Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T22:18:20.700Z Has data issue: false hasContentIssue false

10 - The dynamic past and future of arctic vascular plants: climate change, spatial variation and genetic diversity

from Part III - Equilibrium and Nonequilibrium on Geographical Scales

Published online by Cambridge University Press:  05 March 2013

Klaus Rohde
Affiliation:
University of New England, Australia
Get access

Summary

Introduction

The Arctic lies at a global extreme of human impact as well as climatic gradients. Human population density is low. Climate precludes agriculture in all areas but the southernmost ones, and hunting and reindeer husbandry have been the traditional ways of life. More recently coal, oil and gas exploitation and associated infrastructure have affected the vegetation locally and led to species introductions (Walker & Everett, 1987; Forbes et al., 2001). Long-range pollution from industrial regions has reached the Arctic and is accumulating in some animals. Even so, except for Antarctica, the arctic tundra remains the least disturbed major world biome (CAFF, 2001). Short growing seasons, low temperature means and extremes, and high inter-annual variability act as strong environmental filters that allow only the hardiest species to survive. The region has experienced extreme climate changes in the past and is expected to do so in the future. Our focus of this chapter, therefore, is also on past plant responses to rapid climate change, since this history provides a basic framework to help understand the future.

The Arctic comprises relatively low-diversity ecosystems with a dramatic and relatively well-documented history of past responses to repeated climatic oscillations. New paleoecological evidence, recent advances in molecular studies, and predictive modeling of arctic species ranges have greatly increased our understanding of how arctic plants may respond to future environmental change, from individual species to communities. On a short timescale (< 100 years), the species composition of arctic plant communities is often remarkably stable. This partly reflects perennial strategies and clonal growth, enabling survival of fluctuating inter-annual climatic conditions (de Witte & Stöcklin, 2010; Jónsdóttir, 2011). In the longer term, however, plant communities and species ranges have been highly dynamic. During the Late Pleistocene, some regions experienced a change from complete ice cover to boreal forest within a few thousand years, with accompanying transformation of vegetation and species range shifts (Miller et al., 2010a).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, R. J., & Brochmann, C. (2003). History and evolution of the arctic flora: in the footsteps of Eric Hultén. Molecular Ecology, 12, 299–313.CrossRefGoogle ScholarPubMed
Abbott, R. J., Smith, L. C., Milne, R. I., et al. (2000). Molecular analysis of plant migration and refugia in the Arctic. Science, 289, 1343–1346.CrossRefGoogle ScholarPubMed
ACIA (2006). Arctic Climate Impact Assessment – Scientific Report. Cambridge: Cambridge University Press.Google Scholar
Alsos, I. G., Engelskjøn, T., Gielly, L., Taberlet, P., & Brochmann, C. (2005). Impact of ice ages on circumpolar molecular diversity: insight from an ecological key species. Molecular Ecology, 14, 2739–2753.CrossRefGoogle Scholar
Alsos, I. G., Alm, T., Normand, S., & Brochmann, C. (2009). Past and future range shift and loss of genetic diverstity in dwarf willow (Salix herbacea L.) inferred from genetics, fossils, and modelling. Global Ecology and Biogeography, 18, 223–239.CrossRefGoogle Scholar
Alsos, I. G., Ehrich, D., Thuiller, W., et al. (2012). Genetic consequences of climate change for northern plants. Proceedings of the Royal Society of London B, 279, 2042–2051.CrossRefGoogle ScholarPubMed
Alsos, I. G., Eidesen, P. B., Ehrich, D., et al. (2007). Frequent long-distance colonization in the changing Arctic. Science, 316, 1606–1609.CrossRefGoogle ScholarPubMed
Armbruster, W. S., Rae, D. A., & Edwards, M. E. (2007). Topographic complexity and terrestrial biotic response to high-latitude climate change: variance is as important as the mean. In Ørbæk, J. B., Kallenborn, R., Tombre, I., Hegseth, E. N., Falk-Petersen, S., & Hoel, A. H. (Eds.). Arctic-Alpine Ecosystems and People in a Changing Environment (pp. 105–121). Berlin: Springer-Verlag.CrossRefGoogle Scholar
Bauert, M. R., Kalin, M., Baltisberger, M., & Edwards, P. J. (1998). No genetic variation detected within isolated relict populations of Saxifraga cernua in the Alps using RAPD markers. Molecular Ecology, 7, 1519–1527.CrossRefGoogle Scholar
Bay, C. (1997). Floristical and ecological characterization of the polar desert zone of Greenland. Journal of Vegetation Science, 8, 685–696.CrossRefGoogle Scholar
Beaumont, L. J., Pitman, A., Perkins, S., et al. (2011). Impacts of climate change on the world’s most exceptional ecoregions. Proceedings of the National Academy of Sciences of the USA, 108, 2306–2311.CrossRefGoogle ScholarPubMed
Bekryaev, R. V., Polyakov, I. V., & Alexeev, V. A. (2010). Role of polar amplification in long-term surface air temperature variations and modern arctic warming. Journal of Climate, 23, 3888–3906.CrossRefGoogle Scholar
Bennike, O. (1990). The Kap København Formation: stratigraphy and palaeobotany of a Plio-Pleistocene sequence in Peary Land, North Greenland. Meddelelser om Grønland. Geoscience, 23, 1–85.Google Scholar
Bennike, O., & Böcher, J. (1990). Forest-tundra neighbouring the North Pole: plant and insect remains from the Plio-Pleistocene Kap Københaven formation, North Greenland. Arctic, 43, 331–338.CrossRefGoogle Scholar
Bigelow, N. H., Brubaker, L. B., Edwards, M. E., et al. (2003). Climate change and arctic ecosystems: 1. Vegetation changes north of 55°N between the last glacial maximum, mid-Holocene, and present. Journal of Geophysical Research-Atmospheres, 108, No. D19, 8170. .CrossRefGoogle Scholar
Birks, H. H. (2008). The Late-Quaternary history of arctic and alpine plants. Plant Ecology & Diversity, 1, 135–146.CrossRefGoogle Scholar
Brochmann, C., Borgen, L., & Stedje, B. (1993). Crossing relationships and chromosome numbers of Nordic populations of Draba (Brassicaceae), with emphasis on the D. alpina complex. Nordic Journal of Botany, 13, 121–147.CrossRefGoogle Scholar
Brochmann, C., & Brysting, A. K. (2008). The Arctic – an evolutionary freezer?Plant Ecology and Diversity, 1, 181–195.CrossRefGoogle Scholar
Brochmann, C., Brysting, A. K., Alsos, I. G., et al. (2004). Polyploidy in arctic plants. Biological Journal of the Linnean Society, 82, 521–536.CrossRefGoogle Scholar
Brochmann, C., & Elven, R. (1992). Ecological and genetic consequences of polyploidy in arctic Draba (Brassicaceae). Evolutionary Trends in Plants, 6, 111–124.Google Scholar
Brochmann, C., Gabrielsen, T. M., Nordal, I., Landvik, J. Y., & Elven, R. (2003). Glacial survival or tabula rasa? The history of North Atlantic biota revisited. Taxon, 52, 417–450.CrossRefGoogle Scholar
Brochmann, C., & Steen, S. W. (1999). Sex and genes in the flora of Svalbard – implications for conservation biology and climate change. Det Norske Videnskaps-Akademi. I. Matematisk Naturvitenskapelig Klasse, Skrifter, Ny Serie, 38, 33–72.Google Scholar
Brysting, A. K., Oxelman, B., Huber, K. T., Moulton, V., & Brochmann, C. (2007). Untangling complex histories of genome mergings in high polyploids. Systematic Biology, 56, 467–476.CrossRefGoogle ScholarPubMed
Burrows, M. T., Schoeman, D. S., Buckley, L. B., et al. (2011). The pace of shifting climate in marine and terrestrial ecosystems. Science, 334, 652–655.CrossRefGoogle ScholarPubMed
CAFF (2001). Arctic Flora and Fauna. Status and Conservation. Helsinki: Edita.Google Scholar
Callaghan, T. V., Björn, L. O., Chernov, Y., et al. (2004). Biodiversity, distributions and adaptations of arctic species in the context of environmental change. Ambio, 33, 404–417.CrossRefGoogle ScholarPubMed
Callaghan, T. V., Christensen, T. R., & Jantze, E. J. (2011). Plant and vegetation dynamics on Disko Island, West Greenland: snapshots separated by over 40 years. Ambio, 40, 624–637.CrossRefGoogle ScholarPubMed
Carlsen, T., Bleeker, W., Hurka, H., Elven, R., & Brochmann, C. (2009). Biogeography and phylogeny of Cardamine (Brassicaceae). Annals of the Missouri Botanical Garden, 96, 215–236.CrossRefGoogle Scholar
Carlsen, T., Elven, R., & Brochmann, C. (2010). The evolutionary history of Beringian Smelowskia (Brassicaceae) inferred from combined microsatellite and DNA sequence data. Taxon, 59, 427–438.Google Scholar
Chapin, F. S. (1983). Direct and indirect effects of temperature on arctic plants. Polar Biology, 2, 47–52.CrossRefGoogle Scholar
Christensen, J. H., Hewitson, B., Busuioc, A., et al. (2007). Regional climate projections. In Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. & Miller, H. L. (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
Cook, J. A., Brochmann, C., Talbot, S. L., et al. (2012). Genetics. In Arctic Biodiversity Assessment: Status and Trends in Arctic Biodiversity. Scientific Report to Conservation of Arctic Flora and Fauna (CAFF). Arctic Council (in press).Google Scholar
Crawford, R. M. M., & Abbott, R. J. (1994). Pre-adaptions of arctic plants to climate change. Botanica Acta, 107, 271–278.CrossRefGoogle Scholar
Dahl, E. (1963). Plant migration across the North Atlantic ocean and their importance for the palaeogeography of the region. In Löve, A. L. & Löve, D. (Eds.), North Atlantic Biota and their History (pp. 173–188). Oxford: Pergamon.Google Scholar
Daniëls, F. J., De Molenaar, J. G., Chytrý, M., & Tichý, L. (2011). Vegetation change in Southeast Greenland? Tasiilaq revisited after 40 years. Applied Vegetation Science, 14, 230–241.CrossRefGoogle Scholar
Dansgaard, W., Johnsen, S. J., Clausen, H. B., et al. (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364, 218–220.CrossRefGoogle Scholar
de Witte, L. C., & Stöcklin, J. (2010). Longevity of clonal plants: why it matters and how to measure it. Annals of Botany, 106, 859–870.CrossRefGoogle Scholar
Dyke, A. S., Moore, A., & Robertson, L. (2003). Deglaciation of North America. Geological Survey of Canada, Open File 1574.CrossRefGoogle Scholar
Edwards, M. E., Brubaker, L. B., Lozhkin, A. V., & Anderson, P. M. (2005). Structurally novel biomes: a response to past warming in Beringia. Ecology, 86, 1696–1703.CrossRefGoogle Scholar
Ehlers, J., & Gibbard, P. L. (2004). Quaternary Glaciations – Extent and Chronology. Part I: Europe. Amsterdam: Elsevier.Google Scholar
Ehrich, D., Alsos, I. G., & Brochmann, C. (2008). Where did the northern peatland species survive the dry glacials: cloudberry (Rubus chamaemorus) as an example. Journal of Biogeography, 35, 801–814.CrossRefGoogle Scholar
Ehrich, D., Gaudeul, M., Assefa, A., et al. (2007). Genetic consequences of Pleistocene range shifts: contrast between the Arctic, the Alps and the East African mountains. Molecular Ecology, 16, 2542–2559.CrossRefGoogle ScholarPubMed
Eidesen, P. B. (2007). Arctic-alpine plants on the move: Individual and comparative phylogeographies reveal responses to climate change. PhD Thesis, Natural History Museum, University of Oslo.
Eidesen, P. B., Alsos, I. G., Popp, M., et al. (2007a). Nuclear versus plastid data: complex Pleistocene history of a circumpolar key species. Molecular Ecology, 16, 3902–3925.CrossRefGoogle Scholar
Eidesen, P. B., Carlsen, T., Molau, U., & Brochmann, C. (2007b). Repeatedly out of Beringia: Cassiope tetragona embraces the Arctic. Journal of Biogeography, 34, 1559–1574.CrossRefGoogle Scholar
Elmendorf, S. C., Henry, G. H. R., Hollister, R. D., et al. (2012a). Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nature Climate Change, 2, 453–457.CrossRefGoogle Scholar
Elmendorf, S. C., Henry, G. H. R., Hollister, R. D., et al. (2012b). Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecology Letters, 15, 164–175.CrossRefGoogle ScholarPubMed
Elven, R., Murray, D. F., Razzhivin, V., & Yurtsev, B. A. (2011). Checklist of the Panarctic Flora (PAF). Oslo: Natural History Museum, University of Oslo. Available at: [retrieved 25 April 2012].Google Scholar
Engelskjøn, T., Lund, L., & Alsos, I. G. (2003). Twenty of the most thermophilous vascular plant species in Svalbard and their conservation state. Polar Research, 22, 317–339.CrossRefGoogle Scholar
Forbes, B. C., Ebersole, J. J., & Strandberg, B. (2001). Anthropogenic disturbance and patch dynamics in circumpolar arctic ecosystems. Conservation Biology, 15, 954–969.CrossRefGoogle Scholar
Frenzel, B., Pécsi, M., & Velichko, A. A. (1992). Atlas of Paleoclimates and Paleoenvironments of the Northern Hemisphere. Late Pleistocene – Holocene. Stuttgart: Gustav Fischer Verlag.Google Scholar
Gabrielsen, T. M., & Brochmann, C. (1998). Sex after all: high levels of diversity detected in the arctic clonal plant Saxifraga cernua using RAPD markers. Molecular Ecology, 7, 1701–1708.CrossRefGoogle Scholar
Gough, L. (2006). Neighbor effects on germination, survival, and growth in two arctic tundra plant communities. Ecography, 29, 44–56.CrossRefGoogle Scholar
Grundt, H. H., Kjølner, S., Borgen, L., Rieseberg, L. H., & Brochmann, C. (2006). High biological species diversity in the arctic flora. Proceedings of the National Academy of Sciences of the USA, 103, 972–975.CrossRefGoogle ScholarPubMed
Guggisberg, A., Mansion, G., & Conti, E. (2009). Disentangling reticulate evolution in an arctic-alpine polyploid complex. Systematic Biology, 58, 55–73.CrossRefGoogle Scholar
Guggisberg, A., Mansion, G., Kelso, S., & Conti, E. (2006). Evolution of biogeographic patterns, ploidy levels, and breeding systems in a diploid-polyploid species complex of Primula. New Phytologist, 171, 617–632.Google Scholar
Hewitt, G. M. (1996). Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society, 58, 247–276.CrossRefGoogle Scholar
Hoffmann, M. H. (2012). Not across the North Pole: plant migration in the Arctic. New Phytologist, 193, 474–480.CrossRefGoogle ScholarPubMed
Hopkins, D. (1982). Aspects of the paleogeography of Beringia during the late Pleistocene. In Hopkins, D. M., Matthews, J. V., Schweger, C. E. & Young, S. B. (Eds.), Paleoecology of Beringia (pp. 3–28). New York: Academic Press.CrossRefGoogle Scholar
Hultén, E. (1937). Outline of the History of Arctic and Boreal Biota during the Quarternary Period. New York: Lehre J. Cramer.Google Scholar
IPCC (2007). Core Writing Team, Pachauri, R. K. & Reisinger, A. (Eds.) Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (p. 104). Geneva: IPCC.Google Scholar
Jefferies, R. L., Jano, L. P., & Abraham, K. F. (2006). A biotic agent promotes large-scale catastrophic change in the coastal marshes of Hudson Bay. Journal of Ecology 94, 234–242.CrossRefGoogle Scholar
Jónsdóttir, I. S. (2005). Terrestrial ecosystems on Svalbard: heterogeneity, complexity and fragility from an arctic island perspective. Biology and Environment: Proceedings of the Royal Irish Academy, 105B, 155–165.Google Scholar
Jónsdóttir, I. S. (2011). Diversity of plant life histories in the Arctic. Preslia, 83, 281–300.Google Scholar
Jordon-Thaden, I., Hase, I., Al-Shehbaz, I., & Koch, M. A. (2010). Molecular phylogeny and systematics of the genus Draba (Brassicaceae) and identification of its most closely related genera. Molecular Phylogenetics and Evolution, 55, 524–540.CrossRefGoogle ScholarPubMed
Jørgensen, M. H., Elven, R., Tribsch, A., et al. (2006). Taxonomy and evolutionary relationships in the Saxifraga rivularis complex. Systematic Botany, 31, 702–729.CrossRefGoogle Scholar
Karlsen, S. R., & Elvebakk, A. (2003). A method using indicator plants to map local climatic variation in the Kangerlussuaq/Scoresby Sund area, East Greenland. Journal of Biogeography, 30, 1469–1491.CrossRefGoogle Scholar
Kjølner, S., Såstad, M., Taberlet, P., & Brochmann, C. (2004). Amplified fragment length polymorphism versus random amplified polymorphic DNA markers: clonal diversity in Saxifraga cernua. Molecular Ecology, 13, 81–86.CrossRefGoogle ScholarPubMed
Lamb, H. F., & Edwards, M. E. (1988). The Arctic. In Huntley, B., & Webb, T., III (Eds.), Vegetation History. Handbook of Vegetation Science 7. Dordrecht: Kluwer Academic.Google Scholar
Landvik, J. Y., Bondevik, S., Elverhøi, A., et al. (1998). The last glacial maximum of Svalbard and the Barents Sea area: ice sheet extent and configuration. Quaternary Science Reviews, 17, 43–75.CrossRefGoogle Scholar
Landvik, J. Y., Brook, E. J., Gualtieri, L., et al. (2003). Northwest Svalbard during the last glaciation: ice-free areas existed. Geology, 31, 905–908.CrossRefGoogle Scholar
Matthews, J. V., & Ovenden, L. E. (1990). Late Tertiary plant macrofossils from localities in Arctic/Subarctic North America (Alaska, Yukon and Northwest Territories) – a review of the data. Arctic, 43, 364–392.CrossRefGoogle Scholar
Miller, G. H., Brigham-Grette, J., Alley, R. B., et al. (2010a). Temperature and precipitation history of the Arctic. Quaternary Science Reviews, 29, 1679–1715.CrossRefGoogle Scholar
Miller, G. H., Alley, R. B., Brigham-Grette, J., et al. (2010b). Arctic amplification: can the past constrain the future?Quaternary Science Reviews, 29, 1779–1790.CrossRefGoogle Scholar
Morin, X., Viner, D., & Chuine, I. (2008). Tree species range shifts at a continental scale: new predictive insights from a process-based model. Journal of Ecology, 96, 784–794.CrossRefGoogle Scholar
Müller, E., Cooper, E. J., & Alsos, I. G. (2011). Germinability of arctic plants is high in perceived optimal conditions but low in the field. Botany, 89, 337–348.CrossRefGoogle Scholar
Müller, E., Eidesen, P. B., Ehrich, D., & Alsos, I. G. (2012). Frequency of local, regional, and long-distance dispersal of diploid and tetraploid Saxifraga oppositifolia (Saxifragaceae) to arctic glacier forelands. American Journal of Botany, 99, 459–471.CrossRefGoogle Scholar
Murray, D. F. (1987). Breeding systems in the vascular flora of Arctic North America. In Urbanska, K. M. (Ed.), Differentiation Patterns in Higher Plants (pp. 239–262). New York: Academic Press.Google Scholar
Murray, D. F. (1995). Causes of arctic plant diversity: origin and evolution. In Chapin, F. S. III and Körner, C. (Eds.), Arctic and Alpine Biodiversity: Pattern, Causes and Ecosystem Consequences (pp. 21–32). Berlin: Springer.Google Scholar
Myers-Smith, I. H., Forbes, B. C., Wilmking, M., et al. (2011). Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environmental Research Letters, 6, 610–623.CrossRefGoogle Scholar
Normand, S., Svenning, J.-C., & Skov, F. (2007). National and European perspectives on climate change sensitivity of the habitats directive characteristic plant species. Journal of Nature Conservation, 15, 41–53.CrossRefGoogle Scholar
Olofsson, J., Oksanen, L., Callaghan, T., et al. (2009). Herbivores inhibit climate-driven shrub expansion on the tundra. Global Change Biology, 15, 2681–2693.CrossRefGoogle Scholar
Popp, M., Mirré, V., & Brochmann, C. (2011). A single Mid-Pleistocene long-distance dispersal by a bird can explain the extreme bipolar disjunction in crowberries (Empetrum). Proceedings of the National Academy of Sciences of the USA, 108, 6520–6525.CrossRefGoogle Scholar
Post, E., Forchhammer, M. C., Bret-Harte, M. S., et al. (2009). Ecological dynamics across the Arctic associated with recent climate change. Science, 325, 1355–1358.CrossRefGoogle ScholarPubMed
Prach, K., Košnar, J., Klimešová, J., & Hais, M. (2010). High Arctic vegetation after 70 years: a repeated analysis from Svalbard. Polar Biology, 33, 635–639.CrossRefGoogle Scholar
Reusch, T. B. H., Ehlers, A., Hämmerli, A., & Worm, B. (2005). Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proceedings of the National Academy of Sciences of the USA, 102, 2826–2831.CrossRefGoogle ScholarPubMed
Schönswetter, P., Paun, O., Tribsch, A., & Niklfeld, H. (2003). Out of the Alps: colonization of Northern Europe by East Alpine populations of the Glacier Buttercup Ranunculus glacialis L. (Ranunculaceae). Molecular Ecology, 12, 3373–3381.CrossRefGoogle Scholar
Schönswetter, P., Popp, M., & Brochmann, C. (2006). Rare arctic-alpine plants of the European Alps have different immigration histories: the snowbed species Minuartia biflora and Ranunculus pygmaeus. Molecular Ecology, 15, 709–720.CrossRefGoogle Scholar
Skrede, I., Brochmann, C., Borgen, L., & Rieseberg, L. H. (2008). Genetics of intrinsic postzygotic isolation in a circumpolar plant species, Draba nivalis (Brassicaceae). Evolution, 62, 1840–1851.CrossRefGoogle Scholar
Skrede, I., Eidesen, P. B., Portela, R. P., & Brochmann, C. (2006). Refugia, differentiation and postglacial migration in arctic-alpine Eurasia, exemplified by the mountain avens (Dryas octopetala L.). Molecular Ecology, 15, 1827–1840.CrossRefGoogle Scholar
Solstad, H., Elven, R., Alm, T., et al. (2010). Karplanter: Pteridophyta, Pinophyta, Magnoliophyta. In Kålås, J. A., Henriksen, S., Skjelset, S. and Viken, Å. (Eds.), Norsk Rødliste for Arter 2010 [The 2010 Norwegian red list for species] (pp. 155–182). Trondheim: Artsdatabanken.Google Scholar
Sommer, J. H., Kreft, H., Kier, G., et al. (2010). Projected impacts of climate change on regional capacities for global plant species richness. Proceedings of the Royal Society of London B, 277, 2271–2280.CrossRefGoogle ScholarPubMed
Sønstebø, J. H., Gielly, L., Brysting, A. K., et al. (2010). Using next-generation sequencing for molecular reconstruction of past Arctic vegetation and climate. Molecular Ecology Resources, 10, 1009–1018.CrossRefGoogle ScholarPubMed
Stevens, G. (1989). The latitudinal gradient in geographical range: how so many species coexist in the tropics. The American Naturalist, 133, 240–256.CrossRefGoogle Scholar
Stewart, J. R., Lister, A. M., Barnes, I., & Dalén, L. (2010). Refugia revisited: individualistic responses of species in space and time. Proceedings of the Royal Society of London B, 277, 661–671.CrossRefGoogle ScholarPubMed
Walker, D. A., & Everett, K. R. (1987). Road dust and its environmental-impact on Alaskan taiga and tundra. Arctic and Alpine Research, 19, 479–489.CrossRefGoogle Scholar
Walker, D. A., Raynolds, M. K., Daniels, F. J. A., et al. (2005). The circumpolar arctic vegetation map. Journal of Vegetation Science, 16, 267–282.CrossRefGoogle Scholar
Walker, M. D., Wahren, C. H., Hollister, R. D., et al. (2006). Plant community responses to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences of the USA, 103, 1342–1346.CrossRefGoogle ScholarPubMed
Westergaard, K. B., Alsos, I. G., Engelskjøn, T., Flatberg, K. I., & Brochmann, C. (2011). Trans-Atlantic genetic uniformity in the rare snowbed sedge Carex rufina. Conservation Genetics, 12, 1367–1371.CrossRefGoogle Scholar
Westergaard, K. B., Jørgensen, M. H., Gabrielsen, T. M., Alsos, I. G., & Brochmann, C. (2010). The extreme Beringian/Atlantic disjunction in Saxifraga rivularis (Saxifragaceae) has formed at least twice. Journal of Biogeography, 37, 1262–1276.CrossRefGoogle Scholar
Young, S. B. (1971). The vascular flora of St. Lawrence Island with special reference to floristic zonation in the arctic regions. Gray Herbarium, 201, 11–104.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×