Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T12:15:45.262Z Has data issue: false hasContentIssue false

10 - The Mars Dust Cycle

Published online by Cambridge University Press:  05 July 2017

Robert M. Haberle
Affiliation:
NASA Ames Research Center
R. Todd Clancy
Affiliation:
Space Science Institute, Boulder, Colorado
François Forget
Affiliation:
Laboratoire de Météorologie Dynamique, Paris
Michael D. Smith
Affiliation:
NASA-Goddard Space Flight Center
Richard W. Zurek
Affiliation:
NASA-Jet Propulsion Laboratory, California
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ajello, J. M., Pang, K. D., Lane, A. L., Hord, C. W., Simmons, K. E., 1976. Mariner 9 ultraviolet spectrometer experiment – bright-limb observations of the lower atmosphere of Mars. Journal of the Atmospheric Sciences, 33, 544552.Google Scholar
Anderson, E., Leovy, C., 1978. Mariner 9 television limb observations of dust and ice hazes on Mars. Journal of the Atmospheric Sciences, 35, 723734.Google Scholar
Antoniadi, E. M., 1915. Report of the section for the observation of Mars, 1909. Mem. Br. Astron. Assoc. 20, 2592.Google Scholar
Antoniadi, E. M., 1930. La Planète Mars, 16591929, Herman et Cie, Paris. (Translated P. Moore, The Planet Mars, Keith Reid, Shaldon, Devon, UK, 1975).Google Scholar
Arvidson, R. E., Guinness, E. A., Moore, H. J., Tillman, J., Wall, S. D. 1983. Three Mars years – Viking Lander 1 imaging observations. Science, 222, 463468.Google Scholar
Arvidson, R. E., Anderson, R. C., Bartlett, P., et al., 2004. Localization and physical property experiments conducted by Opportunity at Meridiani Planum. Science, 306 (5702), 17301733.Google Scholar
Bagnold, R. A., 1936. The movement of desert sand. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 157 (892), 594620.Google Scholar
Bagnold, R. A., 1937. The transport of sand by wind. The Geographical Journal 89(5), 409438.Google Scholar
Bagnold, R. A., 1941. The Physics of Blown Sand and Desert Dunes. London: Methuen, 265.Google Scholar
Bagnold, R. A., 1954. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 225 (1160), 4963.Google Scholar
Bagnold, R. A., 1956. The flow of cohesionless grains in fluids, Proc. R. Soc. Lond., 249, 235297.Google Scholar
Balme, M., Greeley, R., 2006. Dust devils on Earth and Mars, Reviews of Geophysics, 44 (3).Google Scholar
Balme, M., Hagermann, A., 2006. Particle lifting at the soil-air interface by atmospheric pressure excursions in dust devils. Geophysical Research Letters, 33 (19).Google Scholar
Balme, M. R., Whelley, P. L., Greeley, R., 2003. Mars: dust devil track survey in Argyre Planitia and Hellas Basin. J. of Geophys. Res., 108, doi:10.1029/2003JE002096.CrossRefGoogle Scholar
Barnes, J. R., Pollack, J. B., Haberle, R. M., et al., 1993. Mars atmospheric dynamics as simulated by the NASA AMES general circulation model. II – Transient baroclinic eddies. Journal of Geophysical Research, 98 (E2), 31253148.CrossRefGoogle Scholar
Basu, S., Richardson, M. I., Wilson, R. J., 2004. Simulation of the Martian dust cycle with the GFDL Mars GCM. Journal of Geophysical Research, 109 (E11).Google Scholar
Basu, S., Wilson, J., Richardson, M., Ingersoll, A., 2006. Simulation of spontaneous and variable global dust storms with the GFDL Mars GCM. Journal of Geophysical Research, 111 (E9).Google Scholar
Baum, W. A., 1973. The International Planetary Patrol Program: an assessment of the first three years. Planetary and Space Science, 21 (9), 15111519.Google Scholar
Bell, J. F., Wolff, M. J., James, P. B., et al., 1997. Mars surface mineralogy from Hubble Space Telescope imaging during 1994–1995: observations, calibration, and initial results, Journal of Geophysical Research, 102 (E4), 91099124.Google Scholar
Biener, K. K., Geissler, P. E., McEwen, A. S., Leovy, C., 2002. Observations of Martian dust devils in MOC wide angle camera images. In 33th Annual Lunar and Planetary Science Conference, March 11–15, 2002, Houston, TX, abstract no. 2004.Google Scholar
Bonev, B. P., Hansen, G. B., Glenar, D. A., James, P. B., Bjorkman, J. E., 2008. Albedo models for the residual south polar cap on Mars: implications for the stability of the cap under near-perihelion global dust storm conditions, Planetary and Space Science, 56 (2), 181193.CrossRefGoogle Scholar
Briggs, G. A., Baum, W. A., Barnes, J., 1979. Viking Orbiter imaging observations of dust in the Martian atmosphere, Journal of Geophysical Research, 84 (10), 27952820.Google Scholar
Cantor, B. A., 2007. MOC observations of the 2001 Mars planet-encircling dust storm, Icarus, 186 (1), 6096.Google Scholar
Cantor, B. A., James, P. B., Caplinger, M., Wolff, M. J., 2001. Martian dust storms: 1999 Mars Orbiter Camera observations, Journal of Geophysical Research, 106 (E10), 2365323688.Google Scholar
Cantor, B. A., Malin, M., Edgett, K. S., 2002. Multiyear Mars Orbiter Camera (MOC) observations of repeated Martian weather phenomena during the northern summer season, Journal of Geophysical Research (Planets), 107 (E3), doi:10.1029/2001JE001588.Google Scholar
Cantor, B. A., Kanak, K. M., Edgett, K. S., 2006. Mars Orbiter Camera observations of Martian dust devils and their tracks (September 1997 to January 2006) and evaluation of theoretical vortex models, Journal of Geophysical Research, 111 (E12), doi:10.1029/2006JE002700Google Scholar
Cantor, B. A., Malin, M. C., Wolff, M. J., et al., 2008. Observations of the Martian atmosphere by MRO-MARCI, an overview of 1 Mars year. In Third International Workshop on The Mars Atmosphere: Modeling and Observations, November 10–13, 2008, Williamsburg, Virginia. LPI Contribution No. 1447, 9075.Google Scholar
Cantor, B. A., James, P. B., Calvin, W. M., 2010. MARCI and MOC observations of the atmosphere and surface cap in the north polar region of Mars, Icarus, 208 (1), 6181.CrossRefGoogle Scholar
Capen, C. F., Martin, L. J., 1971. The developing stages of the Martian yellow storm of 1971, Lowell Observatory Bulletin No. 157, VII, 20, 211216.Google Scholar
Chassefiere, E., Blamont, J. E., Krasnopolsky, V. A., et al., 1992. Vertical structure and size distributions of Martian aerosols from solar occultation measurements, Icarus, 97 (1), 4669.Google Scholar
Chepil, W. S., Woodruff, N. P., 1963. The physics of wind erosion and its control, Advances in Agronomy, 15, 211302.CrossRefGoogle Scholar
Cheremisin, A. A., Vassilyev, Y. V., Horvath, H., 2005. Gravito-photophoresis and aerosol stratification in the atmosphere, J. Aerosol Sci., 36, 12771299.CrossRefGoogle Scholar
Choi, D. S., Dundas, C. M., 2011. Measurements of Martian dust devils winds with HiRISE. Geophysical Research Letters, 38 (24), doi:10.1029/2011GL049806.Google Scholar
Christensen, P. R., 1982. Martian dust mantling and surface composition – interpretation of thermophysical properties, Journal of Geophysical Research, 87, 99859998.Google Scholar
Christensen, P. R., 1986a. The spatial distribution of rocks on Mars, Icarus 68, 217238.Google Scholar
Christensen, P. R., 1986b. Regional dust deposits on Mars – physical properties, age, and history, Journal of Geophysical Research, 91, 35333545.Google Scholar
Christensen, P. R., 1988. Global albedo variations on Mars – implications for active aeolian transport, deposition, and erosion, Journal of Geophysical Research, 93, 76117624.CrossRefGoogle Scholar
Christensen, P. R., Bandfield, J. L., Hamilton, V. E., et al., 2001. The Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results, J. Geophys. Res., 106, 2382323871.Google Scholar
Clancy, R. T., Sandor, B. J., Wolff, M. J., et al., 2000. An intercomparison of ground-based millimeter, MGS TES, and Viking atmospheric temperature measurements: seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere, Journal of Geophysical Research, 105 (E4), 95539572.CrossRefGoogle Scholar
Clancy, R. T., Wolff, M. J., Christensen, P. R., 2003. Mars aerosol studies with the MGS TES emission phase function observations: optical depths, particle sizes, and ice cloud types versus latitude and solar longitude. J. of Geophys. Res. 108, doi:10.1029/2003JE002058.Google Scholar
Clancy, R. T., Wolff, M. J., Whitney, B. A., et al., 2010. Extension of atmospheric dust loading to high altitudes during the 2001 Mars dust storm: MGS TES limb observations. Icarus, 207 (1), 98109.Google Scholar
Colaprete, A., Toon, O. B., 2003. Carbon dioxide clouds in an early dense Martian atmosphere, Journal of Geophysical Research (Planets), 108 (E4), doi:10.1029/2002JE001967.Google Scholar
Colaïtis, A., Spiga, A., Hourdin, F., et al., 2013. A thermal plume model for the Martian convective boundary layer, Journal of Geophysical Research: Planets, 118 (7), 14681487.Google Scholar
Colburn, D. S., Pollack, J. B., Haberle, R. M., 1989. Diurnal variations in optical depth at Mars, Icarus 79, 159189.Google Scholar
Conrath, B. J., 1975. Thermal structure of the Martian atmosphere during the dissipation of the dust storm of 1971, Icarus, 24, 3646.Google Scholar
Cushing, G. E., Titus, T. N., Christensen, P. R., 2005. THEMIS VIS and IR observations of a high-altitude Martian dust devil, Geophysical Research Letters, 32 (23), doi:10.1029/2005GL024478.Google Scholar
Desch, S. J., Cuzzi, J. N., 2000. The generation of lightning in the solar nebula, Icarus, 143, 87105.CrossRefGoogle Scholar
Dickinson, C., Komguem, L., Whiteway, J. A., et al., 2011. Lidar atmospheric measurements on Mars and Earth. Planetary and Space Science, 59 (10), 942951.Google Scholar
Dlugach, Z. M., Korablev, O. I., Morozhenko, A. V., et al., 2003. Physical properties of dust in the Martian atmosphere: analysis of contradictions and possible ways of their resolution, Solar System Research, 37 (1), 119.Google Scholar
Douglass, A. E., 1899. Mars, January 1899. Popular Astronomy, 7, 113117.Google Scholar
Drube, L., Leer, K. Goetz, W., et al., 2010. Magnetic and optical properties of airborne dust and settling rates of dust at the Phoenix landing site. J. Geophys. Res. 115, E00E23. doi:10.1029/ 2009JE003419Google Scholar
Ellehoj, M. D., Gunnlaugsson, H. P., Taylor, P. A., et al., 2010. Convective vortices and dust devils at the Phoenix Mars mission landing site. J. Geophys. Res., 115, E00E16. doi:10.1029/ 2009JE003413.CrossRefGoogle Scholar
Farrell, W. M., Marshall, J. R., Cummer, S. A., Delory, G. T., Desch, M. D., 2006. A model of the ULF magnetic and electric field generated from a dust devil, Journal of Geophysical Research, 111 (E11). doi:10.1029/2006JE002689.Google Scholar
Fedorova, A., Korablev, O., Bertaux, J.-L., et al., 2009. Solar infrared occultations by the SPICAM experiment on Mars Express: simultaneous observations of H2O, CO2 and aerosol vertical distribution. Icarus 200 (1), 96117.Google Scholar
Fenton, L. K., Pearl, J. C., Martin, T. Z., 1997. Mapping Mariner 9 Dust Opacities, Icarus, 130 (1), 115124.Google Scholar
Ferri, F., Smith, P. H., Lemmon, M., Rennó, N. O., 2003. Dust devils as observed by Mars Pathfinder, Journal of Geophysical Research, 108 (E12), doi:10.1029/2000JE001421.Google Scholar
Fisher, J. A., Richardson, M. I., Newman, C. E., et al., 2005. A survey of Martian dust devil activity using Mars Global Surveyor Mars Orbiter Camera images, Journal of Geophysical Research, 110 (E3), doi:10.1029/2003JE002165.Google Scholar
Flynn, G. J., 1992. The Contribution of Meteoritic Material to the Dust and Aerosols in the Atmosphere of Mars, Abstracts of the Lunar and Planetary Science Conference, 23, 371.Google Scholar
Forget, F., Hourdin, F., Fournier, R., et al., 1999. Improved general circulation models of the Martian atmosphere from the surface to above 80 km, Journal of Geophysical Research, 104 (E10), 2415524176.Google Scholar
Fouchet, T., Bèzard, B., Drossart, P., et al., 2006. OMEGA limb observations of the Martian dust and atmospheric composition. Second Workshop on Mars Atmosphere Modelling and Observations, February 27–March 3, Granada, Spain, 223.Google Scholar
Gheynani, B. T., Taylor, P. A., 2011. Large eddy simulation of typical dust devil-like vortices in highly convective Martian boundary layers at the Phoenix Lander site, Planetary and Space Science, 59 (1), 4350.Google Scholar
Gierasch, P. J., Goody, R. M., 1972. The effect of dust on the temperature of the Martian atmosphere, Journal of Atmospheric Science, 29, 400402.Google Scholar
Gierasch, P. J., Goody, R. M., 1973. A model of a Martian great dust storm, Journal of Atmospheric Science, 30, 169179.2.0.CO;2>CrossRefGoogle Scholar
Gierasch, P. J., Thomas, P., French, R., Veverka, J., 1979. Spiral clouds on Mars: a new atmospheric phenomenon. Geophys, Res. Lett. 6, 405408.Google Scholar
Goetz, W., Bertelsen, P., Binau, C. S., et al., 2005. Nature, 436 (7047), 6265.Google Scholar
Golombek, M. P., Grant, J. A., Crumpler, L. S., et al., 2006. Erosion rates at the Mars Exploration Rover landing sites and long-term climate change on Mars. Journal of Geophysical Research, 111 (E12), doi:10.1029/2006JE002754.Google Scholar
Grassi, D., Ignatiev, N. I., Zasova, L. V., et al., 2005. Methods for the analysis of data from the Planetary Fourier Spectrometer on the Mars Express Mission, Planetary and Space Science, 53 (10), 10171034.Google Scholar
Greeley, R., 1979. Silt clay aggregates on Mars, J. Geophys. Res., 84, 62486254.Google Scholar
Greeley, R., Iversen, J. D., 1985. Wind as a geological process on Earth, Mars, Venus and Titan, Cambridge Planetary Science Series, Vol. 4. Cambridge University Press, Cambridge.Google Scholar
Greeley, R., Iversen, J. D., 1987. Measurements of wind friction speeds over lava surfaces and assessment of sediment transport. Geophysical Research Letters, 14 (9), 925928.Google Scholar
Greeley, R., Leach, R., 1978. A preliminary assessment of the effects of electrostatics on aeolian processes, in Reports of Planetary Geology Program, 1978–1979, NASA TM-79729, 236237.Google Scholar
Greeley, R., Leach, R., 1979. “Steam” injection of dust on Mars: laboratory simulation, in Reports of Planetary Geology Program, 1978–1979, NASA TM-80339, 304307.Google Scholar
Greeley, R., Skypeck, A., Pollack, J. B., 1993. Martian aeolian features and deposits – comparisons with general circulation model results, Journal of Geophysical Research, 98 (E2) 31833196.Google Scholar
Greeley, R., Wilson, G., Coquilla, R., White, B., Haberle, R., 2000. Windblown dust on Mars: laboratory simulations of flux as a function of surface roughness, Planetary and Space Science, 48 (12–14), 13491355.Google Scholar
Greeley, R., Arvidson, R., Bell, J. F., et al., 2005. Martian variable features: new insight from the Mars Express Orbiter and the Mars Exploration Rover Spirit. J. Geophys. Res. 110, E06002, doi:10.1029/ 2005JE002403.Google Scholar
Greeley, R., Arvidson, R. E., Bartlett, P. W., et al., 2006a. Gusev Crater: wind-related features and processes observed by the Mars Exploration Rover, Spirit. J. Geophys. Res. 111, E02S09, doi:10.1029/2005JE002491.Google Scholar
Greeley, R., Whelley, P. L., Arvidson, R. E., et al., 2006b. Active dust devils in Gusev Crater, Mars: observations from the Mars Exploration Rover, Spirit. J. Geophys. Res. 111, E12S09, doi:10.1029/2006JE002743.Google Scholar
Greeley, R., Waller, D. A., Cabrol, N. A., et al., 2010. Gusev Crater, Mars: observations of three dust devil seasons, Journal of Geophysical Research, 115 (E8), doi:10.1029/2010JE003608.Google Scholar
Greybush, S. J., Wilson, R. J., Hoffman, R. N., et al., 2012. Ensemble Kalman filter data assimilation of Thermal Emission Spectrometer temperature retrievals into a Mars GCM, Journal of Geophysical Research, 117 (E11), doi:10.1029/2012JE004097Google Scholar
Gu, Z., Wei, W., Zhao, Y., 2010. An overview of surface conditions in numerical simulations of dust devils and the consequent near-surface air flow fields, Aerosol and Air Quality Research, 10, 272281.Google Scholar
Guinness, E. A., Arvidson, R. E., Gehret, D. C., Bolef, L. K., 1979. Color changes at the Viking landing sites over the course of a Mars year, Journal of Geophysical Research, 84, 83558364.Google Scholar
Guinness, E. A., Leff, C. E., Arvidson, R. E., 1982. Two Mars years of surface changes seen at the Viking Landing sites, Journal of Geophysical Research, 87, 1005110058.CrossRefGoogle Scholar
Guzewich, S. D., Toigo, A. D., Richardson, M. I., et al., 2013a. The impact of a realistic vertical dust distribution on the simulation of the Martian general circulation, Journal of Geophysical Research: Planets, 118 (5) 980993.Google Scholar
Guzewich, S. D., Talaat, E. R., Toigo, A. D., Waugh, D. W., McConnochie, T. H., 2013b. High-altitude dust layers on Mars: observations with the Thermal Emission Spectrometer, J. Geophys. Res. Planets, 118, 11771194, doi:10.1002/jgre.20076.Google Scholar
Guzewich, S. D., Wilson, R. J., McConnochie, T. H., et al., 2014. Thermal tides during the 2001 Martian global-scale dust storm. Journal of Geophysical Research, 119(3), doi:10.1002/2013JE004502.Google Scholar
Haberle, R. M., Leovy, C. B., Pollack, J. B., 1982. Some effects of global dust storms on the atmospheric circulation of Mars. Icarus, 50, 322367.Google Scholar
Haberle, R. M., Pollack, J. B., Barnes, J. R., et al., 1993. Mars atmospheric dynamics as simulated by the NASA AMES general circulation model. I – The zonal-mean circulation, Journal of Geophysical Research, 98 (E2), 30933123.Google Scholar
Haberle, R. M., Murphy, J. R., Schaeffer, J., 2003. Orbital change experiments with a Mars general circulation model, Icarus, 161 (1), 6689.Google Scholar
Haberle, R. M., Gómez-Elvira, J., Torre Juárez, M., et al., 2014. Preliminary interpretation of the REMS pressure data from the first 100 sols of the MSL mission. Journal of Geophysical Research: Planets, 119 (3), 440453.Google Scholar
Hamilton, V. E., McSween, H. Y., Hapke, B., 2005. Mineralogy of Martian atmospheric dust inferred from thermal infrared spectra of aerosols, Journal of Geophysical Research, 110, E12, doi:10.1029/2005JE002501.Google Scholar
Hanel, R., Conrath, B., Hovis, W., et al., 1972. Investigation of the Martian environment by infrared spectroscopy on Mariner 9, Icarus, 17, 423.Google Scholar
Hansen, J. E., Travis, L. D., 1974. Light scattering in planetary atmospheres, Space Science Reviews, 16, 527610.Google Scholar
Hartmann, W. K., Price, M. J., 1974. Mars: clearing of the 1971 dust storm, Icarus, 21, 28.Google Scholar
Hayne, P. O., Paige, D. A., Schofield, J. T., et al., 2012. Carbon dioxide snow clouds on Mars: south polar winter observations by the Mars Climate Sounder, Journal of Geophysical Research, 117 (E8).Google Scholar
Heavens, N. G., Richardson, M. I., Kleinböhl, A., et al., 2011a. The vertical distribution of dust in the Martian atmosphere during northern spring and summer: observations by the Mars Climate Sounder and analysis of zonal average vertical dust profiles, Journal of Geophysical Research, 116 (E4), doi:10.1029/2010JE003691.Google Scholar
Heavens, N. G., Richardson, M. I., Kleinböhl, A., et al. 2011b. Vertical distribution of dust in the Martian atmosphere during northern spring and summer: high-altitude tropical dust maximum at northern summer solstice, Journal of Geophysical Research, 116 (E1).Google Scholar
Heavens, N. G., Johnson, M. S., Abdou, W. A., et al., 2014. Seasonal and diurnal variability of detached dust layers in the tropical Martian atmosphere. Journal of Geophysical Research, 119(8), doi:10.1002/2014JE004619.Google Scholar
Herr, K. C., Forney, P. B., Pimentel, G. C., 1998. Mariner Mars 6/7 Infrared Spectrometers: lab simulation of Mars spectra, in 29th Annual Lunar and Planetary Science Conference, March 16–20, 1998, Houston, TX, abstract no. 1518.Google Scholar
Hess, S., 1973. Martian winds and dust clouds, Planetary and Space Science, 21 (9), 15491557.Google Scholar
Hinson, D. P., Wang, H., 2010. Further observations of regional dust storms and baroclinic eddies in the northern hemisphere of Mars, Icarus, 206 (1), 290305.Google Scholar
Hollingsworth, J. L., Kahre, M. A., 2010. Extratropical cyclones, frontal waves, and Mars dust: modeling and considerations. Geophys. Res. Letters, 37, doi:10.1029/2010GL044262.Google Scholar
Hollingsworth, J. L., Haberle, R. M., Barnes, J. R., et al., 1996. Orographic control of storm zones on Mars, Nature, 380 (6573), 413416.Google Scholar
Hourdin, F., Le Van, P., Forget, F., Talagrand, O., 1993. Meteorological Variability and the Annual Surface Pressure Cycle on Mars, Journal of Atmospheric Sciences, 50 (21), 36253640.2.0.CO;2>CrossRefGoogle Scholar
Hourdin, F., Forget, F., Talagrand, O., 1995. The sensitivity of the Martian surface pressure and atmospheric mass budget to various parameters: a comparison between numerical simulations and Viking observations, Journal of Geophysical Research, 100 (E3), 55015523.Google Scholar
Hu, R., Cahoy, K., Zuber, M. T., 2012. Mars atmospheric CO2 condensation above the north and south poles as revealed by radio occultation, climate sounder, and laser ranging observations, Journal of Geophysical Research, 117 (E7).Google Scholar
Huguenin, R. L., Clifford, S. M., 1979. Mars: origin of the global dust storms. Bulletin of the American Astronomical Society, 11, 578.Google Scholar
Hunt, G. E., James, P. B, 1979. Martian extratropical cyclones, Nature, v278, 531532.Google Scholar
Inada, A., Richardson, M. I., McConnochie, T. H., et al., 2007. High-resolution atmospheric observations by the Mars Odyssey Thermal Emission Imaging System, Icarus, 192 (2), 378395.Google Scholar
Jakosky, B. M., 1986. On the thermal properties of Martian fines, Icarus, 66, 117124.Google Scholar
James, P. B., 1985. Martian local dust storms, Recent advances in planetary meteorology. Cambridge and New York, Cambridge University Press, 8599.Google Scholar
James, P. B., Hollingsworth, J. L., Wolff, M. J., Lee, S. W., 1999. North Polar Dust Storms in Early Spring on Mars, Icarus, 138 (1), 6473.Google Scholar
Jaquin, F., Gierasch, P., Kahn, R., 1986. The vertical structure of limb hazes in the Martian atmosphere, Icarus, 68, 442461.Google Scholar
Jianjun, Q., Yan, M., Dong, G., et al., 2004. Wind tunnel simulation experiment and investigation on the electrification of sandstorms, Sci. China, Ser. D, 47, 529539.Google Scholar
Johnson, D. W., Harteck, P., Reeves, R. R., 1975. Dust injection into the Martian atmosphere, Icarus, 26, 441443.Google Scholar
Johnson, J. R., Grundy, W. M., Lemmon, M. T., 2003. Dust deposition at the Mars Pathfinder landing site: observations and modeling of visible/near-infrared spectra, Icarus, 163 (2), 330346, doi:10.1016/S0019-1035(03)00084-8.Google Scholar
Joshi, M. M., Lewis, S. R., Read, P. L., Catling, D. C., 1995. Western boundary currents in the Martian atmosphere: numerical simulations and observational evidence, Journal of Geophysical Research, 100 (E3), 54855500.Google Scholar
Joshi, M. M., Haberle, R. M., Barnes, J. R., Murphy, J. R., Schaeffer, J., 1997. Low-level jets in the NASA Ames Mars general circulation model, Journal of Geophysical Research, 102 (E3), 65116524.Google Scholar
Kahanpää, H., de la Torre Juarez, M., Moores, J., et al., 2013. EGU General Assembly 2013, held 7–12 April, 2013 in Vienna, Austria, id. EGU2013–9455.Google Scholar
Kahn, R. A., Martin, T. Z., Zurek, R. W., Lee, S. W., 1992. The Martian dust cycle, in Mars, ed. Kieffer, H. et al., Univ. Arizona Press, Tucson, 10171053.Google Scholar
Kahre, M. A., Haberle, R. M., 2010. Mars CO2 cycle: effects of airborne dust and polar cap ice emissivity, Icarus, 207 (2), 648653Google Scholar
Kahre, M. A., Murphy, J. R., Haberle, R. M., Montmessin, F., Schaeffer, J., 2005. Simulating the Martian dust cycle with a finite surface dust reservoir, Geophysical Research Letters, 32 (20), doi:10.1029/2005GL023495.Google Scholar
Kahre, M. A., Murphy, J. R., Haberle, R. M., 2006. Modeling the Martian dust cycle and surface dust reservoirs with the NASA Ames general circulation model. J. of Geophys. Res. 111. doi:10.1029/2005JE002588Google Scholar
Kahre, M. A., Hollingsworth, J. L., Haberle, R. M., Murphy, J. R., 2008. Investigations of the variability of dust particle sizes in the Martian atmosphere using the NASA Ames General Circulation Model. Icarus, 195, 576597.Google Scholar
Kahre, M. A., Wilson, R. J., Hollingsworth, J. L., Haberle, R. M., 2010. Using Assimilation Techniques To Model Mars’ Dust Cycle With The NASA Ames And NOAA/GFDL Mars General Circulation Models, American Astronomical Society, DPS meeting #42, #30.19, Bulletin of the American Astronomical Society, 42, 1031.Google Scholar
Kahre, M. A., Hollingsworth, J. L., Haberle, R. M., Montmessin, F., 2011. Coupling Mars’ dust and water cycles: effects on dust lifting vigor, spatial extent and seasonality, The Fourth International Workshop on the Mars Atmosphere: Modelling and Observation, 8–11 February, 2011, Paris, France, 143146.Google Scholar
Kahre, M. A., Hollingsworth, J. L., Haberle, R. M., Wilson, R. J., 2015. Coupling the Mars dust and water cycles: the importance of radiative-dynamic feedbacks during northern hemisphere summer, Icarus, 260, 477–480.Google Scholar
Kass, D. M., Kleinböhl, A., McCleese, D. J., Schofield, J. T. and Smith, M. D., 2016. Interannual similarity in the Martian atmosphere during the dust storm season. Geophysical Research Letters, 43(12), 61116118.Google Scholar
Kaufmann, E., Kömle, N. I., Kargl, G., 2006. Laboratory simulation experiments on the solid-state greenhouse effect in planetary ices, Icarus, 185 (1), 274286.CrossRefGoogle Scholar
Kavulich, M. J., Szunyogh, I., Gyarmati, G., Wilson, R. J., 2013. Local dynamics of baroclinic waves in the Martian atmosphere, J. Atmos. Sci., 70, 34153447.Google Scholar
Kieffer, H. H., 2007. Cold jets in the Martian polar caps, Journal of Geophysical Research, 112 (E8), doi:10.1029/2006JE002816.Google Scholar
Kieffer, H. H., Martin, T. Z., Peterfreund, A. R., Jakosky, B. M., Miner, E. D., Palluconi, F. D., 1977. Thermal and albedo mapping of Mars during the Viking primary mission, Journal of Geophysical Research, 82, 42494291.Google Scholar
Kinch, K. M., Sohl-Dickstein, J., Bell, J. F., et al., 2007. Dust deposition on the Mars Exploration Rover Panoramic Camera (Pancam) calibration targets, Journal of Geophysical Research, 112 (E6), doi:10.1029/2006JE002807.Google Scholar
Kjelgaard, J. F., Chandler, D. G., Saxton, K. E., 2004. Evidence for direct suspension of loessial soils on the Columbia Plateau, Earth Surface Processes and Landforms, 29 (2), 221236.Google Scholar
Kok, J. F., 2010. An improved parameterization of wind-blown sand flux on Mars that includes the effect of hysteresis, Geophysical Research Letters, 37 (12), doi:10.1029/2010GL043646.Google Scholar
Kok, J. F., Rennó, N. O., 2006. Enhancement of the emission of mineral dust aerosols by electric forces, Geophysical Research Letters, 33 (19).Google Scholar
Komguem, L., Whiteway, J. A., Dickinson, C., Daly, M., Lemmon, M. T., 2013. Phoenix LIDAR measurements of Mars atmospheric dust, Icarus, 223(2), 649653.Google Scholar
Kuiper, G. P., 1957. Visual Observations of Mars, 1956, Astrophysical Journal, 125, 307.Google Scholar
Kuroda, T., Medvedev, A. S., Hartogh, P., Takahashi, M., 2008. Semiannual oscillations in the atmosphere of Mars, Geophysical Research Letters, 35 (23), doi:10.1029/2008GL036061.Google Scholar
Landis, G. A., Jenkins, P. P., 2000. Measurement of the settling rate of atmospheric dust on Mars by the MAE instrument on Mars Pathfinder, Journal of Geophysical Research, 105 (E1), 18551858.Google Scholar
Lecacheux, J., Drossart, P., Buil, C., et al., 1991. CCD images of Mars with the 1 m reflector atop Pic-du-Midi, Proceedings of Colloquium on Phobos-Mars Mission, Paris, France, Oct. 23–27, 1989, A91-29558 11-91. Planetary and Space Science, 39, 273279.Google Scholar
Lee, S. W., 1987. Regional sources and sinks of dust on Mars: Viking observations of Cerberus, SOLIS Planum and Syrtis Major, in Lunar and Planetary Inst., MECA Symposium on Mars: Evolution of its Climate and Atmosphere, 7172.Google Scholar
Lemmon, M. T., Wolff, M. J., Smith, M. D., et al., 2004. Atmospheric Imaging Results from the Mars Exploration Rovers: Spirit and Opportunity, Science, 306 (5702), 17531756, doi:10.1126/science.1104474.Google Scholar
Lemmon, M. T., Wolff, M. J., Bell, J. F., et al., 2014. Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission. Icarus, doi:10.1016/j.icarus.2014.03.029Google Scholar
Leovy, C. B., 1981. Observations of Martian tides over two annual cycles. J. Atmos. Sci., 38, 3039.Google Scholar
Leovy, C., Mintz, Y., 1969. Numerical simulation of the atmospheric circulation and climate of Mars, Journal of Atmospheric Sciences, 26 (6), 11671190.Google Scholar
Leovy, C. B., Smith, B. A., Young, A. T., Leighton, R. B., 1971, Mariner Mars 1969: atmospheric results, Journal of Geophysical Research, 76, 297312.Google Scholar
Leovy, C. B., Zurek, R. W., Pollack, J. B., 1973. Mechanisms for Mars dust storms, Journal of Atmospheric Science, 30, 749762.Google Scholar
Lewis, S. R., Collins, M., Read, P. L., et al., 1999. A climate database for Mars, Journal of Geophysical Research, 104 (E10), 2417724194.Google Scholar
Lewis, S. R., Read, P. L., Conrath, B. J., Pearl, J. C., Smith, M. D., 2007. Assimilation of thermal emission spectrometer atmospheric data during the Mars Global Surveyor aerobraking period, Icarus, 192 (2), 327347.Google Scholar
Lian, Y., Richardson, M. I., Newman, C. E., et al., 2012. The Ashima/MIT Mars GCM and argon in the Martian atmosphere, ICARUS, 218, 10431070, doi:10.1016/j.icarus.2012.02.012Google Scholar
Liu, J., Richardson, M. I., Wilson, R. J., 2003. An assessment of the global, seasonal, and interannual spacecraft record of Martian climate in the thermal infrared, Journal of Geophysical Research, 108 (E8), doi:10.1029/2002JE001921.Google Scholar
Loosmore, G. A., and Hunt, J. R., 2000. Dust resuspension without saltation, J. Geophys. Res. 105, 2066320672.Google Scholar
Lorenz, R. D., Lunine, J. I., Grier, J. A., and Fisher, M. A., 1995. Prediction of aeolian features on planets: application to Titan paleoclimatology, Journal of Geophysical Research, 100 (E12), 2637726386.Google Scholar
Lu, H., Raupach, M. R., and Richards, K. S. (2005), Modeling entrainment of sedimentary particles by wind and water: a generalized approach, J. Geophys. Res., 110, D24114, doi:10.1029/2005JD006418.Google Scholar
Määttänen, A., Vehkamäki, H., Lauri, A., et al., 2005. Nucleation studies in the Martian atmosphere, Journal of Geophysical Research, 110 (E2), doi:10.1029/2004JE002308.Google Scholar
Määttänen, A., Fouchet, T., Forni, O., et al., 2009. A study of the properties of a local dust storm with Mars Express OMEGA and PFS data, Icarus, 201 (2), 504516.Google Scholar
Macpherson, T., Nickling, W. G., Gillies, J. A. and Etyemezian, V., 2008. Dust emissions from undisturbed and disturbed supply-limited desert surfaces. Journal of Geophysical Research: Earth Surface, 113 (F2) doi:10.1029/2007JF000800.Google Scholar
Madeleine, J.-B., Forget, F., Millour, E., Montabone, L., Wolff, M. J., 2011. Revisiting the radiative impact of dust on Mars using the LMD global climate model, Journal of Geophysical Research, 116 (E11), doi:10.1029/2011JE003855.Google Scholar
Madeleine, J.-B., Forget, F., Millour, E., Navarro, T., Spiga, A., 2012. The influence of radiatively active water ice clouds on the Martian climate, Geophysical Research Letters, 39 (23), doi:10.1029/2012GL053564.Google Scholar
Malin, M. C., Edgett, K. S., 2001. Mars Global Surveyor Mars Orbiter Camera: interplanetary cruise through primary mission, Journal of Geophysical Research, 106 (E10) 2342923570.Google Scholar
Malin, M. C., Calvin, W. M., Cantor, B. A., et al., 2008. Climate, weather, and north polar observations from the Mars Reconnaissance Orbiter Mars Color Imager, Icarus, 194 (2), 501512.Google Scholar
Malin, M. C., Edgett, K. S., Cantor, B. A., et al., 2010. An overview of the 1985–2006 Mars Orbiter Camera science investigation, International Journal of Mars Science and Exploration, 4, 160.Google Scholar
Martin, L. J., 1974a. The major Martian dust storms of 1971 and 1973. Icarus, 23, 108115.Google Scholar
Martin, L. J., 1974b. The major Martian yellow storm of 1971. Icarus, 22 (2), 175188.Google Scholar
Martin, L. J., Zurek, R. W., 1993. An analysis of the history of dust activity on Mars, Journal of Geophysical Research, 98 (E2) 32213246.CrossRefGoogle Scholar
Martin, T. Z., 1986. Thermal infrared opacity of the Mars atmosphere, Icarus, 66, 221.Google Scholar
Martínez-Alvarado, O., Montabone, L., Lewis, S. R., Moroz, I. M., Read, P. L. 2009. Transient teleconnection event at the onset of a planet-encircling dust storm on Mars, Annales Geophysicae, 27 (9), 36633676.Google Scholar
McCleese, D. J., Heavens, N. G., Schofield, J. T., et al., 2010. Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: seasonal variations in zonal mean temperature, dust, and water ice aerosols, Journal of Geophysical Research, 115 (E12), doi:10.1029/2010JE003677.Google Scholar
McConnochie, T. M., Smith, M. D., 2008. Vertically resolved aerosol climatology from the Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) limb sounding. In Third International Workshop on the Mars Atmosphere: Modeling and Observations, Williamsburg, Virginia.Google Scholar
McKim, R. J., 1999. Meeting contribution: recent views of Mars, Journal of the British Astronomical Association, 109 (5), 287.Google Scholar
McLaughlin, D. B., 1954. Interpretation of some Martian features, Publications of the Astronomical Society of the Pacific, 66 (391), 161.Google Scholar
Merrison, J., Jensen, J., Kinch, K., Mugford, R., Nørnberg, P., 2004. The electrical properties of Mars analogue dust, Planetary and Space Science, 52 (4), 279290.Google Scholar
Merrison, J. P., Gunnlaugsson, H. P., Nørnberg, P., Jensen, A. E., Rasmussen, K. R., 2007. Determination of the wind induced detachment threshold for granular material on Mars using wind tunnel simulations, Icarus, 191 (2), 568580.Google Scholar
Metzger, S. M., Johnson, J. R., Carr, J. R., Parker, T. J., Lemmon, M., 1999. Dust devil vortices seen by the Mars Pathfinder Camera. Geophys. Res. L. 26, 27812784, doi:10.1029/1999GL008341.Google Scholar
Metzger, S. M., Carr, J. R., Johnson, J. R., Parker, T. J., Lemmon, M. T., 2000. Techniques for identifying dust devils in Mars Pathfinder images, IEEE Transactions on Geoscience and Remote Sensing, 38 (2), 870876, doi:10.1109/36.842015.Google Scholar
Michaels, T. I., 2006. Numerical modeling of Mars dust devils: albedo track generation, Geophysical Research Letters, 33 (19), doi:10.1029/2006GL026268Google Scholar
Michaels, T. I., Rafkin, S. C. R., 2004. Large-eddy simulation of atmospheric convection on Mars, Quarterly Journal of the Royal Meteorological Society, 130 (599), 12511274.Google Scholar
Michaels, T. I., Colaprete, A., Rafkin, S. C. R. (2006), Significant vertical water transport by mountain-induced circulations on Mars, Geophys. Res. Lett., 33, L16201, doi:10.1029/2006GL026562.Google Scholar
Michelangeli, D. V., Toon, O. B., Haberle, R. M., Pollack, J. B., 1993. Numerical simulations of the formation and evolution of water ice clouds in the Martian atmosphere, Icarus, 102 (2), 261285.Google Scholar
Milam, K. A., Stockstill, K. R., Moersch, J. E., et al., 2003. THEMIS characterization of the MER Gusev Crater landing site, Journal of Geophysical Research, 108 (E12), doi:10.1029/2002JE002023.Google Scholar
Miyamoto, S., 1957. The Great Yellow Cloud and the Atmosphere of Mars: Report of Visual Observations During the 1956 Opposition. Contribution 7.1, Inst. of Astrophys. and Kwasan Obs., Univ. of Kyoto, Japan.Google Scholar
Montabone, L., Lewis, S. R., Read, P. L., 2005. Interannual variability of Martian dust storms in assimilation of several years of Mars global surveyor observations, Advances in Space Research, 36 (11) 21462155.Google Scholar
Montabone, L., Lewis, S. R., Read, P. L., Hinson, D. P., 2006. Validation of Martian meteorological data assimilation for MGS/TES using radio occultation measurements, Icarus, 185 (1), 113132.Google Scholar
Montabone, L., Martinez-Alvarado, O., Lewis, S. R., Read, P. L., Wilson, R. J., 2008. Teleconnection in the Martian atmosphere during the 2001 planet-encircling dust storm, in Third International Workshop on The Mars Atmosphere: Modeling and Observations, held November 10–13, 2008 in Williamsburg, Virginia. LPI Contribution No. 1447, 9077.Google Scholar
Montabone, L., Lemmon, M. T., Smith, M. D., et al., 2011. Reconciling dust opacity datasets and building multi-annual dust scenarios for Mars atmospheric models, in The Fourth International Workshop on the Mars Atmosphere: Modelling and Observation, 8–11 February, 2011, Paris, France, 103105.Google Scholar
Montabone, L., Forget, F., Millour, E., et al., 2015. Eight-year climatology of dust on Mars, Icarus, 251, 6595.Google Scholar
Montmessin, F., Rannou, P., Cabane, M., 2002. New insights into Martian dust distribution and water-ice cloud microphysics, Journal of Geophysical Research (Planets), 107, E6, 41, CiteID 5037, doi:10.1029/2001JE001520.Google Scholar
Montmessin, F., Forget, F., Rannou, P., Cabane, M., Haberle, R. M., 2004. Origin and role of water ice clouds in the Martian water cycle as inferred from a general circulation model, Journal of Geophysical Research, 109 (E10), doi:10.1029/2004JE002284.Google Scholar
Montmessin, F., Quémerais, E., Bertaux, J. L., et al., 2006. Stellar occultations at UV wavelengths by the SPICAM instrument: retrieval and analysis of Martian haze profiles, Journal of Geophysical Research, 111, (E9), doi:10.1029/2005JE002662.Google Scholar
Moores, J., Lemmon, M. T. Kahanpää, H., et al., 2014. Observational evidence of a shallow planetary boundary layer in northern Gale Crater, Mars as seen by the Navcam instrument onboard the Mars Science Laboratory Rover. Icarus, 249, 129142.Google Scholar
Mulholland, D. P., Read, P. L., Lewis, S. R., 2013. Simulating the interannual variability of major dust storms on Mars using variable lifting thresholds, Icarus, 223 (1), 344358.Google Scholar
Murphy, J. R., 1999. The Martian atmospheric dust cycle: insights from numerical model simulations, in The Fifth International Conference on Mars, July 19–24, 1999, Pasadena, California, abstract no. 6087.Google Scholar
Murphy, J. R., Nelli, S., 2002. Mars Pathfinder convective vortices: frequency of occurrence, Geophysical Research Letters, 29 (23), doi:10.1029/2002GL015214.Google Scholar
Murphy, J. R., Toon, O. B., Haberle, R. M., Pollack, J. B., 1990. Numerical simulations of the decay of Martian global dust storms, Journal of Geophysical Research, 95 (30), 1462914648.Google Scholar
Murphy, J. R., Haberle, R. M., Toon, O. B., Pollack, J. B., 1993. Martian global dust storms – zonally symmetric numerical simulations including size-dependent particle transport, Journal of Geophysical Research, 98 (E2), 31973220.Google Scholar
Murphy, J. R., Pollack, J. B., Haberle, R. M., et al., 1995. Three-dimensional numerical simulation of Martian global dust storms, Journal of Geophysical Research, 100 (E12), 2635726376.Google Scholar
Navarro, T., Madeleine, J.-B., Forget, F., et al., 2014. Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds, Journal of Geophysical Research: Planets, doi:10.1002/2013JE004550.CrossRefGoogle Scholar
Neakrase, L. D. V., Greeley, R., 2010a. Dust devil sediment flux on Earth and Mars: laboratory simulations, Icarus, 206 (1), 306318.Google Scholar
Neakrase, L. D. V., Greeley, R., 2010b. Dust devils in the laboratory: effect of surface roughness on vortex dynamics, Journal of Geophysical Research, 115 (E5), 10.1029/2009JE003465.Google Scholar
Newman, C. E., Richardson, M. I., 2015. The impact of surface dust source exhaustion on the Martian dust cycle, dust storms and interannual variability, as simulated by the MarsWRF General Circulation Model, Icarus, 257, doi:10.1016/j.icarus.2015.03.030.Google Scholar
Newman, C. E., Lewis, S. R., Read, P. L., Forget, F., 2002a. Modeling the Martian dust cycle 2. Multiannual radiatively active dust transport simulations, Journal of Geophysical Research (Planets), 107 (E12), doi:10.1029/2002JE001920.Google Scholar
Newman, C. E., Lewis, S. R., Read, P. L., Forget, F., 2002b. Modeling the Martian dust cycle, 1. Representations of dust transport processes, Journal of Geophysical Research (Planets), 107 (E12), doi:10.1029/2002JE001910.Google Scholar
Newman, C. E., Lewis, S. R., Read, P. L., 2005. The atmospheric circulation and dust activity in different orbital epochs on Mars. Icarus, 174, 135160.Google Scholar
Niederdörfer, E., 1933. Messungen des Wärmeumsatzes über schneebedecktem Boden, Meteorol. Z., 50, 201208.Google Scholar
Noble, J., Wilson, R. J., Haberle, R. M., et al. 2011. Comparison of TES FFSM eddies and MOC storms, MY 24–26, in The Fourth International Workshop on the Mars Atmosphere: Modelling and Observation, 8–11 February, 2011, Paris, France, 125128.Google Scholar
Ockert-Bell, M. E., Bell, J. F., Pollack, J. B., McKay, C. P., Forget, F., 1997. Absorption and scattering properties of the Martian dust in the solar wavelengths, Journal of Geophysical Research, 102 (E4), 90399050.Google Scholar
Ogohara, K., Satomura, T., 2008. Northward movement of Martian dust localized in the region of the Hellas Basin, Geophysical Research Letters, 35 (13).Google Scholar
Owen, P. R., 1964. Saltation of uniform grains in air, Journal of Fluid Mechanics, 20, 225242.Google Scholar
Pankine, A. A., Ingersoll, A. P., 2002. Interannual Variability of Martian Global Dust Storms. Simulations with a Low-Order Model of the General Circulation. Icarus, 155 (2), 299323.Google Scholar
Pankine, A. A., Ingersoll, A. P., 2004. Interannual variability of Mars global dust storms: an example of self-organized criticality? Icarus, 170 (2), 514518.Google Scholar
Piqueux, S., Byrne, S., Richardson, M. I., 2003. Sublimation of Mars’s southern seasonal CO2 ice cap and the formation of spiders, Journal of Geophysical Research, 108 (E8), doi:10.1029/2002JE002007.Google Scholar
Pleskot, L. K., Miner, E. D., 1981. Time variability of Martian bolometric albedo, Icarus, 45, 179201.Google Scholar
Pollack, J. B., Colburn, D., Kahn, R., et al., 1977. Properties of aerosols in the Martian atmosphere, as inferred from Viking Lander imaging data, Journal of Geophysical Research, 82, 44794496.Google Scholar
Pollack, J. B., Colburn, D. S., Flasar, F. M., et al., 1979. Properties and effects of dust particles suspended in the Martian atmosphere. J. of Geophys. Res. 84, 29292945.Google Scholar
Pollack, J. B., Haberle, R. M., Schaeffer, J., Lee, H., 1990. Simulations of the general circulation of the Martian atmosphere. I – Polar processes. J. of Geophys. Res. 95, 14471473.Google Scholar
Pollack, J. B., Haberle, R. M., Murphy, J. R., Schaeffer, J., Lee, H., 1993. Simulations of the general circulation of the Martian atmosphere. II – Seasonal pressure variations, Journal of Geophysical Research, 98 (E2), 31493181.Google Scholar
Portyankina, G., Pommerol, A., Aye, K.-M., Hansen, C. J., Thomas, N., 2012. Polygonal cracks in the seasonal semi-translucent CO2 ice layer in Martian polar areas, Journal of Geophysical Research, 117 (E2), doi:10.1029/2011JE003917.Google Scholar
Prandtl, L., 1935. The mechanics of viscous fluids. In Durand, W.F (ed.) Aerodynamic Theory III. Berlin: Springer.Google Scholar
Rafkin, S. C. R., 2009. A positive radiative-dynamic feedback mechanism for the maintenance and growth of Martian dust storms, Journal of Geophysical Research, 114 (E1), doi:10.1029/2008JE003217.Google Scholar
Rafkin, S. C. R., 2012. The potential importance of non-local, deep transport on the energetics, momentum, chemistry, and aerosol distributions in the atmospheres of Earth, Mars, and Titan. Planetary and Space Science, 60 (1), 147154.Google Scholar
Rafkin, S. C. R., Haberle, R. M., Michaels, T. I., 2001. The Mars Regional Atmospheric Modeling System: model description and selected simulations, Icarus, 151 (2), 228256.Google Scholar
Rafkin, S. C. R., Sta. Maria, M. R. V., Michaels, T. I., 2002. Simulation of the atmospheric thermal circulation of a Martian volcano using a mesoscale numerical model, Nature, 419 (6908), 697699.Google Scholar
Rannou, P., Perrier, S., Bertaux, J.-L., et al., 2006. Dust and cloud detection at the Mars limb with UV scattered sunlight with SPICAM, Journal of Geophysical Research, 111 (E9), doi:10.1029/2006JE002693.Google Scholar
Read, P. L., Montabone, L., Mulholland, D. P., et al., 2011. Midwinter suppression of baroclinic storm activity on Mars: observations and models, The Fourth International Workshop on the Mars Atmosphere: Modelling and Observation, 8–11 February, 2011, Paris, France, 133135.Google Scholar
Reiss, D., Zanetti, M., Neukum, G., 2011. Multitemporal observations of identical active dust devils on Mars with the High Resolution Stereo Camera (HRSC) and Mars Orbiter Camera (MOC), Icarus, 215 (1), 358369.Google Scholar
Rennó, N. O., Burkett, M. L., Larkin, M. P., 1998. A simple thermodynamical theory for dust devils, Journal of Atmospheric Sciences, 55 (21), 32443252.Google Scholar
Rennó, N. O., Wong, A.-S., Atreya, S. K., de Pater, I., Roos-Serote, M., 2003. Electrical discharges and broadband radio emission by Martian dust devils and dust storms, Geophysical Research Letters, 30 (22), doi:10.1029/2003GL017879.Google Scholar
Rennó, N. O., Abreu, V. J., Koch, J., et al., 2004. MATADOR 2002: a pilot field experiment on convective plumes and dust devils, Journal of Geophysical Research, 109 (E7), doi:10.1029/2003JE002219.Google Scholar
Richardson, M. I., Wilson, R. J., 2002. Investigation of the nature and stability of the Martian seasonal water cycle with a general circulation model, Journal of Geophysical Research (Planets), 107 (E5), doi:10.1029/2001JE001536.Google Scholar
Ringrose, T. J., Towner, M. C., Zarnecki, J. C., 2003. Convective vortices on Mars: a reanalysis of Viking Lander 2 meteorological data, sols 1–60, Icarus, 163 (1), 7887.Google Scholar
Ringrose, T. J., Patel, M. R., Towner, M. C., et al., 2007. The meteorological signatures of dust devils on Mars, Planetary and Space Science, 55 (14), 21512163.Google Scholar
Rodin, A. V., Clancy, R. T., Wilson, R. J., 1999a. Dynamical properties of Mars water ice clouds and their interactions with atmospheric dust and radiation, Advances in Space Research, 23 (9), 15771585.Google Scholar
Rodin, A. V., Wilson, R. J., Clancy, R. T., Richardson, M. I., 1999b. The coupled roles of dust and water ice clouds in the Mars aphelion season, in The Fifth International Conference on Mars, July 19–24, 1999, Pasadena, California, abstract no. 6235.Google Scholar
Roney, J. A., White, B. R., 2004. Definition and measurement of dust aeolian thresholds, Journal of Geophysical Research: Earth Surface, 109 (F1), doi:10.1029/2003JF000061.Google Scholar
Rossow, W. B., 1978. Cloud microphysics – analysis of the clouds of Earth, Venus, Mars, and Jupiter, Icarus, 36, 150.Google Scholar
Rover Team, 1997. Characterization of the Martian surface deposits by the Mars Pathfinder rover, Sojourner, Science, 278 (5344), 17651768.Google Scholar
Ruff, S. W., Christensen, P. R., 2002. Bright and dark regions on Mars: particle size and mineralogical characteristics based on Thermal Emission Spectrometer data, Journal of Geophysical Research (Planets), 107 (E12), doi:10.1029/2001JE001580.Google Scholar
Ruijgrok, W., Davidson, C. I., Nicholson, K. W., 1995. Dry deposition of particles, Tellus, 47B, 587601.Google Scholar
Ryan, J. A., Lucich, R. D., 1983. Possible dust devils – vortices on Mars, Journal of Geophysical Research, 88, 1100511011.Google Scholar
Ryan, J. A., Sharman, R. D., 1981. Two major dust storms, one year apart: comparison of Viking data, Journal of Geophysical Research, 86, 32473254.Google Scholar
Sagan, C., Bagnold, R. A., 1975. Fluid transport on Earth and aeolian transport on Mars. Icarus, 26. 209218.Google Scholar
Sagan, C., Pollack, J. B., 1969. Windblown dust on Mars, Nature, 223 (5208), 791794.Google Scholar
Sagan, C., Veverka, J., Fox, P., et al., 1972. Variable features on Mars: preliminary Mariner 9 television results, Icarus, 17, 346.Google Scholar
Sagan, C., Veverka, J., Fox, P., et al., 1973. Variable features on Mars, 2, Mariner 9 global results, Journal of Geophysical Research, 78 (20), 41634196.Google Scholar
Schmidt, D. S., Schmidt, R. A., Dent, J. D., 1998. Electrostatic force on saltating sand, J. Geophys. Res., 103, 89979001.Google Scholar
Schofield, J. T., Barnes, J. R., Crisp, D., et al., 1997. The Mars Pathfinder atmospheric structure investigation/meteorology, Science, 278 (5344), 1752.Google Scholar
Shao, Y., Raupach, M. R., Findlater, P. A., 1993. Effect of saltation bombardment on the entrainment of dust by wind, Journal of Geophysical Research, 98 (D7), 1271912726.Google Scholar
Siili, T., Haberle, R. M., Murphy, J. R., Savijärvi, H., 1999. Modelling of the combined late-winter ice cap edge and slope winds in Mars Hellas and Argyre regions. Planetary and Space Science, 47, 8–9, 951970.Google Scholar
Sinclair, P. C., 1969. General characteristics of dust devils, Journal of Applied Meteorology, 8 (1), 3245.Google Scholar
Sinclair, P. C., 1973. The lower structure of dust devils, Journal of Atmospheric Sciences, 30 (8), 15991619.Google Scholar
Slinn, S. A., Slinn, W. G. N., 1980. Predictions for particle deposition on natural waters, Atmospheric Environment, 14, 10131016.Google Scholar
Slipher, E. C., 1962. Mars – The Photographic Story. Northland Press, Flagstaff, AZ.Google Scholar
Smith, M. D., 2004. Interannual variability in TES atmospheric observations of Mars during 1999–2003, Icarus, 167 (1), 148165.Google Scholar
Smith, M. D., 2008. Spacecraft Observations of the Martian atmosphere, Annual Review of Earth and Planetary Sciences, 36, 191219.Google Scholar
Smith, M. D., 2009. THEMIS observations of Mars aerosol optical depth from 2002–2008, Icarus, 202 (2), 444452.Google Scholar
Smith, M. D., Conrath, B. J., Pearl, J. C., Christensen, P. R., 2002. Note: Thermal Emission Spectrometer observations of Martian planet-encircling dust storm 2001A, Icarus, 157 (1), 259263.Google Scholar
Smith, M. D., Wolff, M. J., Spanovich, N., et al., 2006. One Martian year of atmospheric observations using MER Mini-TES, Journal of Geophysical Research, 111 (E12), doi:10.1029/2006JE002770.Google Scholar
Smith, M. D., Wolff, M. J., Clancy, R. T., Kleinböhl, A., Murchie, S. L., 2013. Vertical distribution of dust and water ice aerosols from CRISM limb-geometry observations, Journal of Geophysical Research: Planets, 118 (2), 321334.Google Scholar
Smith, P. H., Lemmon, M., 1999. Opacity of the Martian atmosphere measured by the Imager for Mars Pathfinder, Journal of Geophysical Research, 104 (E4), 89758986, doi:10.1029/1998JE900017.Google Scholar
Smith, P.H., Bell III, J. F., Bridges, N. T., et al., 1997. Results from the Mars Pathfinder Camera. Science, 278, 17581765, doi:10.1126/science.278.5344.1758.Google Scholar
Snyder, C. W., Moroz, V. I., 1992. Spacecraft exploration of Mars, in Mars, ed. Kieffer, H. et al., Univ. Arizona Press, Tucson, 71119.Google Scholar
Spiga, A., Forget, F., 2009. A new model to simulate the Martian mesoscale and microscale atmospheric circulation: validation and first results, Journal of Geophysical Research, 114 (E2).Google Scholar
Spiga, A., Faure, J., Madeleine, J.-B., Määttänen, A., Forget, F., 2013. Rocket dust storms and detached dust layers in the Martian atmosphere, Journal of Geophysical Research: Planets, 118 (4), 746767.Google Scholar
Stanzel, C., Pätzold, M., Greeley, R., Hauber, E., Neukum, G., 2006. Dust devils on Mars observed by the High Resolution Stereo Camera, Geophysical Research Letters, 33 (11), doi:10.1029/2006GL025816.Google Scholar
Stanzel, C., Pätzold, M., Williams, D. A., et al., 2008. Dust devil speeds, directions of motion and general characteristics observed by the Mars Express High Resolution Stereo Camera, Icarus, 197 (1), 3951.Google Scholar
Stella, P., Ewell, R., Hoskin, J., 2005, Design and performance of the MER (Mars Exploration Rovers) solar arrays, Proc. IEEE Photovoltaic Spec. Conf., 31, 626630.Google Scholar
Stow, C. D., 1969. Dust and Sand Storm Electrification, Weather, 24 (4), 134144.Google Scholar
Strausberg, M. J., Wang, H., Richardson, M. I., Ewald, S. P., Toigo, A. D., 2005. Observations of the initiation and evolution of the 2001 Mars global dust storm, Journal of Geophysical Research, 110 (E2).Google Scholar
Szwast, M. A., Richardson, M. I., Vasavada, A. R., 2006. Surface dust redistribution on Mars as observed by the Mars Global Surveyor and Viking Orbiters, Journal of Geophysical Research, 111 (E11), doi:10.1029/2005JE002485.Google Scholar
Takahashi, Y. O., Fujiwara, H., Fukunishi, H., et al., 2003. Topographically induced north–south asymmetry of the meridional circulation in the Martian atmosphere, Journal of Geophysical Research (Planets), 108 (E3), doi:10.1029/2001JE001638.Google Scholar
Thomas, N., Hansen, C. J., Portyankina, G., Russell, P. S., 2010. HiRISE observations of gas sublimation-driven activity in Mars’ southern polar regions: II. Surficial deposits and their origins, Icarus, 205 (1), 296310.Google Scholar
Thomas, P. C., Gierasch, P., 1985. Dust devils on Mars, Science, 230, 175177.Google Scholar
Thomas, P. C., Veverka, J., Gineris, D., Wong, L., 1984. Dust streaks on Mars, Icarus, 60, 161179.Google Scholar
Thorpe, T. E., 1979. A history of Mars atmospheric opacity in the southern hemisphere during the Viking extended mission, Journal of Geophysical Research, 84, 66636683.Google Scholar
Tillman, J. E., 1988. Mars global atmospheric oscillations – annually synchronized, transient normal-mode oscillations and the triggering of global dust storms, Journal of Geophysical Research, 93, 94339451.Google Scholar
Toigo, A. D., Richardson, M. I., Wilson, R. J., Wang, H., Ingersoll, A. P., 2002. A first look at dust lifting and dust storms near the south pole of Mars with a mesoscale model, Journal of Geophysical Research (Planets), 107 (E7), doi:10.1029/2001JE001592.Google Scholar
Toigo, A. D., Richardson, M. I., Ewald, S. P., Gierasch, P. J., 2003. Numerical simulation of Martian dust devils, Journal of Geophysical Research Planets, 108 (E6), doi:10.1029/2002JE002002.Google Scholar
Toon, O. B., Pollack, J. B., Sagan, C., 1977. Physical properties of the particles composing the Martian dust storm of 1971–1972, Icarus, 30, 663696.Google Scholar
Towner, M. C., 2009. Characteristics of large Martian dust devils using Mars Odyssey Thermal Emission Imaging System visual and infrared images, Journal of Geophysical Research, 114 (E2), doi:10.1029/2008JE003220.Google Scholar
Tyler, D., Barnes, J. R., 2013. Mesoscale modeling of the circulation in the Gale Crater region: an investigation into the complex forcing of convective boundary layer depths, Mars, 5877. doi:10.1555/mars.2013.0003.Google Scholar
Veverka, J., Sagan, C., Quam, L., Tucker, R., Eross, B., 1974. Variable features on Mars III: comparison of Mariner 1969 and Mariner 1971 photography, Icarus, 21, 317.Google Scholar
Vincendon, M., Langevin, Y., Poulet, F., et al., 2009. Yearly and seasonal variations of low albedo surfaces on Mars in the OMEGA/MEx dataset: constraints on aerosols properties and dust deposits, Icarus, 200 (2), 395405.Google Scholar
Wang, H., 2007. Dust storms originating in the northern hemisphere during the third mapping year of Mars Global Surveyor, Icarus, 189 (2), 325343.Google Scholar
Wang, H., Fisher, J. A., 2009. North polar frontal clouds and dust storms on Mars during spring and summer, Icarus, 204 (1), 103113.Google Scholar
Wang, H., Richardson, M. I., 2015. The origin, evolution, and trajectory of large dust storms on Mars during Mars Years 24–30 (1999–2011), Icarus, 251, 112–127.Google Scholar
Wang, H., Richardson, M. I., Wilson, R. J., et al., 2003. Cyclones, tides, and the origin of a cross-equatorial dust storm on Mars, Geophysical Research Letters, 30 (9), doi:10.1029/2002GL016828.Google Scholar
Wang, H., Zurek, R. W., Richardson, M. I., 2005. Relationship between frontal dust storms and transient eddy activity in the northern hemisphere of Mars as observed by Mars Global Surveyor, Journal of Geophysical Research, 110 (E7), doi:10.1029/2005JE002423.Google Scholar
Wang, H., Richardson, M. I., Toigo, A. D., Newman, C. E., 2013. Zonal wavenumber three traveling waves in the northern hemisphere of Mars simulated with a general circulation model, Icarus, 223 (2), 654676.Google Scholar
Wells, E. N., Veverka, J., Thomas, P., 1984. Mars – experimental study of albedo changes caused by dust fallout, Icarus 58, 331338.Google Scholar
Westphal, D. L., Toon, O. B., Carlson, T. N., 1987. A two-dimensional numerical investigation of the dynamics and microphysics of Saharan dust storms, Journal of Geophysical Research, 92, 30273049.Google Scholar
White, B. R., 1979. Soil transport by winds on Mars, J. Geophys. Res., 84(B9), 46434651, doi:10.1029/JB084iB09p04643.Google Scholar
White, B. R., Lacchia, B. M., Greeley, R., Leach, R. N., 1997. Aeolian behavior of dust in a simulated Martian environment, Journal of Geophysical Research, 102 (E11), 2562925640.Google Scholar
Whiteway, J. A., Komguem, L., Dickinson, C., et al., 2009. Mars water-ice clouds and precipitation, Science, 325 (5936), 68.Google Scholar
Williams, D. A., Greeley, R., Neukum, G., et al., 2004. Seeing Mars with new eyes: latest results from the High Resolution Stereo Camera on Mars Express, Geol. Soc. Am. Abstr. Programs, 36(5), 21.Google Scholar
Wilson, R. J., 1997. Dust transport in the Martian atmosphere as simulated by a general circulation model, Advances in Space Research, 19 (8), 12901290.Google Scholar
Wilson, R. J., 2012. Martian dust storms, thermal tides, and the Hadley circulation, in Comparative Climatology of Terrestrial Planets, held June 25–28, 2012, Boulder, CO. LPI Contribution No. 1675, id.8069.Google Scholar
Wilson, R. J., Hamilton, K., 1996. Comprehensive model simulation of thermal tides in the Martian atmosphere, Journal of Atmospheric Science, 53 (9), 12901326.Google Scholar
Wilson, R. J., Kahre, M. A., 2009. The role of spatially variable surface dust in GCM simulations of the Martian dust cycle. In Mars Dust Cycle Workshop, held September 15–17, 2009, Moffett Field, CA. 108112. http://spacescience.arc.nasa.gov/mars-climate-modeling-group/documents/mars_dust_cycle_workshop_abstracts.pdf.Google Scholar
Wilson, R. J., Hinson, D., Smith, M. D., 2006. GCM simulations of transient eddies and frontal systems in the Martian atmosphere, Second Workshop on Mars Atmosphere Modelling and Observations, February 27–March 3, 2006, Granada, Spain, 154.Google Scholar
Wilson, R. J., Neumann, G. A., Smith, M. D., 2007. Diurnal variation and radiative influence of Martian water ice clouds, Geophysical Research Letters, 34 (2), doi:10.1029/2006GL027976.Google Scholar
Wilson, R. J., Haberle, R. M., Noble, J., et al., 2008a. Simulation of the 2001 planet-encircling dust storm with the NASA/NOAA Mars general circulation model. In Third International Workshop on the Mars Atmosphere: Modeling and Observations, Williamsburg, Virginia.Google Scholar
Wilson, R. J., Lewis, S. R., Montabone, L., 2008b. Thermal tides in an assimilation of three years of Thermal Emission Spectrometer data from Mars Global Surveyor. In Third International Workshop on the Mars Atmosphere: Modeling and Observations, Williamsburg, Virginia.Google Scholar
Wolff, M. J., Smith, M. D., Clancy, R. T., et al., 2006. Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES, Journal of Geophysical Research, 111 (E12), doi:10.1029/2006JE002786.Google Scholar
Wolff, M. J., Smith, M. D., Clancy, R. T., et al., 2009. Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer. J. of Geophys. Res. 114, doi:10.1029/2009JE003350.Google Scholar
Wolff, M. J., Clancy, R. T., Smith, M. D., et al., 2011. Deriving vertical profiles of aerosol sizes from TES, American Geophysical Union, Fall Meeting 2011, abstract #P24A-09.Google Scholar
Wurm, G., Krauss, O., 2006. Dust eruptions by photophoresis and solid state greenhouse effects, Physical Review Letters, 96 (13), 134301.Google Scholar
Wurm, G., Teiser, J., Reiss, D., 2008. Greenhouse and thermophoretic effects in dust layers: the missing link for lifting of dust on Mars, Geophysical Research Letters, 35 (10), doi:10.1029/2008GL033799.Google Scholar
Zalucha, A. M., Plumb, R. A., Wilson, R. J., 2010. An analysis of the effect of topography on the Martian Hadley cells, Journal of the Atmospheric Sciences, 67 (3), 673693.Google Scholar
Zasova, L., Formisano, V., Moroz, V., et al, 2005. Water clouds and dust aerosols observations with PFS MEX at Mars, Planetary and Space Science, 53 (10), 10651077.Google Scholar
Zhang, H.-F., Wang, T., Qu, J.-J., Yan, M.-H., 2004. An experimental and observational study on the electric effect of sandstorms, Chin. J. Geophys., 47, 5360.Google Scholar
Zhang, L., Gong, S., Padro, J., Barrie, L. (2001). A size-segregated particle dry deposition scheme for an atmospheric aerosol module. Atmos. Environ. 35: 549560.Google Scholar
Zurek, R. W., Martin, L. J., 1993. Interannual variability of planet-encircling dust storms on Mars, Journal of Geophysical Research, 98 (E2), 32473259.Google Scholar
Zurek, R. W., Barnes, J. R., Haberle, R. M., et al., 1992. Dynamics of the atmosphere of Mars, in Mars, ed. Kieffer, H. et al., Univ. Arizona Press, Tucson, 835933.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×