Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T20:24:38.778Z Has data issue: false hasContentIssue false

13 - Atmospheric Photochemistry

Published online by Cambridge University Press:  05 July 2017

Robert M. Haberle
Affiliation:
NASA Ames Research Center
R. Todd Clancy
Affiliation:
Space Science Institute, Boulder, Colorado
François Forget
Affiliation:
Laboratoire de Météorologie Dynamique, Paris
Michael D. Smith
Affiliation:
NASA-Goddard Space Flight Center
Richard W. Zurek
Affiliation:
NASA-Jet Propulsion Laboratory, California
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altieri, F., Zasova, L., D’Aversa, E., et al. (2009) O2 1.27 µm emission maps as derived from OMEGA/MEx data, Icarus, 204, 499511.Google Scholar
Anbar, A. D., Allen, M., and Nair, H. A. (1993a) Photodissociation in the atmosphere of Mars: impact of high-resolution temperature-dependent CO2 cross-section measurements, J. Geophys. Res., 98, 1092510931.Google Scholar
Anbar, A. D., Leu, M. T., Nair, H. A., et al. (1993b) Adsorption of HOx on aerosol surfaces: implications for the atmosphere of Mars, J. Geophys. Res., 98, 1093310940.Google Scholar
Anderson, D. E. (1974) Mariner 6, 7, and 9 ultraviolet spectrometer experiment: analysis of hydrogen Lyman-alpha data, J. Geophys. Res., 79, 15131518.CrossRefGoogle Scholar
Anderson, D. E., and Hord, C. W. (1971) Mariner 6 and 7 ultraviolet spectrometer experiment: analysis of hydrogen Lyman alpha data, J. Geophys. Res., 76, 66666671.CrossRefGoogle Scholar
Atreya, S. K., Wong, A.-S., Rennó, N. O., et al. (2006) Oxidant enhancement in Martian dust devils and storms: implications for life and habitability, Astrobiology, 6, 439450.Google Scholar
Atreya, S. K., Mahaffy, P. R., and Wong, A. S. (2007) Methane and related trace species on Mars: origin, loss, implications for life and habitability, Planet. Space Sci., 55, 358–69.Google Scholar
Atreya, S. K., Witasse, O., Chevrier, V. F., et al. (2011) Methane on Mars: current observations, interpretation, and future plans, Planet. Space Sci., 59. 133136.CrossRefGoogle Scholar
Barker, E. S. (1972) Detection of molecular oxygen in the Martian atmosphere, Nature, 238, 447448.Google Scholar
Barth, C. A., and Hord, C. W. (1971) Mariner 6 and 7 ultraviolet spectrometer experiment: topography and polar cap, Science, 173, 197201.Google Scholar
Barth, C. A., Hord, C. W., Stewart, A. I., et al. (1973) Mariner 9 ultraviolet spectrometer experiment: seasonal variation of ozone on Mars, Science, 179, 795796.Google Scholar
Bates, D. R., and Nicolet, M. (1950) The photochemistry of atmospheric water vapor, J. Geophys. Res., 55, 301327.Google Scholar
Belton, M. J. S., and Hunten, D. M. (1966) The abundance and temperature of CO2 in the Martian atmosphere, Astrophys. J., 145, 454467.Google Scholar
Bertaux, J. L., Leblanc, F., Perrier, S., et al. (2005) Nightglow in the upper atmosphere of Mars and implications for atmospheric transport, Science, 307, 567569.Google Scholar
Bertaux, J. L., Gondet, B., Lefèvre, F., et al. (2012) First detection of O2 1.27 µm nightglow emission at Mars with OMEGA/MEX and comparison with general circulation model predictions, J. Geophys. Res., 117, doi:10.1029/2011JE003890.CrossRefGoogle Scholar
Biemann, K., Owen, T., Rushneck, D. R., et al. (1976) Search for organic and volatile inorganic components in two surface samples from the Chryse Planitia region of Mars, J. Geophys. Res., 82, 46414658.CrossRefGoogle Scholar
Billebaud, F., Brillet, J., Lellouch, E., et al. (2009) Observations of CO in the atmosphere of Mars with PFS onboard Mars Express, Planet. Space Sci., 57, 14461457.Google Scholar
Blamont, J. E., and Chassefière, E. (1993) First detection of ozone in the middle atmosphere of Mars from solar occultation measurements, Icarus, 104, 324336.Google Scholar
Bogard, D. D., Clayton, R. N., Marti, K., et al. (2001) Martian volatiles: isotopic composition, origin, and evolution, Space Sci. Rev., 96, 425–58.Google Scholar
Bougher, S. W., Roble, R. G., Ridley, E. C., et al. (1990) The Mars thermosphere 2. General circulation with coupled dynamics and composition, J. Geophys. Res., 95, 1481114827.CrossRefGoogle Scholar
Carleton, N. P., and Traub, W. A. (1972) Detection of molecular oxygen on Mars, Science, 177, 988992.Google Scholar
Chassefière, E. (2009) Metastable methane clathrate particles as a source of methane to the Martian atmosphere, Icarus, 204, 137144.Google Scholar
Chastain, B. K., and Chevrier, V. (2007) Methane clathrate hydrates as a potential source for Martian atmospheric methane, Planet. Space Sci., 55, 12461256.CrossRefGoogle Scholar
Chaufray, J. Y., Bertaux, J. L., Leblanc, F., et al. (2008) Observation of the hydrogen corona with SPICAM on Mars Express, Icarus, 195, 598613.Google Scholar
Chaufray, J. Y., Leblanc, F., Quémerais, E., et al. (2009) Martian oxygen density at the exobase deduced from O I 130.4-nm observations by Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars on Mars Express, J. Geophys. Res., 114, E02006.Google Scholar
Christensen, P. R., Bandfield, J. L., Bell, J. F., et al. (2003) Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results, Science, 300, 20562061.Google Scholar
Chung, C. Y., Chew, E. P., Cheng, B. M., et al. (2001) Temperature dependence of absorption cross-section of H2O, HDO, and D2O in the spectral region 140–193 nm, Nucl. Instr. Meth. Phys. Res. A, 467, 15721576.Google Scholar
Ciais, P., Sabine, C., Bala, G., et al. (2013) Carbon and other biogeochemical cycles. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, eds Stocker, T. F., Qin, D., Plattner, G.-K., et al. Cambridge University Press, Cambridge, UK.Google Scholar
Clancy, R. T., and Nair, H. (1996) Annual (aphelion–perihelion) cycles in the photochemical behavior of the global Mars atmosphere, J. Geophys. Res., 101, 1278512790.Google Scholar
Clancy, R. T., Grossman, A. W., Wolff, M. J., et al. (1996) Water vapor saturation at low altitudes around Mars aphelion: a key to Mars climate?, Icarus, 122, 3662.Google Scholar
Clancy, R. T., Wolff, M. J., and James, P. B. (1999) Minimal aerosol loading and global increases in atmospheric ozone during the 1996–1997 Martian northern spring season, Icarus, 138, 4963.Google Scholar
Clancy, R. T., Sandor, B. J., and Moriarty-Schieven, G. H. (2004) A measurement of the 362 GHz absorption line of Mars atmospheric H2O2, Icarus, 168, 116121.CrossRefGoogle Scholar
Clancy, R. T., Sandor, B. J., Wolff, M. J., et al. (2012) Extensive MRO CRISM observations of 1.27 µm O2 airglow in Mars polar night and their comparison to MRO MCS temperature profiles and LMD GCM simulations, J. Geophys. Res., 117, doi:10.1029/2011JE004018.Google Scholar
Clancy, R. T., Sandor, B. J., García-Muñoz, A., et al. (2013a) First detection of Mars atmospheric hydroxyl: CRISM near-IR measurement versus LMD GCM simulation of OH Meinel band emission in the Mars polar winter stratosphere, Icarus, 226, 272281.Google Scholar
Clancy, R. T., Sandor, B. J., Wolff, M. J., et al. (2013b) Correction to “Extensive MRO CRISM observations of 1.27 µm O2 airglow in Mars polar night and their comparison to MRO MCS temperature profiles and LMD GCM simulations”, J. Geophys. Res., 118, doi:10.1002/jgre.20073.Google Scholar
Clancy, R. T., Wolff, M. J., Lefèvre, F., et al. (2016) Daily global mapping of Mars ozone column abundances with MARCI UV band imaging, Icarus, 266, 112133.Google Scholar
Connes, P., Noxon, J. F., Traub, W. A., and Carleton, N. P. (1979) O2(1Δ) emission in the day and night airglow of Venus, Astrophys. J., 233, 2932, doi:10.1086/183070.Google Scholar
Cooper, P. L., and Abbatt, J. P. D. (1996) Heterogeneous interactions of OH and HO2 radicals with surfaces characteristic of atmospheric particulate matter, J. Phys. Chem., 100, 22492254.Google Scholar
Cox, C., Saglam, A., Gérard, J. C., et al. (2008) Distribution of the ultraviolet nitric oxide Martian night airglow: observations from Mars Express anc comparisons with a one-dimensional model, J. Geophys. Res., 113, doi:10.1029/2007JE003037.Google Scholar
Crisp, D., Meadows, V. S., Bézard, B., et al. (1996) Ground-based near-infrared observations of the Venus nightside: 1.27 µm O2(1Δg) airglow from the upper atmosphere, J. Geophys. Res., 101, 45774593.Google Scholar
Crowley, J. N., Ammann, M., Cox, R. A., et al. (2010) Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V – Heterogeneous reactions on solid substrates, Atmos. Chem. Phys., 10, 90599223.Google Scholar
Delory, G. T., Farrell, W. M., Atreya, S. K., et al. (2006) Oxidant enhancement in Martian dust devils and storms: storm electric fields and electron dissociative attachment, Astrobiology, 6, 451462.Google Scholar
Encrenaz, T., Greathouse, T. K., Bézard, B., et al. (2002) A stringent upper limit of the H2O2 abundance in the Martian atmosphere, Astron. Astrophys., 396, 10371044.Google Scholar
Encrenaz, T., Bézard, B., Greathouse, T. K., et al. (2004) Hydrogen peroxide on Mars: evidence for spatial and seasonal variations, Icarus, 170, 424429.Google Scholar
Encrenaz, T., Fouchet, T., Melchiorri, R., et al. (2006) Seasonal variations of the Martian CO over Hellas as observed by OMEGA/Mars Express, Astron. Astrophys., 459, 265270.Google Scholar
Encrenaz, T., Greathouse, T. K., Richter, M. J., et al. (2008) Simultaneous mapping of H2O and H2O2 on Mars from high-resolution imaging spectroscopy, Icarus, 195, 547555.Google Scholar
Encrenaz, T., Greathouse, T. K., Richter, M. J., et al. (2011) A stringent upper limit to SO2 in the Martian atmosphere, Astron. Astrophys., 530, A37.Google Scholar
Encrenaz, T., Greathouse, T. K., Lefèvre, F., and Atreya, S. K. (2012) Hydrogen peroxide on Mars: observations, interpretation, and future plans, Planet. Space. Sci., 68, 317.CrossRefGoogle Scholar
Espenak, F., Mumma, M. J., Kostiuk, T., et al. (1991) Ground-based infrared measurements of the global distribution of ozone in the atmosphere of Mars, Icarus, 92, 252262.Google Scholar
Farrell, W. M., Marshall, J. R., Cummer, S. A., Delory, G. T., and Desch, M. D. (2006) A model of the ULF magnetic and electric field generated from a dust devil, J. Geophys. Res., 111, E11, E11004, doi:10.1029/2006JE002689.Google Scholar
Fast, K., Kostiuk, T., Espenak, F., et al. (2006) Ozone abundance on Mars from infrared heterodyne spectra. I. Acquisition, retrieval, and anticorrelation with water vapor, Icarus, 181, 419431.CrossRefGoogle Scholar
Fast, K., Kostiuk, T., Lefèvre, F., et al. (2009) Comparison of HIPWAC and Mars Express SPICAM observations of ozone on Mars 2006–2008 and variation from 1993 IRHS observations, Icarus, 203, 2027.Google Scholar
Fedorova, A., Korablev, O., Perrier, S., et al. (2006a) Observations of O2 1.27 µm dayglow by SPICAM IR: seasonal distribution for the first Martian year of Mars Express, J. Geophys. Res., 111, doi:10.1029/2006JE002694.Google Scholar
Fedorova, A., Korablev, O., Bertaux, J. L., et al. (2006b) Mars water vapor abundance from SPICAM IR spectrometer: seasonal and geographic distributions, J. Geophys. Res., 111, doi:10.1029/2006JE002695.CrossRefGoogle Scholar
Fedorova, A., Lefèvre, F., Guslyakova, S., et al. (2012) The O2 nightglow in the Martian atmosphere by SPICAM onboard of Mars-Express, Icarus, 219, 596608.Google Scholar
Fonti, S., and Marzo, G. A. (2010) Mapping the methane on Mars, Astron. Astrophys, 512, A51.Google Scholar
Formisano, V., Atreya, S. K., Encrenaz, T., et al. (2004) Detection of methane in the atmosphere of Mars, Science, 306, 17581761.Google Scholar
Fouchet, T., Lellouch, E., Ignatiev, N. I., et al. (2007) Martian water vapor: Mars Express PFS/LW observations, Icarus, 190, 3249.Google Scholar
García Muñoz, A., McConnell, J. C., McDade, I. C., et al. (2005) Airglow on Mars: some model expectations for the OH Meinel bands and the O2 IR atmospheric band, Icarus, 176, 7595.Google Scholar
Geminale, A., Formisano, V., and Sindoni, G. (2011) Mapping methane in Martian atmosphere with PFS-MEX data, Planet. Space Sci., 59, 137148.Google Scholar
Gérard, J.-C., Cox, C., Soret, L., et al. (2009) Concurrent observations of the ultraviolet nitric oxide and infrared O2 nightglow emissions with Venus Express, J. Geophys. Res., 114, doi:10.1029/2009JE003371.Google Scholar
Glavin, D. P., Freissinet, C., Miller, K. E., et al. (2013) Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater, J. Geophys. Res., 118, 19551973.Google Scholar
Gough, R. V., Turley, J. J., Ferrell, G. R., et al. (2011) Can rapid loss and high variability of Martian methane be explained by surface H2O2?, Planet. Space Sci., 59, 238246.Google Scholar
Hartogh, P., Jarchow, C., Lellouch, E., et al. (2010a) Herschel/HIFI observations of HCl, H2O2, and O2 in the Martian atmosphere – initial results, Astron. Astrophys., 521, doi:10.1051/0004-6361/201015160.Google Scholar
Hartogh, P., Blecka, M. I., Jarchow, C., et al. (2010b) First results on Martian carbon monoxide from Herschel/HIFI observations, Astron. Astrophys., 521, doi:10.1051/201015159.Google Scholar
Haywood, J., and Boucher, O. (2000) Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review, Rev. Geophys., 38, 513543.Google Scholar
Hecht, M. H., Kounaves, S. P., Quinn, R. C., et al. (2009) Detection of Perchlorate and the Soluble Chemistry of Martian Soil at the Phoenix Lander Site, Science, 325, 6467.Google Scholar
Kaplan, L. D., Connes, J., and Connes, P. (1969) Carbon monoxide in the Martian atmosphere, Astrophys. J., 157, 187192.Google Scholar
Keppler, F., Vigano, I., McLeod, A., et al. (2012) Ultraviolet-radiation-induced methane emissions from meteorites and the Martian atmosphere, Nature, 486, 9396.Google Scholar
Kliore, A. J., Cain, D. L., Levy, G. S., et al. (1965) Occultation experiment: result of the first direct measurement of Mars’ atmosphere and ionosphere, Science, 149, 12431245.Google Scholar
Kliore, A. J., Fjeldbo, G., Seidel, B. L., et al. (1973) S band radio occultation measurements of the atmosphere and topography of Mars with Mariner 9: extended mission coverage of polar and intermediate latitudes, J. Geophys. Res., 78, 43314351.CrossRefGoogle Scholar
Knak Jensen, S. J., Skibsted, J., Jakobsen, H. J., et al. (2014) A sink for methane on Mars? The answer is blowing in the wind, Icarus, 236, 2427.Google Scholar
Kong, T. Y., and McElroy, M. B. (1977a) Photochemistry of the Martian atmosphere, Icarus, 32, 168189.Google Scholar
Kong, T. Y., and McElroy, M. B. (1977b) The global distribution of O3 on Mars, Planet. Space Sci., 25, 839857.Google Scholar
Krasitski, O. P. (1978) A model for the diurnal variations of the composition of the Martian atmosphere, Cosmic Res., 16, 434442.Google Scholar
Krasnopolsky, V. A. (1993) Photochemistry of the Martian atmosphere (mean conditions), Icarus, 101, 313332.Google Scholar
Krasnopolsky, V. A. (1995) Uniqueness of a solution of a steady state photochemical problem: applications to Mars, J. Geophys. Res., 100, 32633276.Google Scholar
Krasnopolsky, V. A. (1997) Photochemical mapping of Mars, J. Geophys. Res., 102, 1331313320.Google Scholar
Krasnopolsky, V. A. (2003a) Spectroscopic mapping of Mars CO mixing ratio: detection of north–south asymmetry, J. Geophys. Res., 108, doi:10.1029/2002JE001926.Google Scholar
Krasnopolsky, V. A. (2003b) Spectroscopy of Mars O2 1.27 µm dayglow at four seasonal points, Icarus, 165, 315325.Google Scholar
Krasnopolsky, V. A. (2005) A sensitive search for SO2 in the Martian atmosphere: implications for seepage and origin of methane, Icarus, 178, 487492.Google Scholar
Krasnopolsky, V. A. (2006a) Photochemistry of the Martian atmosphere: seasonal, latitudinal, and diurnal variations, Icarus, 185, 153170.Google Scholar
Krasnopolsky, V. A. (2006b) A sensitive search for nitric oxide in the lower atmospheres of Venus and Mars: detection on Venus and upper limit for Mars, Icarus, 182, 8091.Google Scholar
Krasnopolsky, V. A. (2006c) Some problems related to the origin of methane on Mars, Icarus, 180, 359367.Google Scholar
Krasnopolsky, V. A. (2007) Long-term spectroscopic observations of Mars using IRTF/CSHELL: mapping of O2 dayglow, CO, and search for CH4, Icarus, 190, 93102.Google Scholar
Krasnopolsky, V. A. (2009) Seasonal variations of photochemical tracers at low and middle latitudes on Mars: observations and models, Icarus, 201, 564569.Google Scholar
Krasnopolsky, V. A. (2010) Solar activity variations of thermospheric temperatures on Mars and a problem of CO in the lower atmosphere, Icarus, 207, 638647.Google Scholar
Krasnopolsky, V. A. (2011) Excitation of the oxygen nightglow on the terrestrial planets, Planet. Space Sci., 59, 754766.Google Scholar
Krasnopolsky, V. A. (2012) Search for methane and upper limits to ethane and SO2 on Mars, Icarus, 217, 144152.Google Scholar
Krasnopolsky, V. A. (2013) Night and day airglow of oxygen at 1.27 µm on Mars, Planet. Space Sci., 85, 243249, 2013.Google Scholar
Krasnopolsky, V. A., and Bjoraker, G. L. (2000) Mapping of Mars O2(1Δ) dayglow, J. Geophys. Res., 105, 2017920188, 2000.Google Scholar
Krasnopolsky, V. A., and Feldman, P. D. (2001) Detection of molecular hydrogen in the atmosphere of Mars, Science, 294, 19141917.Google Scholar
Krasnopolsky, V. A., and Gladstone, G. R. (2005) Helium on Mars and Venus: EUVE observations and modeling, Icarus, 176, 395407.Google Scholar
Krasnopolsky, V. A., and Parshev, V. A. (1979) Ozone photochemistry of the Martian lower atmosphere, Planet. Space Sci., 27, 113120.Google Scholar
Krasnopolsky, V. A., Bowyer, S., Chakrabarti, S., et al. (1994) First measurement of helium on Mars: implications for the problem of radiogenic gases on the terrestrial planets, Icarus, 109, 337351.Google Scholar
Krasnopolsky, V. A., Bjoraker, G. L., Mumma, M. J., et al. (1997) High-resolution spectroscopy of Mars at 3.7 and 8 µm: a sensitive search for H2O2, H2CO, HCl, and CH4, and detection of HDO, J. Geophys. Res., 102, 65256534.Google Scholar
Krasnopolsky, V. A., Maillard, J. P., and Owen, T. C. (2004) Detection of methane in the Martian atmosphere: evidence for life?, Icarus, 172, 537547.Google Scholar
Kuiper, G. P. (1949) Survey of planetary atmospheres, in The Atmospheres of the Earth and Planets (Kuiper, G. P. Ed), Chicago Press, Chicago.Google Scholar
Lane, A. L., Barth, C. A., Hord, C. W., et al. (1973) Mariner 9 ultraviolet spectrometer experiment: observations of ozone on Mars, Icarus, 18, 102108.Google Scholar
Lebonnois, S., Quémerais, E., Montmessin, F., et al. (2006) Vertical distribution of ozone on Mars as measured by SPICAM/Mars Express using stellar occultations, J. Geophys. Res., 111, E09S05, doi:10.1029/2005JE002643.Google Scholar
Lefèvre, F., and Forget, F. (2009) Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics, Nature, 460, 720723.Google Scholar
Lefèvre, F., Lebonnois, S., Montmessin, F., et al. (2004) Three-dimensional modeling of ozone on Mars, J. Geophys. Res., 109, E07004, doi:10.1029/2004JE002268.CrossRefGoogle Scholar
Lefèvre, F., Bertaux, J. L., Clancy, R. T. (2008) et al., Heterogeneous chemistry in the atmosphere of Mars, Nature, 454, 971975.Google Scholar
Lewis, J. S., and Carver, J. H. (1983) Temperature dependence of the carbon dioxide photoabsorption cross section between 1200 and 170 Angstroms, J. Quant. Spectrosc. Radiat. Transfer, 30, 297309.Google Scholar
Lindner, B. L. (1988) Ozone on Mars: the effects of clouds and airborne dust, Planet. Space Sci., 36, 125144.Google Scholar
Liu, S. C., and Donahue, T. M. (1976) The regulation of hydrogen and oxygen escape from Mars, Icarus, 28, 231246.CrossRefGoogle Scholar
Maguire, W. C. (1977) Martian isotopic ratios and upper limits for possible minor constituents as derived from Mariner 9 infrared spectrometer data, Icarus, 32, 8597.Google Scholar
Mahaffy, P. R., Webster, C. R., Atreya, S. K., et al. (2013) Abundance and isotopic composition of gases in the Martian atmosphere from the Curiosity Rover, Science, 341, 263266.Google Scholar
Maltagliati, L., Montmessin, F., Fedorova, A., et al. (2011) Evidence of water vapor in excess of saturation in the atmosphere of Mars, Science, 333, 18681870.Google Scholar
Maltagliati, L., Montmessin, F., Korablev, O., et al. (2013) Annual survey of water vapor vertical distribution and water-aerosol coupling in the Martian atmosphere observed by SPICAM/Mex solar occultations, Icarus, 223, 942962.Google Scholar
McElroy, M. B., and Donahue, T. M. (1972) Stability of the Martian atmosphere, Science, 177, 986988.Google Scholar
Melchiorri, R., Encrenaz, T., Fouchet, T., et al. (2007) Water vapor mapping on Mars using OMEGA/Mars Express, Planet. Space Sci., 55, 333342.Google Scholar
Montmessin, F., and Lefèvre, F. (2013) Transport-driven formation of a polar ozone layer on Mars, Nature Geo., 6, 930933.Google Scholar
Montmessin, F., Forget, F., Rannou, P., et al. (2004) Origin and role of water ice clouds in the Martian water cycle as inferred from a general circulation model, J. Geophys. Res., 109, E10004, doi:10.1029/2004JE002284.Google Scholar
Moreau, D., Esposito, L. W., and Brasseur, G. (1991) The chemical composition of the dust-free Martian atmosphere: preliminary results of a two-dimensional model, J. Geophys. Res., 96, 79337945.Google Scholar
Moudden, Y. (2007) Simulated seasonal variations of hydrogen peroxide in the atmosphere of Mars, Planet. Space Sci., 55, 21372143.Google Scholar
Moudden, Y., and McConnell, J. C. (2007) Three-dimensional on-line modeling in a Mars general circulation model, Icarus, 188, 1834.Google Scholar
Mumma, M. J., Villanueva, G. L., Novak, R. E., et al. (2009) Strong release of methane on Mars in northern summer 2003, Science, 323, 10411045.Google Scholar
Nair, H., Allen, M., Anbar, A. D., et al. (1994) A photochemical model of the Martian atmosphere, Icarus, 111, 124150.Google Scholar
Nier, A. O., and McElroy, M. B. (1977) Composition and structure of Mars’ upper atmosphere: results from the neutral mass spectrometers on Viking 1 and 2, J. Geophys. Res., 82, 43414348.Google Scholar
Nier, A. O., Hanson, W. B., Seiff, A., et al. (1976) Composition of the Martian atmosphere: preliminary results from Viking 1, Science, 193, 786788.Google Scholar
Novak, R., Mumma, M. J., DiSanti, M. D., et al. (2002) Mapping of ozone and water in the atmosphere of Mars near the 1997 aphelion, Icarus, 158, 1423.Google Scholar
Noxon, J. F., Traub, W. A., Carleton, N. P., et al. (1976) Detection of O2 dayglow emission from Mars and the Martian ozone abundance, Astrophys. J., 207, 10251030.Google Scholar
Owen, T., Biemann, K., Rushnek, D. R., et al. (1977) The composition of the atmosphere at the surface of Mars, J. Geophys. Res., 82, 46354639.Google Scholar
Parkinson, T. D., and Hunten, D. M. (1972) Spectroscopy and aeronomy of O2 on Mars, J. Atmos. Sci., 29, 13801390.Google Scholar
Perrier, S., Bertaux, J. L., Lefèvre, F., et al. (2006) Global distribution of total ozone on Mars from SPICAM/MEX UV measurements, J. Geophys. Res., 111, E09S06, doi:10.1029/2006JE002681.Google Scholar
Quinn, R. C., and Zent, A. P. (1999) Peroxide-modified titanium dioxide: a chemical analog of putative Martian soil oxidants, Origins Life Evol. Biosphere, 29, 5972.Google Scholar
Sander, S. P., Abbatt, J. P. D., Barker, J. R., et al. (2011) Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 17, Jet Propulsion Laboratory, Pasadena.Google Scholar
Shimazaki, T. (1981) A model of temporal variations in ozone density in the Martian atmosphere, Planet. Space Sci., 29, 2133.Google Scholar
Shimazaki, T., and Shimizu, M. (1979) The seasonal variation of ozone density in the Martian atmosphere, J. Geophys. Res., 84, 12691276.Google Scholar
Sindoni, G., Formisano, V., and Geminale, A. (2011) Observations of water vapour and carbon monoxide in the Martian atmosphere with the SWC of PFS/MEX, Planet. Space Sci., 59, 149162.Google Scholar
Smith, M. D. (2004) Interannual variability in TES atmospheric observations of Mars during 1999–2003, Icarus, 167, 148165.Google Scholar
Smith, M. D., Wolff, M. J., Clancy, R. T., et al. (2009) Compact Reconnaissance imaging spectrometer observations of water vapor and carbon monoxide, J. Geophys. Res., 114, doi:10.1029/2008JE003288.Google Scholar
Spinrad, H., Münch, G., and Kaplan, L. D. (1963) The detection of water vapor on Mars, Astrophys. J., 137, 13191321.Google Scholar
Sprague, A. L., Boynton, W. V., Kerry, K. E., et al. (2004) Mars’ south polar Ar enhancement: a tracer for south polar seasonal meridional mixing, Science, 306, 13641367.Google Scholar
Strickland, D.J., Thomas, G. E., and Sparks, P. R. (1972) Mariner 6 and 7 ultraviolet spectrometer experiment: analysis of the O I 1304 and 1356 Å emissions, J. Geophys. Res., 77, 40524058.Google Scholar
Stewart, A. I. F., Alexander, M. J., Meier, R. R., et al. (1992) Atomic oxygen in the Martian thermosphere, J. Geophys. Res., 97, 21102.Google Scholar
Summers, M. E., Lieb, B. J., Chapman, E., et al. (2002) Atmospheric biomarkers of subsurface life on Mars, Geophys. Res. Lett., 29, doi:10.1029/2002GL015377.Google Scholar
Trainer, M. G., Tolbert, M. A., McKay, C. P. and Toon, O. B. (2010) Limits on the trapping of atmospheric CH4 in Martian polar ice analogs, Icarus, 208, 192197.Google Scholar
Traub, W. A., Carleton, N. P., Connes, P., et al. (1979) The latitude variation of O2 dayglow and O3 abundance on Mars, Astrophys. J., 229, 846850.Google Scholar
Trauger, J. T., and Lunine, J. I. (1983) Spectroscopy of molecular oxygen in the atmosphere of Venus and Mars, Icarus, 55, 272281.Google Scholar
Tschimmel, M., Ignatiev, N. I., Titov, D. V., et al. (2008) Investigation of water vapor on Mars with PFS/SW of Mars Express, Icarus, 195, 557575.Google Scholar
Villanueva, G. L., Mumma, M. J., Novak, R. E., et al. (2013) A sensitive search for organics (CH4, CH3OH, H2CO, C2H6, C2H2, C2H4), hydroperoxyl, nitrogen compounds (N2O, NH3, HCN) and chlorine species on Mars using ground-based high-resolution infrared spectroscopy, Icarus, 223, 1127.Google Scholar
Webster, C. R., Mahaffy, P. R., Atreya, S. K., et al. (2013) Low upper limit to methane abundance on Mars, Science, 342, 355357.Google Scholar
Webster, C. R., Mahaffy, P. R., Atreya, S. K., et al. (2015) Mars methane detection and variability at Gale Crater, Science, 347, 415427.Google Scholar
Wong, A. S., Atreya, S. K., and Encrenaz, T. (2003) Chemical markers of possible hot spots on Mars, J. Geophys. Res., 108, E4, 5026, doi:10.1029/2002JE002003.Google Scholar
Yung, Y. L., and DeMore, W. B. (1999) Photochemistry of Planetary Atmospheres, Oxford University Press, Oxford/New York.Google Scholar
Yung, Y. L., Strobel, D. F., Kong, T. Y., et al. (1977) Photochemistry of nitrogen in the Martian atmosphere, Icarus, 30, 2641.Google Scholar
Zahnle, K., Haberle, R. M., Catling, D. C., et al. (2008) Photochemical instability of the ancient Martian atmosphere, J. Geophys. Res., 113, E11004, doi:10.1029/2008JE003160.Google Scholar
Zahnle, K., Freedman, R. S., and Catling, D. C. (2011) Is there methane on Mars?, Icarus, 212, 493503.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×