Skip to main content Accessibility help
×
Home
  • Print publication year: 2018
  • Online publication date: December 2017

2 - Geometry of Black Hole Spacetimes

Summary

Abstract. These notes, based on lectures given at the summer school on Asymptotic Analysis in General Relativity, collect material on the Einstein equations, the geometry of black hole spacetimes, and the analysis of fields on black hole backgrounds. The Kerr model of a rotating black hole in a vacuum is expected to be unique and stable. The problem of proving these fundamental facts provides the background for the material presented in these notes.

Among the many topics which are relevant to the uniqueness and stability problems are the theory of fields on black hole spacetimes, in particular for gravitational perturbations of the Kerr black hole and, more generally, the study of nonlinear field equations in the presence of trapping. The study of these questions requires tools from several different fields, including Lorentzian geometry, hyperbolic differential equations, and spin geometry, which are all relevant to the black hole stability problem.

Introduction

A short time after Einstein published his field equations for general relativity in 1915, Karl Schwarzschild discovered an exact and explicit solution of the Einstein vacuum equations describing the gravitational field of a spherical body at rest. In analyzing Schwarzschild's solution, one finds that if the central body is sufficiently concentrated, light emitted from its surface cannot reach an observer at infinity. It was not until the 1950s that the global structure of the Schwarzschild spacetime was understood. By this time causality theory and the Cauchy problem for the Einstein equations were firmly established, although many important problems remained open. Observations of highly energetic phenomena occurring within small spacetime regions, eg. quasars, made it plausible that black holes played a significant role in astrophysics, and by the late 1960s these objects were part of mainstream astronomy. The term “black hole” for this type of object came into use in the 1960s. According to our current understanding, black holes are ubiquitous in the universe, in particular most galaxies have a supermassive black hole at their center, and these play an important role in the life of the galaxy.

Related content

Powered by UNSILO
[1] B. P., Abbott et al. Observation of gravitational waves from a binary black hole merger. Physical Review Letters, 116:061102, Feb. 2016.
[2] S., Aksteiner. Geometry and analysis in black hole spacetimes. PhD thesis, Gottfried Wilhelm Leibniz Universität Hannover, 2014. http://d-nb.info/ 1057896721/34.
[3] S., Aksteiner and L., Andersson. Linearized gravity and gauge conditions. Classical and Quantum Gravity, 28(6):065001, Mar. 2011. arXiv.org:1009.5647.
[4] S., Aksteiner and L., Andersson. Charges for linearized gravity. Classical and Quantum Gravity, 30(15):155016, Aug. 2013. arXiv.org:1301.2674.
[5] S. C., Anco and J., Pohjanpelto. Conserved currents of massless fields of spin s ≥ 12 . Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 459(2033):1215–1239, 2003.
[6] S. C., Anco and J., Pohjanpelto. Symmetries and currents of massless neutrino fields, electromagnetic and graviton fields. In Symmetry in physics, vol. 34 of CRM Proceedings and Lecture Notes, pp. 1–12. American Mathematical Society, Providence, RI, 2004. math-ph/0306072.
[7] L., Andersson. The global existence problem in general relativity. In Piotr T., Chrusciel and Helmut, Friedrich, editors, The Einstein equations and the large scale behavior of gravitational fields, pp. 71–120. Birkhäuser, Basel, 2004.
[8] L., Andersson, T., Bäckdahl, and P., Blue. A new tensorial conservation law for Maxwell fields on the Kerr background. Dec. 2014. arXiv.org:1412.2960, to appear in the Journal of Differential Geometry.
[9] L., Andersson, T., Bäckdahl, and P., Blue. Second order symmetry operators. Classical and Quantum Gravity, 31(13):135015, Jul. 2014. arXiv.org:1402.6252.
[10] L., Andersson, T., Bäckdahl, and P., Blue. Spin geometry and conservation laws in the Kerr spacetime. In L., Bieri and S.-T., Yau, editors, One hundred years of general relativity, pp. 183–226. International Press, Boston, 2015. arXiv.org:1504.02069.
[11] L., Andersson, T., Bäckdahl, and P., Blue. Decay of solutions to the Maxwell equation on the Schwarzschild background. Classical and Quantum Gravity, 33(8):085010, 2016. arXiv.org:1501.04641.
[12] L., Andersson and P., Blue. Hidden symmetries and decay for the wave equation on the Kerr spacetime. Annals of Mathematics (2), 182(3):787–853, 2015.
[13] L., Andersson and P., Blue. Uniform energy bound and asymptotics for the Maxwell field on a slowly rotating Kerr black hole exterior. Journal of Hyperbolic Differential Equations, 12(04):689–743, Oct. 2015.
[14] L., Andersson, P., Blue, and J.-P., Nicolas. A decay estimate for a wave equation with trapping and a complex potential. International Mathematics Research Notices, (3):548–561, 2013.
[15] L., Andersson, M., Mars, J., Metzger, and W., Simon. The time evolution of marginally trapped surfaces. Classical and Quantum Gravity, 26(8):085018, Apr. 2009.
[16] L., Andersson, M., Mars, and W., Simon. Local Existence of Dynamical and Trapping Horizons. Physical Review Letters, 95(11):111102, Sep. 2005.
[17] L., Andersson and J., Metzger. The area of horizons and the trapped region. Communications in Mathematical Physics, 290(3):941–972, 2009.
[18] L., Andersson and V., Moncrief. Einstein spaces as attractors for the Einstein flow. Journal of Differential Geometry, 89(1):1–47, 2011.
[19] T., Bäckdahl and J. A., Valiente Kroon. Geometric invariant measuring the deviation from Kerr Data. Physical Review Letters, 104(23):231102, Jun. 2010.
[20] T., Bäckdahl and J. A., Valiente Kroon. On the construction of a geometric invariant measuring the deviation from Kerr data. Annals Henri Poincaré, 11(7):1225–1271, 2010.
[21] T., Bäckdahl and J. A., Valiente Kroon. The “non-Kerrness” of domains of outer communication of black holes and exteriors of stars. Royal Society of London. Series A, Mathematical and Physical Sciences, 467:1701–1718, Jun. 2011. arXiv.org:1010.2421.
[22] T., Bäckdahl and J. A., Valiente Kroon. Constructing “non-Kerrness” on compact domains. Journal of Mathematical Physics, 53(4):042503, Apr. 2012.
[23] R. A., Bartnik and P. T., Chruściel. Boundary value problems for Dirac-type equations. Journal fur die reine und angewand te Mathematik, 579:13–73, 2005. arXiv.org:math/0307278.
[24] R., Beig and P. T., Chruściel. Killing vectors in asymptotically flat space–times. I., Asymptotically translational Killing vectors and the rigid positive energy theorem. Journal of Mathematical Physics, 37:1939–1961, Apr. 1996.
[25] R., Beig and N. Ó, Murchadha. The Poincaré group as the symmetry group of canonical general relativity. Annals of Physics, 174(2):463–498, 1987.
[26] I., Bengtsson and J. M., M.|Senovilla. Region with trapped surfaces in spherical symmetry, its core, and their boundaries. Physical Review, 83(4):044012, Feb. 2011.
[27] G., Bergqvist. Positivity of General Superenergy Tensors. Communications in Mathematical Physics, 207:467–479, 1999.
[28] A. N., Bernal and M., Sánchez. Further results on the smoothability of Cauchy hypersurfaces and Cauchy time functions. Letters in Mathematical Physics, 77:183–197, Aug. 2006.
[29] D., Bini, C., Cherubini, R. T., Jantzen, and R., Ruffini. Teukolsky master equation–de Rham wave equation for the gravitational and electromagnetic fields in vacuum. Progress of Theoretical Physics, 107:967–992, May 2002. arXiv.org:gr-qc/0203069.
[30] D., Bini, C., Cherubini, R. T., Jantzen, and R., Ruffini. De Rham wave equation for tensor valued p-forms. International Journal of Modern Physics D, 12:1363–1384, 2003.
[31] H. L., Bray. Proof of the Riemannian Penrose inequality using the positive mass theorem. Journal of Differential Geometry, 59(1):177–267, 2001.
[32] H., Buchdahl. On the compatibility of relativistic wave equations for particles of higher spin in the presence of a gravitational field. Il Nuovo Cimento, 10(23):96–103, 1958.
[33] B., Carter. Killing tensor quantum numbers and conserved currents in curved space. Physical Review, 16:3395–3414, Dec. 1977.
[34] S., Chand rasekhar. The mathematical theory of black holes, vol. 69 of International Series of Monographs on Physics. The Clarendon Press, Oxford University Press, New York, 1992. Revised reprint of the 1983 original, Oxford Science Publications.
[35] Y., Choquet-Bruhat and R., Geroch. Global aspects of the Cauchy problem in general relativity. Communications in Mathematical Physics, 14:329–335, Dec. 1969.
[36] D., Christodoulou. The Formation of Black Holes in General Relativity. European Mathematical Society, Zurich, 2009.
[37] D., Christodoulou and S., Klainerman. The global nonlinear stability of the Minkowski space, vol. 41 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1993.
[38] D., Christodoulou and N., O'Murchadha. The boost problem in general relativity. Communications in Mathematical Physics, 80:271–300, Jun. 1981.
[39] P. T., Chruściel, G. J., Galloway, and D., Solis. Topological censorship for Kaluza–Klein space–times. Annales Henri Poincaré, 10:893–912, Jul. 2009.
[40] P. T., Chruściel, J., Jezierski, and J., Kijowski. Hamiltonian field theory in the radiating regime, vol. 70 of Lecture Notes in Physics. Monographs. Springer-Verlag, Berlin, 2002.
[41] C. J., S.|Clarke. A condition for forming trapped surfaces. Classical Quantum Gravity, 5(7):1029–1032, 1988.
[42] J. M., Cohen and L. S., Kegeles. Electromagnetic fields in curved spaces: A constructive procedure. Physical Review, 10:1070–1084, Aug. 1974.
[43] C. D., Collinson and P. N., Smith. A comment on the symmetries of Kerr black holes. Communications in Mathematical Physics, 56:277–279, Oct. 1977.
[44] R. M., Corless, G. H., Gonnet, D. E., G.|Hare, D. J., Jeffrey, and D. E., Knuth. On the LambertW function. Advances in Computational Mathematics, 5(1):329–359, 1996.
[45] M., Dafermos and I., Rodnianski. A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds. Inventiones Mathematicae, 185(3):467–559, 2011.
[46] M., Dafermos, I., Rodnianski, and Y., Shlapentokh-Rothman. Decay for solutions of the wave equation on Kerr exterior spacetimes III: The full subextremal case |a| M. Feb. 2014. arXiv.org:1402.7034.
[47] D. M., Eardley. Gravitational collapse of vacuum gravitational field configurations. Journal of Mathematical Physics, 36(6):3004–3011, 1995.
[48] W. E., East, F. M., Ramazanoglu, and F., Pretorius. Black hole superradiance in dynamical spacetime. Physical Review, 89(6):061503, Mar. 2014.
[49] S. B., Edgar, A. G.-P., Gómez-Lobo, and J. M., Martın-Garcıa. Petrov D vacuum spaces revisited: Identities and invariant classification. Classical and Quantum Gravity, 26(10):105022, May 2009. arXiv.org:0812.1232.
[50] A., Einstein. Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin), Seite 142–152., 1917.
[51] J. J., Ferrand o and J. A., Sáez. An intrinsic characterization of the Kerr metric. Classical and Quantum Gravity, 26(7):075013, Apr. 2009. arXiv.org:0812.3310.
[52] F., Finster, N., Kamran, J., Smoller, and S.-T., Yau. A Rigorous Treatment of Energy Extraction from a Rotating Black Hole. Communications in Mathematical Physics, 287:829–847, May 2009.
[53] A. E., Fischer and V., Moncrief. The Einstein flow, the σ-constant and the geometrization of 3-manifolds. Classical Quantum Gravity, 16(11):L79–L87, 1999.
[54] Y., Fourès-Bruhat. Théorème d'existence pour certains systèmes d'équations aux dérivées partielles non linéaires. Acta Mathematica, 88(1): 141–225, 1952.
[55] H., Friedrich. Hyperbolic reductions for Einstein's equations. Classical and Quantum Gravity, 13:1451–1469, Jun. 1996.
[56] V., Frolov and A., Zelnikov. Introduction to Black Hole Physics. Oxford University Press Oxford, 2011.
[57] J. R., Gair, C., Li, and I., Mand el. Observable properties of orbits in exact bumpy spacetimes. Physical Review, 77(2):024035, Jan. 2008. arXiv.org:0708.0628.
[58] R., Geroch. Spinor structure of space–times in general relativity. II. Journal of Mathematical Physics, 11(1):343–348, 1970.
[59] R., Geroch, A., Held, and R., Penrose. A space–time calculus based on pairs of null directions. Journal of Mathematical Physics, 14:874–881, Jul. 1973.
[60] J., Haláček and T., Ledvinka. The analytic conformal compactification of the Schwarzschild spacetime. Classical and Quantum Gravity, 31(1):015007, Jan. 2014.
[61] Q., Han and M., Khuri. The Conformal Flow of Metrics and the General Penrose Inequality. Aug. 2014. arXiv.org:1409.0067.
[62] S. W., Hawking and G.F., R.|Ellis. The large scale structure of space–time. Cambridge University Press, London and New York, 1973. Cambridge Monographs on Mathematical Physics, No. 1.
[63] L.-H., Huang. On the center of mass of isolated systems with general asymptotics. Classical and Quantum Gravity, 26(1):015012, Jan. 2009.
[64] L. P., Hughston and P., Sommers. The symmetries of Kerr black holes. Communications in Mathematical Physics, 33:129–133, Jun. 1973.
[65] G., Huisken and T., Ilmanen. The inverse mean curvature flow and the Riemannian Penrose inequality. Journal of Differential Geometry, 59(3):353–437, 2001.
[66] V., Iyer and R. M., Wald. Some properties of the Noether charge and a proposal for dynamical black hole entropy. Physical Review, 50:846–864, Jul. 1994.
[67] E. G., Kalnins, W., Miller, Jr., and G. C., Williams. Teukolsky-Starobinsky identities for arbitrary spin. Journal of Mathematical Physics, 30:2925–2929, Dec. 1989.
[68] R. P., Kerr. Gravitational field of a spinning mass as an example of algebraically special metrics. Physical Review Letters, 11:237–238, Sep. 1963.
[69] W., Kinnersley. Type D Vacuum Metrics. Journal of Mathematical Physics, 10:1195–1203, July 1969.
[70] S., Klainerman, J., Luk, and I., Rodnianski. A fully anisotropic mechanism for formation of trapped surfaces in vacuum. Feb. 2013. arXiv.org:1302.5951.
[71] S., Klainerman and I., Rodnianski. Rough solutions of the Einstein-vacuum equations. Annals of Mathematics (2), 161(3):1143–1193, 2005.
[72] S., Klainerman, I., Rodnianski, and J., Szeftel. Overview of the proof of the Bounded L2 Curvature Conjecture. Apr. 2012. arXiv.org:1204.1772.
[73] S., Klainerman, I., Rodnianski, and J., Szeftel. The bounded L2 curvature conjecture. Inventiones Mathematicae, 202(1):91–216, 2015.
[74] J.-P., Lasota, E., Gourgoulhon, M., Abramowicz, A., Tchekhovskoy, and R., Narayan. Extracting black-hole rotational energy: The generalized Penrose process. Physical Review, 89(2):024041, Jan. 2014.
[75] A., László and I., Rácz. Superradiance or total reflection? Springer Proceedings in Physics, 157:119–127, 2014. arXiv.org:1212.4847.
[76] H., Lindblad and I., Rodnianski. Global existence for the Einstein vacuum equations in wave coordinates. Communications in Mathematical Physics, 256:43–110, May 2005. arXiv.org:math/0312479.
[77] C. O., Lousto and B. F., Whiting. Reconstruction of black hole metric perturbations from the Weyl curvature. Physical Review, 66(2):024026, July 2002.
[78] J., Luk. Weak null singularities in general relativity. Nov. 2013. arXiv.org:1311.4970.
[79] G., Lukes-Gerakopoulos, T. A., Apostolatos, and G., Contopoulos. Observable signature of a background deviating from the Kerr metric. Physical Review, 81(12):124005, Jun. 2010. arXiv.org:1003.3120.
[80] M., Mars. Uniqueness properties of the Kerr metric. Classical and Quantum Gravity, 17:3353–3373, Aug. 2000.
[81] M., Mars, T.-T., Paetz, J. M., M.|Senovilla, and W., Simon. Characterization of (asymptotically) Kerr–de Sitter-like spacetimes at null infinity. Mar. 2016. arXiv.org:1603.05839.
[82] B., Michel. Geometric invariance of mass-like asymptotic invariants. Journal of Mathematical Physics, 52(5):052504–052504, May 2011.
[83] J.-P., Michel, F., Radoux, and J., Šilhan. Second Order Symmetries of the Conformal Laplacian. SIGMA, 10:016, Feb. 2014.
[84] C. W., Misner, K. S., Thorne, and J. A., Wheeler. Gravitation. W. H., Freeman and Co., San Francisco, CA, 1973.
[85] C. S., Morawetz. Time decay for the nonlinear Klein–Gordon equations. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 306:291–296, 1968.
[86] P., Mösta, L., Andersson, J., Metzger, B., Szilágyi, and J., Winicour. The merger of small and large black holes. Classical and Quantum Gravity, 32(23):235003, Dec. 2015.
[87] E. T., Newman, E., Couch, K., Chinnapared, A., Exton, A., Prakash, and R., Torrence. Metric of a rotating, charged mass. Journal of Mathematical Physics, 6:918–919, Jun. 1965.
[88] E. T., Newman and A. I., Janis. Note on the Kerr spinning-particle metric. Journal of Mathematical Physics, 6:915–917, Jun. 1965.
[89] I. D., Novikov and V. P., Frolov. Physics of black holes. (Fizika chernykh dyr, Moscow, Izdatel'stvo Nauka, 1986) Dordrecht, Netherland s, Kluwer Academic Publishers, 1989. Translation. Previously cited in issue 19, p. 3128, Accession no. A87-44677., 1989.
[90] B., O'Neill. The geometry of Kerr black holes. A K Peters Ltd., Wellesley, MA, 1995.
[91] J. R., Oppenheimer and H., Snyder. On continued gravitational contraction. Physical Review, 56:455–459, Sep. 1939.
[92] D., Parlongue. Geometric uniqueness for non-vacuum Einstein equations and applications. Sep. 2011. arXiv.org:1109.0644.
[93] R., Penrose. Zero rest-mass fields including gravitation: Asymptotic behaviour. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 284:159–203, 1965.
[94] R., Penrose and W., Rindler. Spinors and space–time I & II. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge, 1986.
[95] Z., Perjeś and Á., Lukács. Canonical quantization and black hole perturbations. In J., Lukierski and D., Sorokin, editors, Fundamental interactions and twistor-Like methods, volume 767 of American Institute of Physics Conference Series, pp. 306–315, Apr. 2005.
[96] E., Poisson. A relativist's toolkit. Cambridge University Press, Cambridge, 2004. The mathematics of black-hole mechanics.
[97] T., Regge and C., Teitelboim. Role of surface integrals in the Hamiltonian formulation of general relativity. Annals of Physics, 88:286–318, Nov. 1974.
[98] H., Ringström. Cosmic censorship for Gowdy spacetimes. Living Reviews in Relativity, 13(2), 2010.
[99] H., Ringström. Origins and development of the Cauchy problem in general relativity. Classical and Quantum Gravity, 32(12):124003, Jun. 2015.
[100] M. P., Ryan. Teukolsky equation and Penrose wave equation. Physical Review, 10:1736–1740, Sep. 1974.
[101] J., Sbierski. On the existence of a maximal Cauchy development for the Einstein equations: A dezornification. Annales Henri Poincaré, 17(2):301–329, 2016.
[102] R., Schoen and S. T., Yau. The existence of a black hole due to condensation of matter. Communications in Mathematical Physics, 90(4):575–579, 1983.
[103] J. M., M.|Senovilla. Super-energy tensors. Classical and Quantum Gravity, 17:2799–2841, Jul. 2000.
[104] C. D., Sogge. Lectures on non-linear wave equations. International Press, Boston, MA, second edition, 2008.
[105] E., Teo. Spherical photon orbits around a Kerr black hole. General Relativity Gravitation, 35(11):1909–1926, 2003.
[106] S. A., Teukolsky. Rotating black holes: separable wave equations for gravitational and electromagnetic perturbations. Physical Review Letters, 29:1114–1118, Oct. 1972.
[107] S. A., Teukolsky. Perturbations of a rotating black hole. I., Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations. Astrophysical Journal, 185:635–648, Oct. 1973.
[108] S. A., Teukolsky. The Kerr metric. Classical and Quantum Gravity, 32(12):124006, Jun. 2015.
[109] R. M., Wald. General relativity. University of Chicago Press, Chicago, IL, 1984.
[110] R. M., Wald. Gravitational collapse and cosmic censorship. Oct. 1997. arXiv.org:gr-qc/9710068.
[111] R. M., Wald and V., Iyer. Trapped surfaces in the Schwarzschild geometry and cosmic censorship. Physical Review, 44:R3719–R3722, Dec. 1991.
[112] M., Walker and R., Penrose. On quadratic first integrals of the geodesic equations for type ﹛2,2﹜ spacetimes. Communications in Mathematical Physics, 18:265–274, Dec. 1970.
[113] J., Winicour and L., Tamburino. Lorentz-covariant gravitational energymomentum linkages. Physical Review Letters, 15:601–605, Oct. 1965.
[114] W., W.-Y. Wong. A comment on the construction of the maximal globally hyperbolic Cauchy development. Journal of Mathematical Physics, 54(11):113511–113511, Nov. 2013.
[115] S. T., Yau. Geometry of three manifolds and existence of black hole due to boundary effect. Advances in Theoretical and Mathematical Physics, 5(4):755–767, 2001.
[116] R. L., Znajek. Black hole electrodynamics and the Carter tetrad. Monthly Notices of the Royal Astronomical Society, 179:457–472, May 1977.
[117] P., Hintz and A., Vasy. The global non-linear stability of the Kerr–de Sitter family of black holes. Preprint, arXiv:1606.04014, 2016.