S., Farrow, C., Soni, N.. Size matters: choosing the right tracheal tube. Anaesthesia 2012; 67(8): 815–22.Google Scholar
Loring, S. H., Garcia-Jacques, M., Malhotra, A.. Pulmonary characteristics in COPD and mechanics of increased work of breathing. J Appl Physiol 2009; 107(1): 309–14.Google Scholar
Nyktari, V. G., Papaioannou, A. A., Prinianakis, G., et al. Effect of the physical properties of isoflurane, sevoflurane, and desflurane on pulmonary resistance in a laboratory lung model. Anesthesiology 2006; 104(6): 1202–7.CrossRefGoogle Scholar

Further reading

Lumb, A. B.. Control of breathing. In: Lumb, A. B.. Nunn’s Applied Respiratory Physiology, 8th edition. London, Churchill Livingstone, 2016; 5172.Google Scholar
Forster, H. V., Smith, C. A.. Contributions of central and peripheral chemoreceptors to the ventilatory response to CO2/H+. J Appl Physiol 2010; 108(4): 989–94.CrossRefGoogle Scholar
Pattinson, K. T. S.. Opioids and the control of respiration. Br J Anaesth 2008; 100(6): 747–58.Google Scholar

Further reading

Lumb, A. B.. The pulmonary circulation. In: Lumb, A. B.. Nunn’s Applied Respiratory Physiology, 8th edition. London, Churchill Livingstone, 2016; 89108.Google Scholar
Nowak, K., Kamler, M., Bock, M., et al. Bronchial artery revascularisation affects graft recovery after lung transplantation. Am J Respir Crit Care Med 2002; 165(2): 216–20.CrossRefGoogle ScholarPubMed
Eastwood, J., Mahajan, R.. One-lung anaesthesia. Continuing Educ Anaesth Crit Care Pain 2002; 2(3): 83–7.CrossRefGoogle Scholar
Naeije, R., Brimioulle, S.. Physiology in medicine: importance of hypoxic pulmonary vasoconstriction in maintaining arterial oxygenation during acute respiratory failure. Crit Care 2001; 5(2): 6771.Google Scholar

Further reading

Lumb, A. B.. Oxygen toxicity and hyperoxia. In: Lumb, A. B.. Nunn’s Applied Respiratory Physiology, 8th edition. London, Churchill Livingstone, 2016; 341–56.Google Scholar
Nimmagadda, U., Salem, M. R., Crystal, G. J.. Preoxygenation: physiologic basis, benefits, and potential risks. Anesth Analg 2017; 124(2): 507–17.CrossRefGoogle ScholarPubMed
Allan, N., Siller, C., Breen, A.. Anaesthetic implications of chemotherapy. Continuing Educ Anaesth Crit Care Pain 2012; 12(2): 52–6.CrossRefGoogle Scholar
Taneja, R., Vaughan, R. S.. Oxygen. Continuing Educ Anaesth Crit Care Pain 2001; 1(4): 104–7.CrossRefGoogle Scholar
Fridovich, I.. Oxygen toxicity: a radical explanation. J Exp Biol 1998; 201(8): 1203–9.Google Scholar
Mathes, D. D.. Bleomycin and hyperoxia exposure in the operating room. Anesth Analg 1995; 81(3): 624–9.Google ScholarPubMed

Further reading

Lumb, A. B.. Ventilatory failure. In: Lumb, A. B.. Nunn’s Applied Respiratory Physiology, 8th edition. London, Churchill Livingstone, 2016; 379–88.Google Scholar
Mehta, S.. Neuromuscular disease causing acute respiratory failure. Respir Care 2006; 51(9): 1016–23.Google ScholarPubMed
Roussos, C., Koutsoukou, A.. Respiratory failure. Eur Respir J 2003; 22(Suppl. 47): 3s14s.CrossRefGoogle Scholar
Thavasothy, M., Hirsch, N.. Myasthenia gravis. Contin Educ Anaesth Crit Care Pain 2002; 2(3): 8890.Google Scholar
Garfield, M. J.. Non-invasive ventilation. Contin Educ Anaesth Crit Care Pain 2001; 1(5): 142–5.Google Scholar

Further reading

Lumb, A. B.. Ventilatory failure. In: Lumb, A. B.. Nunn’s Applied Respiratory Physiology, 8th edition. London, Churchill Livingstone, 2016; 379–88.Google Scholar
Lumb, A. B.. Respiratory support and artificial ventilation. In: Lumb, A. B.. Nunn’s Applied Respiratory Physiology, 8th edition. London, Churchill Livingstone, 2016; 451–78.Google Scholar
Scarth, E., Smith, S.. Drugs in Anaesthesia and Intensive Care, 5th edition. Oxford, Oxford University Press, 2016.Google Scholar
Peck, T. E.. Pharmacology for Anaesthesia and Intensive Care, 4th edition. Cambridge, Cambridge University Press, 2014.CrossRefGoogle Scholar
Mills, G. H.. Respiratory complications of anaesthesia. Anaesthesia 2018; 73(Suppl. 1): 2533.CrossRefGoogle ScholarPubMed
Miskovic, A., Lumb, A. B.. Postoperative pulmonary complications. Br J Anaesth 2017; 118(3): 317–34.Google Scholar
Lawrence, V. A., Cornell, J. E., Smetana, G. W.. Strategies to reduce postoperative pulmonary complications after noncardiothoracic surgery: systematic review for the American College of Physicians. Ann Intern Med 2006; 144(8): 596608.Google Scholar
Hedenstierna, G.. Airway closure, atelectasis and gas exchange during anaesthesia. Minerva Anestesiol 2002; 68(5): 332–6.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×