Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T13:25:56.331Z Has data issue: false hasContentIssue false

12 - Palaeoethnobotany

from Part IV - Environmental Archaeology

Published online by Cambridge University Press:  19 December 2019

Michael P. Richards
Affiliation:
Simon Fraser University, British Columbia
Kate Britton
Affiliation:
University of Aberdeen
Get access

Summary

Palaeoethnobotany (or archaeobotany1) can be defined as the study of the interrelationships between ancient peoples and plants based on the identification and interpretation of plant remains recovered from archaeological sites (Ford 1979; Helbaek 1959). Archaeobotanical remains are often classified into two analytical groups: macro- and microbotanical remains. This distinction relates to whether or not botanical specimens are visible (macro) or invisible (micro) to the unaided eye. Studies of macrobotanical remains have typically focussed on seeds (and seed-like fruits), fruits, nuts, wood charcoal (e.g., Pearsall 2000: 11–247; Thiébault 2002), and roots/tubers/parenchyma (Hather 1993). The study of wood charcoal, or anthracology, is a multidisciplinary field involving archaeologists, palaeoecologists, and conservationists (e.g., Chabal 1997; Cabanis and Marguerie 2013; Théibault 2002; Vernet et al. 2001). Investigations of microbotanical remains have concentrated on pollen (e.g., Bryant and Holloway 1983; Bryant and Holloway 1996), phytoliths (e.g., Pearsall 2000: 355–496; Piperno 2006b; Piperno and Pearsall 1993), and starch (e.g., Loy 1994; Torrence and Barton 2006). Microbotanical remains can also include diatoms (Juggins and Cameron 1999) and biomolecular remains such as plant DNA (e.g., Brown et al. 2015; Schlumbaum et al. 2008), and lipids (e.g., Evershed 1993), however, these analyses are typically not completed by palaeoethnobotanists.

Type
Chapter
Information
Archaeological Science
An Introduction
, pp. 276 - 313
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbo, S., Zezak, I., Schwartz, E., Lev-Yadun, S., and Gopher, A. 2008. Experimental harvesting of wild peas in Israel: Implications for the origins of Near East farming. Journal of Archaeological Science 35(4):922929.CrossRefGoogle Scholar
Adams, K. and Murray, S. S. n.d. Identification criteria for plant remains recovered from archaeological sites in the Central Mesa Verde Region. www.crowcanyon.org/researchreports/Archaeobotanical/Plant_Identification/plant_identification.asp (accessed July 9, 2019).Google Scholar
Antolín, F. and Jacomet, S. 2015. Wild fruit use among early farmers in the Neolithic (5400–2300 cal BC) in the north-east of the Iberian Peninsula: An intensive practice? Vegetation History and Archaeobotany 24(1):1933.Google Scholar
Atalay, S. and Hastorf, C. A. 2006. Food, meals, and daily activities: Food habitus at Neolithic Çatalhöyük. American Antiquity 71(2):283319.Google Scholar
Ball, T.B., Davis, A., Evett, R. R., Ladwig, J. L., Tromp, M., Out, W. A., and Portillo, M. 2016. Morphometric analysis of phytoliths: Recommendations towards standardization from the International Committee for Phytolith Morphometrics. Journal of Archaeological Science 68:106111.Google Scholar
Barton, H. and Fullagar, R. 2006. Microscopy. In: `Torrence, R. and `Barton, H. (eds.) Ancient Starch Research, pp. 4774. Walnut Creek, CA: Left Coast Press.Google Scholar
Barton, H., Torrence, R., and Fullagar, R. 1998. Clues to stone tool function re-examined: Comparing starch grain frequencies on used and unused obsidian artefacts. Journal of Archaeological Science 25(12):12311238.Google Scholar
Beck, W. E. 1989. The taphonomy of plants. In: `Beck, W.E., `Clarke, A., and `Head, L. (eds.) Plants in Australian Archaeology. Tempus. Vol. 1. St. Lucia: University of Queensland Anthropology Museum.Google Scholar
Beijerinck, W. 1947. Zadenatlas Der Nederlandische Flora. Wageningen: H. Veenman and Zonen.Google Scholar
Belitz, H.-D., Grosch, W., and Schieberle, P. 2009. Food Chemistry, 4th ed. New York: Springer Verlag.Google Scholar
Berggren, G. 1969. Atlas of Seeds and Small Fruits of North-West European Plant Species with Morphological Descriptions: Part 2. Cyperaceae. Halmstad, Sweden: Berlings.Google Scholar
Berggren, G. 1981. Atlas of Seeds and Small Fruits of North-West European Plant Species with Morphological Descriptions: Part 3. Salicaceae-Cruciferae. Halmstad, Sweden: Academic Press.Google Scholar
Boardman, S. and Jones, G. 1990. Experiments on the effects of charring on cereal plant components. Journal of Archaeological Science 17(1):112.CrossRefGoogle Scholar
Bogaard, A. 2004. Neolithic Farming in Central Europe: An Archaeobotanical Study of Crop Husbandry Practices. London: Routledge.Google Scholar
Bogaard, A., Charles, M., Twiss, K. C., Fairbairn, A., Yalman, N., Filipovic, D., Demirergi, G. A., Ertuğ, F., Russell, N., and Henecke, J. 2009. Private pantries and celebrated surplus: Storing and sharing food at Neolithic Çatalhöyük. Antiquity 83:649668.Google Scholar
Bottema, S. 1984. The composition of modern charred seed assemblages. In: van `Zeist, W. and `Casparie, W. A. (eds.) Plants and Ancient Man, pp. 207212. Rotterdam: Balkema.Google Scholar
Bottema, S. and Woldring, H. 1990. Anthropogenic indicators in the pollen record of the Eastern Mediterranean. In: `Bottema, S., `Entjes-Nieborg, G., and van `Zeist, W. (eds.) Man’s Role in the Shaping of the Eastern Mediterranean Landscape, pp. 231264. Rotterdam: Balkema.Google Scholar
Bourdieu, P. 1977. Outline of a Theory of Practice. Cambridge: Cambridge University Press.Google Scholar
Bowdery, D., Hart, D. M., Lentfer, C., and Wallis, L. A. 2001. A universal phytolith key. In: `Meunier, J. D. and `Colin, F. (eds.) Phytoliths: Applications in Earth Science and Human History, pp. 267278. Rotterdam: Balkema.Google Scholar
Boyd, M. C., Surette, C., and Nicholson, B. A. 2006. Archaeobotanical evidence of maize (Zea mays) consumption at the northern edge of the Great Plains. Journal of Archaeological Science 33:11291140.Google Scholar
Braadbaart, F., Poole, I., and van Brussel, A. A. 2009. Preservation potential of charcoal in alkaline environments: an experimental approach and implications for the archaeological record. Journal of Archaeological Science 36(8):16721679.Google Scholar
Braadbaart, F. and van Bergen, P. F. 2005. Digital imaging analysis of size and shape of wheat and pea upon heating under anoxic conditions as a function of the temperature. Vegetation History and Archaeobotany 14(1):6775.CrossRefGoogle Scholar
Brown, T. A., Cappellini, E., Kistler, L., Lister, D. L., Oliveira, H. R., Wales, N., and Schlumbaum, A. 2015. Recent advances in ancient DNA research and their implications for archaeobotany. Vegetation History and Archaeobotany 24(1):207214.CrossRefGoogle Scholar
Bryant, V. M. Jr. 1989. Botanical remains in archaeological sites. In: `Mathewson, C. C. (ed.) Interdisciplinary Workshop on the Physical-Chemical-Biological Processes Affecting Archaeological Sites, pp. 85115. Vicksburg, MI: Environmental Impact Research Program, Contract Report EL-89-1. Environmental Laboratory, US Army Engineer Waterways Experiment Station.Google Scholar
Bryant, V. M. Jr. and Dean, G. W. 2006. Archaeological coprolite science: the legacy of Eric O. Callen (1912–1970). Palaeogeography, Palaeoclimatology, Palaeoecology 237(1):5166.CrossRefGoogle Scholar
Bryant, V. M. Jr. and Holloway, R. G. 1983. The role of palynology in archaeology. In: `Schiffer, M. B. (ed.) Advances in Archaeological Method and Theory, Vol. 6, pp. 191223. New York: Academic Press.CrossRefGoogle Scholar
Bryant, V. M. Jr. and Holloway, R. G. 1996. New frontiers in palynology: archaeological palynology. In: `Jansonius, J. and `McGregor, D. C. (eds.) Palynology: Principles and Applications, Vol. 3, pp. 913917. Dallas: American Association of Stratigraphic Palynologists Foundation.Google Scholar
Bryant, V. M. Jr. and Morris, D. P. 1986. Uses of ceramic vessels and grinding implements: the pollen evidence. In: `Morris, D. P. (ed.) Archaeological Investigations at Antelope House, pp. 489500. Washington DC: National Park Service, US Department of the Interior.Google Scholar
Bryant, V. M. Jr. and Murray, R. E. 1982. Preliminary analysis of amphora contents. In: `Bass, G. F. and van `Doorninick, F. H. Jr. (eds.) Yassi Ada, Vol. 1: A Seventh-Century Byzantine Shipwreck, pp. 327331. College Station: Texas A&M University Press.Google Scholar
Butler, E. A. 1988. The SEM and seed identification, with particular reference to the Vicieae. In: `Olsen, S. L. (ed.) Scanning Electron Microscopy in Archaeology, pp. 215224. Oxford: B.A.R.Google Scholar
Butler, E. A. 1996. Trifoleae and related seeds from archaeological contexts: Problems in identification. Vegetation History and Archaeobotany 5(1–2):157167.Google Scholar
Cabanis, M. and Marguerie, D. 2013. Wood resources in the Clermont-Ferrand Basin from the Neolithic to the Roman Period based on dendro-anthracological analysis. Quaternaire 24(2):129139.CrossRefGoogle Scholar
Callen, E. O. 1970. Diet as revealed by coprolites. In: `Brothwell, D. and `Higgs, E. (eds.) Science and Archaeology: A Survey of Progress and Research, 2nd ed., pp. 235243. New York: Praeger.Google Scholar
Cappers, R. T. J. 1993. Seed dispersal by water: A contribution to the interpretation of seed assemblages. Vegetation History and Archaeobotany 2(3):173186.Google Scholar
Cappers, R. T. J. 2006. Roman Foodprints at Berenike: Archaeobotanical Evidence of Subsistence and Trade in the Eastern Desert of Egypt. Berenike Reports No. 6. Los Angeles: Cotsen Institute of Archaeology.Google Scholar
Cappers, R. T. J., Bekker, R. M., and Jans, J. E. A. 2006. Digitale Zadenatlas van Nederland/Digital Seed Atlas of the Netherlands, 1st ed. Groningen: Barkhuis and Groningen University Library.Google Scholar
Cappers, R. T. J., Bekker, R. M., and Jans, J. E. A. 2012. Digitale Zadenatlas van Nederland/Digital Seed Atlas of the Netherlands, 2nd ed. Groningen: Barkhuis and Groningen University Library. http://www.plantatlas.eu/ (accessed July 9, 2019).Google Scholar
Chabal, L. 1997. Forêts et sociétés en Languedoc (Néolihique final, Antiquité tardive). L’anthracologie, méthode et paléoécologie. Documents d’Archéologie Française 63, Paris: Editions de la Maison des Sciences de l’Homme.Google Scholar
Chandler-Ezell, K. C. and Pearsall, D. M. 2003. “Piggy-back” microfossil processing: Joint starch and phytolith sampling from stone tools. Phytolitharian Newsletter 15(3):28.Google Scholar
Charles, M., Bogaard, A., Jones, G., Hodgson, J., and Halstead, P. 2002. Towards the archaeobotanical identification of intensive cereal cultivation: Present-day ecological investigation in the mountains of Asturias, northwest Spain. Vegetation History and Archaeobotany 11(1–2):133142.Google Scholar
Charles, M., Jones, G., and Hodgson, J. G. 1997. FIBS in archaeobotany: Functional interpretation of weed floras in relation to husbandry practices. Journal of Archaeological Science 24(12):11511161.Google Scholar
Clark, J. S. and Royall, P. D. 1995. Transformation of a northern hardwood forest by Aboriginal (Iroquois) fir: Charcoal evidence from Crawford Lake, Ontario, Canada. The Holocene 5(1):19.Google Scholar
Colinvaux, P., de Oliveira, P. E., and Moreno Patiño, J. E. 1999. Amazon Pollen Manual and Atlas. Amsterdam: Harwood Academic Publishers.Google Scholar
Colledge, S. 2001. Plant Exploitation on Epipalaeolithic and Early Neolithic Sites in the Levant. B.A.R. International Series 986. Oxford: British Archaeological Reports.Google Scholar
Colledge, S., Conolly, J., and Shennan, S. 2004. Archaeobotanical evidence for the spread of farming in the eastern Mediterranean. Current Anthropology 45:S35S58.Google Scholar
Crawford, G. W. 1997. Anthropogenesis in prehistoric northeastern Japan. In: `Gremillion, K. J. (ed.) People, Plants, and Landscapes: Studies in Paleoethnobotany, pp. 86103. Tuscaloosa: University of Alabama Press.Google Scholar
Crawford, G. W. and Smith, D. G. 2003. Palaeoethnobotany in the Northeast. In: `Minnis, P. (ed.) People and Plants in Ancient Eastern North America, pp. 172257. Washington DC: Smithsonian Institution Press.Google Scholar
Crowther, A. 2012. The differential survival of native starch during cooking and implications for archaeological analyses: A review. Archaeological and Anthropological Sciences 4(3):221235.CrossRefGoogle Scholar
D’Andrea, A. C. 2008. T’ef (Eragrostis tef) in ancient agricultural systems of highland Ethiopia. Economic Botany 62(4):547566.Google Scholar
D’Andrea, A. C., Logan, A. L., and Watson, D. J. 2006. Oil palm and prehistoric subsistence in tropical West Africa. Journal of African Archaeology 4(2):195222.CrossRefGoogle Scholar
D’Andrea, A. C. and Haile, Mitiku. 2002. Traditional emmer processing in highland Ethiopia. Journal of Ethnobiology 22(2):179217.Google Scholar
Delcourt, P. A., Delcourt, H. R., Ison, C. R., Sharp, W. E., and Gremillion, K. 1998. Prehistoric human use of fire, the eastern agricultural complex, and Appalachian oak-chestnut forests: paleoecology of Cliff Palace Pond, Kentucky. American Antiquity 63(2):263278.Google Scholar
Del Pilar Babot, M. and Apella, M. C. 2003. Maize and bone: Residues of grinding in northwestern Argentina. Archaeometry 45(1):121132.CrossRefGoogle Scholar
Dennell, R. W. 1976. The economic importance of plant resources represented on archaeological sites. Journal of Archaeological Science 3(3):229247.Google Scholar
Dimbleby, G. W. 1978. Plants and Archaeology, 2nd ed. New Jersey: Humanities Press.Google Scholar
Dimbleby, G. W. 1985. The Palynology of Archaeological Sites. London: Academic Press.Google Scholar
Duncan, N. A., Pearsall, D. M., and Benfer, R. A. Jr. 2009. Gourd and squash artifacts yield starch grains of feasting foods from preceramic Peru. Proceedings of the National Academy of Sciences 106(32):1320213206.Google Scholar
Dupont, J., Nebout, N. C., Cazet, J.-P., Causse, F., and Lebbe, R. V. 2010. New key-tools for pollen identification in research and education. In: `Nimis, P L. and `Lebbe, R. V. (eds.) Tools for Identifying Biodiversity: Progress and Problems, pp. 383387. Trieste: Edizioni Università di Trieste.Google Scholar
Evershed, R. P. 1993. Biomolecular archaeology and lipids. World Archaeology 25(1):7493.Google Scholar
Faegri, K., Kaland, P. E., and Krzywinski, K. 1989. Textbook of Pollen Analysis, 4th ed. Chichester: John Wiley and Sons.Google Scholar
Fairbairn, A., Asouti, E., Near, J., and Martinoli, D. 2002. Macro-botanical evidence for plant use at Neolithic Çatalhöyük, south-central Anatolia, Turkey. Vegetation History and Archaeobotany 11(1–2):4154.Google Scholar
Fahmy, A. G. 2008. Diversity of lobate phytoliths in grass leaves from the Sahel region, West tropical Africa: Tribe Paniceae. Plant Systematics and Evolution 270(1–2):123.Google Scholar
Field, J. 2006. Reference collections. In: `Torrence, R. and `Barton, H. (eds.) Ancient Starch Research, pp. 95113. Walnut Creek, CA: Left Coast Press.Google Scholar
Flenley, J. R. 1994. Pollen in Polynesia: The use of palynology to detect human activity in the Pacific Islands. In: `Hather, J. G. (ed.) Tropical Archaeobotany, pp. 202214. New York: Routledge.Google Scholar
Ford, R. A. 1979. Paleoethnobotany in American archaeology. In: `Schiffer, M. B. (ed.) Advances in Archaeological Method and Theory, pp. 285336. New York: Academic Press.Google Scholar
Fowler, C. S. and Rhode, D. E. 2011. Plant foods and foodways among the Great Basin’s Indigenous peoples. In: `Smith, B. D. (ed.) Subsistence Economies of Indigenous North American Societies, pp. 233270. Washington DC: Smithsonian Institution Scholarly Press.Google Scholar
Fredlund, G. 1986. Problems in the simultaneous extraction of pollen and phytoliths from clastic sediments. In: `Rovner, I. (ed.) Plant Opal Phytolith Analysis in Archaeology and Paleoecology. The Phytolitharian, pp. 102110. Occasional Paper No. 1. Raleigh: North Carolina State University.Google Scholar
French, D. H. 1971. An experiment in water-sieving. Anatolian Studies 21:5964.Google Scholar
Fritz, G. 2005. Paleoethnobotanical methods and applications. In: `Maschner, H. D. G. and `Chippindale, C. (eds.) Handbook of Archaeological Methods, Vol. 1, pp. 771832. Walnut Creek, CA: Altamira Press.Google Scholar
Fritz, G. n.d. Laboratory Guide to Archaeological Plant Remains from Eastern North America. http://artsci.wustl.edu/~gjfritz/ (accessed July 9, 2019).Google Scholar
Fritz, G. J. 1999. Gender and the early cultivation of gourds in Eastern North America. American Antiquity 64(3):417429.Google Scholar
Fox, C. L., Juan, J., and Albert, R. M. 1996. Phytolith analysis on dental calculus, enamel surface, and burial soil: Information about diet and paleoenvironment. American Journal of Physical Anthropology 101(1):101113.Google Scholar
Fullagar, R. 2006. Starch on artefacts. In: `Torrence, R. and `Barton, H. (eds.) Ancient Starch Research, pp. 177203. Walnut Creek, CA: Left Coast Press.Google Scholar
Fuller, D. Q. 2005. Ceramics, seeds and culinary change in prehistoric India. Antiquity 79:761–77.Google Scholar
Fuller, D. Q. 2007. Contrasting patterns in crop domestication and domestication rates: Recent archaeobotanical insights from the Old World. Annals of Botany 100(5):903924.Google Scholar
Fuller, D. Q. and Harvey, E. L. 2006. The archaeobotany of Indian Pulses: Identification, processing and evidence for cultivation. Environmental Archaeology 11(2):219246.Google Scholar
Fuller, D. Q. and Stevens, C. J. 2009. Agriculture and the development of complex societies: an archaeobotanical agenda. In: `Fairbairn, A. and `Weiss, E. (eds.) Ethnobotanist of Distant Pasts: Papers in Honour of Gordon Hillman, pp. 3757. Oxford: Oxbow Books.Google Scholar
Gasser, R. E. and Adams, E. C. 1981. Aspects of deterioration of plant remains in archaeological sites. Journal of Ethnobiology 1(1):182192.Google Scholar
Goette, S., Williams, M., Johannessen, S., and Hastorf, C. A. 1994. Toward reconstructing ancient maize: Experiments in processing and charring. Journal of Ethnobiology 14(1):122.Google Scholar
Gremillion, K. J. 1997. People, Plants, and Landscapes: Studies in Paleoethnobotany. Tuscaloosa: University of Alabama Press.Google Scholar
Gremillion, K. J. 2002. Foraging theory and hypothesis testing in archaeology: An exploration of methodological problems and solutions. Journal of Anthropological Archaeology 21(2):142164.Google Scholar
Gremillion, K. J. and Piperno, D. R. 2009. Human behavioral ecology, phenotypic (developmental) plasticity, and agricultural origins: Insights from the emerging evolutionary synthesis. Current Anthropology 50(5):615619.Google Scholar
Gu, Y., Zhao, Z., and Pearsall, D. M. 2013. Phytolith morphology research on wild and domesticated rice species in East Asia. Quaternary International 287:141148.Google Scholar
Hageman, J. B. and Goldstein, D. J. 2009. An integrated assessment of archaeobotanical recovery methods in the neotropical rainforest of northern Belize: Flotation and dry screening. Journal of Archaeological Science 36(12):28412852.Google Scholar
Hally, D. J. 1981. Plant preservation and the content of palaeoethnobotanical Samples: A case study. American Antiquity 46(4):723742.Google Scholar
Harris, D. R. 1996. Domesticatory relations of people, plants and animals. In: `Ellen, R. and `Fukui, K. (eds.) Redefining Nature, pp. 437463. Oxford: Berg.Google Scholar
Harvey, E. and Fuller, D. Q. 2005. Investigating crop processing using phytolith analysis: The example of rice and millets. Journal of Archaeological Science 32(5):739752.Google Scholar
Haslam, M. 2004. The decomposition of starch grains in soils: Implications for archaeological residue analyses. Journal of Archaeological Science 31:17151734.CrossRefGoogle Scholar
Hastorf, C. A. 1990. The effect of the Inka state on Sausa agricultural production and crop consumption. American Antiquity 55(2):262290.Google Scholar
Hastorf, C. A. 1991. Gender, space and food in prehistory. In: `Gero, J. M. and `Conkey, M. W. (eds.) Engendering Archaeology: Women and Prehistory, pp. 132159. Oxford: Blackwell.Google Scholar
Hastorf, C. A. 1999. Recent research in paleoethnobotany. Journal of Archaeological Research 7(1):55103.Google Scholar
Hastorf, C. A. and Popper, V. S. 1988. Current Paleoethnobotany. Chicago: University of Chicago Press.Google Scholar
Hather, J. 1993. An Archaeobotanical Guide to Root and Tuber Identification. Vol. 1: Europe and Southwest Asia. Oxford: Oxbow Books.Google Scholar
Hather, J. 1994. Tropical Archaeobotany: Applications and New Developments. London: Routledge.Google Scholar
Helbaek, H. 1959. The domestication of food plants in the Old World. Science 130:365372.Google Scholar
Helbaek, H. 1969. Plant collecting, dry-farming, and irrigation agriculture in prehistoric Deh Luran. In: `Hole, F., `Flannery, K. V., and `Neeley, J. A. (eds.) Prehistory and Human Ecology of the Deh Luran Plain, pp. 383426. Ann Arbor: Memoirs of the Museum of Anthropology, No. 1, University of Michigan.Google Scholar
Henry, A. G., Brooks, A. S., and Piperno, D. R. 2011. Microfossils in calculus demonstrate consumption of plants and cooked foods in Neanderthal diets (Shanidar III, Iraq; Spy I and II, Belgium). Proceedings of the National Academy of Sciences 108(2):486491.Google Scholar
Henry, A. G., Hudson, H. F., and Piperno, D. P. 2009. Changes in starch grain morphologies from cooking. Journal of Archaeological Science 36(3):915922.Google Scholar
Hildebrand, E. 2007. A tale of two tuber crops: How attributes of enset and yams may have shaped prehistoric human-plant interactions in southwest Ethiopia. In: `Denham, T., `Vrydaghs, L., and `Iríarte, J. (eds.) Rethinking Agriculture, pp. 273298. Berkeley: Left Coast Press.Google Scholar
Hill, B., Overholts, L. O., and Popp, H. W. 1936. Botany. New York: McGraw Hill.Google Scholar
Hillman, G. C. 1984. Interpretation of archaeological plant remains: Ethnographic models from Turkey. In: `van Zeist, W. and `Casparie, W. A. (eds.) Plants and Ancient Man, pp. 142. Rotterdam: Balkema.Google Scholar
Hillman, G. C. and Davies, M. S. 1990. Measured domestication rates in wild wheats and barley under primitive cultivation and their archaeological implications. Journal of World Prehistory 4(2):157222.Google Scholar
Hilu, K. W., De Wet, J. M. J., and Harlan, J. R. 1979. Archaeobotanical studies of Eleusine coracana ssp. coracana (finger millet). American Journal of Botany 66(3):330333.Google Scholar
Hole, F., Flannery, K. V., and Neely, J. A. 1969. Prehistory and Human Ecology of the Deh Luran Plain. Ann Arbor: Memoirs of the Museum of Anthropology, No. 1, University of Michigan.Google Scholar
Horrocks, M. 2005. A combined procedure for recovering phytoliths and starch residues from soils, sedimentary deposits and similar materials. Journal of Archaeological Science 32(8):11691175.Google Scholar
Horrocks, M. and Nunn, P. D. 2007. Evidence for introduced taro (Colocasia esculenta) and lesser yam (Dioscorea esculenta) in Lapita-era (c. 3050–2500 cal. yr BP) deposits from Bourewa, southwest Viti Levu Island, Fiji. Journal of Archaeological Science 34(5):739748.Google Scholar
Hubbard, R. N. L. B. and al Azm, A. 1990. Quantifying preservation and distortion in carbonized seeds and investigating the history of friké production. Journal of Archaeological Science 17:103106.Google Scholar
Iríarte, J. 2003. Assessing the feasibility of identifying maize through the analysis of cross-shaped size and three-dimensional morphology of phytoliths in the grasslands of southeastern South America. Journal of Archaeological Science 30(9):10851094.Google Scholar
Jacomet, S. 2008. Identification of Cereal Remains from Archaeological Sites, 3rd ed. Basel: University of Basel.Google Scholar
Jacomet, S. 2009. Plant economy and village life in Neolithic lake dwellings at the time of the alpine iceman. Vegetation History and Archaeobotany 18(1):4759.Google Scholar
Jacomet, S. and Kreuz, A. 1999. Archäobotanik. Aufgaben, Methoden und Ergebnisse vegetations- und agrargeschichtlicher Forschung. Stuttgart: Ulmer.Google Scholar
Jamieson, R. W. and Sayre, M. B. 2010. Barley and identity in the Spanish colonial Audiencia of Quito: Archaeobotany of the 18th century San Blas neighborhood in Riobamba. Journal of Anthropological Archaeology 29(2):208218.Google Scholar
Jones, G. 1984. Interpretation of archaeological plant remains: Ethnographic models from Greece. In: van `Zeist, W. and `Casparie, W. A. (eds.) Plants and Ancient Man: Studies in Paleoethnobotany, pp. 4361. Rotterdam: Ballkema.Google Scholar
Jones, G. 1987. A statistical approach to the archaeological identification of crop processing. Journal of Archaeological Science 14(3):311323.Google Scholar
Jones, G., Charles, M., Bogaard, A., Hodgson, J. G., and Palmer, C. 2005. The functional ecology of present-day arable weed floras and its applicability for the identification of past crop husbandry. Vegetation History and Archaeobotany 14(4):493504.Google Scholar
Juggins, S. and Cameron, N. 1999. Diatoms and archaeology. In: `Stoermer, E. F. and `Smit, J. P. (eds.) The Diatoms, pp. 389401. Cambridge: Cambridge University Press.Google Scholar
Kahlheber, S. 1999. Indications for agroforestry: archaeobotanical remains of crops and woody plants from Medieval Saouga, Burkina Faso. In: `van der Veen, M. (ed.) The Exploitation of Plant Resources in Ancient Africa, pp, 89100. New York: Kluwer Academic.Google Scholar
Kapp, R. O. 1969. How to Know Pollen and Spores. Dubuque, Iowa: Brown.Google Scholar
Kelso, G. K., Dimmick, F. R., Dimmick, D. H., and Largy, T. B. 2006. An ethnopalynological test of task-specific area analysis: Bay View Stable, Cataumet, Massachusetts. Journal of Archaeological Science 33(7):953960.Google Scholar
Kennett, D. J., Voorhies, B., and Martorana, D. 2006. An ecological model for the origins of maize-based food production on the Pacific coast of southern Mexico. In: `Kennett, D. J. and `Winterhalder, B. (eds.) Behavioral Ecology and the Transition to Agriculture, pp. 103136. Berkeley: University of California Press.Google Scholar
Korstanje, M. A. and Cuenya, P. 2010. Ancient agriculture and domestic activities: a contextual approach studying silica phytoliths and other microfossils in soils. Environmental Archaeology 15(1):4363.Google Scholar
Kreuz, A. 1990. Searching for “single activity refuse” in Linearbandkeramik settlements. An archaeobotanical approach. In: `Robinson, D. E. (ed.) Experimentation and Reconstruction in Environmental Archaeology, pp. 6374. Symposia of the Association for Environmental Archaeology No. 9, Roskilde, Denmark. Oxford: Oxbow Books.Google Scholar
Laland, K. N., Odling-Smee, F. J., and Feldman, N. W. 2001. Cultural niche construction and human evolution. Journal of Evolutionary Biology 14:2223.Google Scholar
Langford, M., Taylor, G. E., and Flenley, J. R. 1990. Computerized identification of pollen grains by texture analysis. Review of Palaeobotany and Palynology 64(1–4):197203.Google Scholar
Lebreton, V., Messager, E., Marquer, L., and Renault-Miskovsky, J. 2010. A neotaphonomic experiment in pollen oxidation and its implications for archaeopalynology. Review of Palaeobotany and Palynology 162:2938.Google Scholar
Lennstrom, H. A. and Hastorf, C. A. 1995. Interpretation in context: Sampling and analysis in paleoethnobotany. American Antiquity 60:701721.Google Scholar
Lentfer, C. J. and Boyd, W. E. 2000. Simultaneous extraction of phytoliths, pollen and spores from sediments. Journal of Archaeological Science 27(5):363372.Google Scholar
Lentfer, C., Therin, M., and Torrence, R. 2002. Starch grains and environmental reconstruction: A modern test case from West New Britain, Papua, New Guinea. Journal of Archaeological Science 29(7):687698.Google Scholar
Lentz, D. L. 1991. Maya diets of the rich and poor: paleoethnobotanical evidence from Copan. Latin American Antiquity 2(3):269287.Google Scholar
Lepofsky, D., Hallett, D., Washbrook, K., McHalsie, A., Lertzman, K., and Mathewes, R. 2005. Documenting precontact plant management on the Northwest Coast: An example of prescribed burning in the central and upper Fraser Valley, British Columbia. In: `Deur, D. E. and `Turner, N. J. Keeping It Living: Traditions of Plant Use and Civilization on the Northwest Coast of North America, pp. 218239. Seattle: University of Washington Press.Google Scholar
Li, M. Q., Yang, X. Y., Wang, H., Wang, Q., Jia, X., and Ge, Q. S. 2010. Starch grains from dental calculus reveal ancient plant foodstuffs at Chenqimogou site, Gansu Province. Science China Earth Sciences 53(5):694699.Google Scholar
Liu, L., Field, J., Fullagar, R., Bestel, S., Chen, X. C., and Ma, X. L. 2010. What did grinding stones grind? New light on early Neolithic subsistence economy in the Middle Yellow River Valley, China. Antiquity 84:816833.Google Scholar
Logan, A. L. 2012. A history of food without history: Food, trade, and environment in West-Central Ghana in the second millennium AD. Doctoral thesis, Department of Anthropology, University of Michigan.Google Scholar
Logan, A. L. and D’Andrea, A. C. 2012. Oil palm, arboriculture, and changing subsistence practices during Kintampo times, 3900–3600 bp. Quaternary International 249:6371.Google Scholar
Logan, A. L., Hastorf, C. A., and Pearsall, D. M. 2012. “Let’s drink together”: Early ceremonial use of maize in the Titicaca basin. Latin American Antiquity 23(3):235258.Google Scholar
Lopinot, N. H. and Brussell, D. E. 1982. Assessing carbonized seeds from open-air sites in mesic environments: An example from southern Illinois. Journal of Archaeological Science 9(1):95108.Google Scholar
Loy, T. H. 1994. Methods in the analysis of starch residues on prehistoric stone tools. In: `Hather, J. G. (ed.) Tropical Archaeobotany: Applications and New Developments, pp. 86114. London: Routledge.Google Scholar
Loy, T. H., Spriggs, M., and Wickler, S. 1992. Direct evidence of human use of plants 28,000 years ago: Starch residues on stone artefacts from the northern Solomon Islands. Antiquity 66:898912.Google Scholar
Madella, M., Lancelotti, C., and Garcia-Granero, J. J. 2013. Millet microremains: An alternative approach to understand cultivation and use of critical crops in prehistory. Archaeological and Anthropological Sciences 8(1):1728.Google Scholar
Madella, M., Lancelotti, C., and Savard, M. 2014. Ancient Plants and People. Tucson: University of Arizona Press.Google Scholar
Margaritis, E. and Jones, M. K. 2008. Olive oil production in Hellenistic Greece: The interpretation of charred olive remains from the site of Tria Platania, Macedonia, Greece (fourth–second century B.C.). Vegetation History and Archaeobotany 17(4):393401.Google Scholar
Märkle, T. and Rösch, M. 2008. Experiments on the effects of carbonization on some cultivated plant seeds. Vegetation History and Archaeobotany 17 (Suppl 1):S257S263.Google Scholar
Marston, J. M. 2011. Archaeological markers of agricultural risk management. Journal of Anthropological Archaeology 3(2):190205.Google Scholar
Marston, J. M., Guedes, J. D., and Warinner, C. 2014. Method and Theory in Paleoethnobotany. Boulder: University Press of Colorado.Google Scholar
Martin, A. C. 1946. The comparative internal morphology of seeds. American Midland Naturalist 36(3):513660.Google Scholar
Martin, A. C. and Barkley, W. D. 1961. Seed Identification Manual. Berkeley: University of California Press.Google Scholar
Mercuri, A. M. 2008. Plant exploitation and ethnopalynological evidence from the Wadi Teshuinat area (Tadrart Acacus, Libyan Sahara). Journal of Archaeological Science 35(6):16191642.Google Scholar
Mercuri, A. M., Allevato, E., Arobba, D., Mazzanti, M. B., Bosi, G., Caramiello, R., Castiglioni, E., Carra, M. L., Celant, A., Costantini, L. Di Pasquale, G., Fiorentino, G., Florenzano, A., Guido, M., Marchesini, M., Lippi, M. M., Marvelli, S., Miola, A., Montanari, C., Nisbet, R., Pena-Chocarro, L., Perego, R,. Ravazzi, C., Rottoli, M., Sadori, L., Ucchesu, M., and Rinaldi, R. 2015. Pollen and macroremains from Holocene archaeological sites: a dataset for the understanding of the bio-cultural diversity of the Italian landscape. Review of Palaeobotany and Palynology 218:250266.Google Scholar
Mercuri, A. M., Mazzanti, M. B., Florenzano, A., Montecchi, M. C., Rattighieri, E., and Torri, P. 2013. Anthropogenic pollen indicators (API) from archaeological sites as local evidence of human-induced environments in the Italian peninsula. Annali di Botanica 3:143153.Google Scholar
Miller, N. F. 1985. Paleoethnobotanical evidence for deforestation in ancient Iran: A case study of urban Malyan. Journal of Ethnobiology 5(1):119.Google Scholar
Minnis, P. E. 1981. Seeds in archaeological sites: sources and some interpretive problems. American Antiquity 46(1):143152.Google Scholar
Montgomery, F. H. 1977. Seeds and Fruits of Plants of Eastern Canada and Northeastern United States. Toronto: University of Toronto Press.Google Scholar
Moore, P. D., Webb, J.A., and Collinson, M. E. 1991. Pollen Analysis, 2nd ed. Oxford: Blackwell.Google Scholar
Morales, J., Navarro-Mederos, J. F., and Rodríguez-Rodríguez, A. 2011. Plant offerings to the gods: Seed remains from a pre-Hispanic sacrificial altar in La Gomera Island (Canary Islands, Spain). In: `Fahmy, A. G., `Kahlheber, S., and `D’Andrea, A. C. (eds.) Windows on the African Past: Current Approaches to African Archaeobotany, pp. 6778. Frankfurt: Africa Magna Verlag.Google Scholar
Morehart, C. T. and Eisenberg, D. T. A. 2009. Prosperity, power and change: Modeling maize at Postclassic Xaltocan, Mexico. Journal of Anthropological Archaeology 29(1):94112.Google Scholar
Morehart, C. T., Lentz, D. L., and Prufer, K. M. 2005. Wood of the gods: The Ritual Use of Pine (Pinus spp.) by the Ancient Lowland Maya. Latin American Antiquity 16(3):255274.Google Scholar
Moreno-Larrazabal, A., Teira-Brión, A., Sopelana-Salcedo, I., Arranz-Otaegui, A., and Zapata, L. 2015. Ethnobotany of millet cultivation in the north of the Iberian Peninsula. Vegetation History and Archaeobotany 2(4):541554.Google Scholar
Morris, L. R., Ryel, R. J., and West, N. E. 2010. Can soil phytolith analysis and charcoal be used as indicators of historic fire in the pinyon-juniper and sagebrush steppe ecosystem types of the Great Basin Desert, USA? The Holocene 20(1):105114.Google Scholar
Murray, M. A., Fuller, D. Q., and Cappeza, C. 2007. Crop production on the Senegal River in the early first millennium AD: Preliminary archaeobotanical results from Cubalel. In: `Cappers, R. (ed.) Fields of Change, Progress in African Archaeobotany, pp. 6370. Groningen: Barkhuis Publishing.Google Scholar
Nasu, H., Momohara, A., Yasuda, Y., and He, J. 2007. The occurrence and identification of Setaria italica (L.) P. Beauv. (foxtail millet) grains from the Chengtoushan site (ca. 5800 cal B.P.) in central China, with reference to the domestication centre in Asia. Vegetation History and Archaeobotany 16(6):481494.Google Scholar
Neff, H., Pearsall, D. M, Jones, J. G., Arroyo, B., Collins, S. K., and Friedel, D. E. 2006. Early Maya adaptive patterns: Mid-Late Holocene paleoenvironmental evidence from Pacific Guatemala. Latin American Antiquity 17(3):287315.Google Scholar
Nesbitt, M. 2006. Identification Guide for Near Eastern Grass Seeds. London: Institute of Archaeology, University College London.Google Scholar
Nesbitt, M., Colledge, S. and Murray, M. A. 2003. Organization and management of seed reference collections. Environmental Archaeology 8(1):7784.Google Scholar
Nesbitt, M. and Greig, J. 1989. A bibliography for the archaeobotanical identification of seeds from Europe and the Near East. Circaea 7(1):11:30.Google Scholar
Neumann, K. 2005. The romance of farming: plant cultivation and domestication in Africa. In: `Stahl, A. B. (ed.) African Archaeology, pp. 249275. Oxford: Blackwell.Google Scholar
Novello, A. and Barboni, D. 2015. Grass inflorescence phytoliths of useful species and wild cereals from sub-Saharan Africa. Journal of Archaeological Science 59:1022.Google Scholar
Odling-Smee, F.J., Laland, K. N., and Feldman, M.W. 2003. Niche Construction: The Neglected Process in Evolution. Monographs in Population Biology 37. Princeton: Princeton University Press.Google Scholar
Out, W. A. and Madella, M. 2015. Morphometric distinction between bilobate phytoliths from Panicum miliaceum and Setaria italica leaves. Archaeological and Anthropological Sciences 8(3):505521.Google Scholar
Palmer, C. and van der Veen, M. 2002. Archaeobotany and the social context of food. Acta Palaeobotanica 42(2):195202.Google Scholar
Panshin, A. J. and de Zeeuw, C. 1980. Textbook of Wood Technology. New York: McGraw Hill.Google Scholar
Pearsall, D. M. 1983. Evaluating the stability of subsistence strategies by use of paleoethnobotanical data. Journal of Ethnobiology 3(2):121137.Google Scholar
Pearsall, D. M. 2000. Paleoethnobotany: A Handbook of Procedures, 2nd ed. New York: Academic Press.Google Scholar
Pearsall, D. M. 2011. Phytoliths in the Flora of Ecuador: The University of Missouri Online Phytolith Database. http://phytolith.missouri.edu/ (accessed July 19, 2019).Google Scholar
Pearsall, D. M. 2015. Paleoethnobotany: A Handbook of Procedures, 3rd ed. Walnut Creek, CA: Left Coast Press.Google Scholar
Pearsall, D. M., Chandler-Ezell, K., and Zeidler, J. A. 2004. Maize in ancient Ecuador: Results of residue analysis of stone tools from the Real Alto site. Journal of Archaeological Science 31(4):423442.Google Scholar
Peña-Chocarro, L. Peña, L. Z., Urquijo, J. E. G., and Estévez, J. J. I. 2009. Einkorn (Triticum monococcum L.) cultivation in mountain communities of the Western Rif (Morocco): An ethnoarchaeological project. In: `Fairbairn, A. S. and `Weiss, E. (eds.) From Foragers to Farmers: Papers in Honour of Gordon C. Hillman, pp. 103111. Oxford: Oxbow Books.Google Scholar
Perry, L. 2004. Starch analyses reveal the relationship between tool type and function: An example from the Orinoco valley of Venezuela. Journal of Archaeological Science 31(8):10691081.Google Scholar
Perry, L., Dickau, R., Zarrillo, S., Holst, I., Pearsall, D. M., Piperno, D. R., Berman, M. J., Cooke, R. G., Rademaker, K., Ranere, A. J., Raymond, J. C., Sandweiss, D. H., Scaramelli, F., Tarble, K., and Zeidler, J. A. 2007. Starch fossils and the domestication and dispersal of chili peppers (Capsicum spp. L.) in the Americas. Science 315:986988.Google Scholar
Piperno, D. R. 1991. The status of phytolith analysis in the American tropics. Journal of World Prehistory 5(2):155191.Google Scholar
Piperno, D. R. 2006a. The origins of plant cultivation and domestication in the Neotropics: A behavioural ecology perspective. In: `Kennett, D. J. and `Winterhalder, B. (eds.) Behavioral Ecology and the Transition to Agriculture, pp. 137166. Berkeley: University of California Press.Google Scholar
Piperno, D. R. 2006b. Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists. Lanham, MD: AltaMira Press.Google Scholar
Piperno, D. R. and Dillehay, T. D. 2008. Starch grains on human teeth reveal early broad crop diet in northern Peru. Proceedings of the National Academy of Sciences 105:1962219627.Google Scholar
Piperno, D. R. and Jones, J. G. 2003. Paleoecological and archaeological implications of a Late Pleistocene/Early Holocene record of vegetation and climate from the Pacific coastal plain of Panama. Quaternary Research 59(1):7987.Google Scholar
Piperno, D. R. and Pearsall, D. M. 1993. The nature and status of phytolith analysis. In: `Pearsall, D. M. and `Piperno, D. R. (eds.) Current Research in Phytolith Analysis: Applications in Archaeology and Paleoecology, pp. 918. Philadelphia: University Museum of Archaeology and Anthropology, University of Pennsylvania.Google Scholar
Piperno, D. R., Weiss, E., Holst, I., and Nadel, D. 2004. Processing of wild cereal grains in the Upper Palaeolithic revealed by starch grain analysis. Nature 430:670673.Google Scholar
Power, M. J., Whitlock, C., Bartlein, P. J., and Stevens, L. 2006. Fire and vegetation history during the last 3800 years in northwestern Montana. Geomorphology 75:420436.Google Scholar
Ramsey, M. N., Rosen, A. M., and Nadel, D. 2017. Centered on the wetlands: Integrating new phytolith evidence of plant-use from the 23,000-year old site of Ohalo II, Israel. American Antiquity 84(2):702722.Google Scholar
Reddy, S. N. 1997. If the threshing floor could talk: integration of agriculture and pastoralism during the Late Harappan in Gujarat, India. Journal of Anthropological Archaeology 16:162187.Google Scholar
Reinhard, K. J., Geib, P. R., Callahan, M. M., and Hevly, R. H. 1992. Discovery of colon contents in a skeletonized burial: Soil sampling for dietary remains. Journal of Archaeological Science 19(6):697705.Google Scholar
Renfrew, J. 1973. Palaeoethnobotany: The Prehistoric Food Plants of the Near East and Europe. New York: Columbia University Press.Google Scholar
Revedin, A., Aranguren, B., Becattini, R., Longo, L., Marconi, E., Lippi, M. M., Skakun, N., Sinitsyn, A., Spiridonova, E., and Svoboda, J. 2010. Thirty-thousand-year-old evidence of plant food processing. Proceedings of the National Academy of Sciences 107(44):1881518819.Google Scholar
Riehl, S. 2009. Archaeobotanical evidence for the interrelationship of agricultural decizion-making and climate change in the ancient Near East. Quaternary International 19(1–2):93114.Google Scholar
Rindos, D. 1984. The Origins of Agriculture: An Evolutionary Perspective. New York: Academic Press.Google Scholar
Rösch, M. 2005. Pollen analysis of the contents of excavated vessels: Direct archaeobotanical evidence of beverages. Vegetation History and Archaeobotany 14(3):179188.Google Scholar
Rosen, A. M. and Weiner, S. 1994. Identifying irrigation: A new method using opaline phytoliths from emmer wheat. Journal of Archaeological Science 21(1):125132.Google Scholar
Saul, H., Madella, M., Fischer, A., Glykou, A., Hartz, S., and Craig, O. E. 2013. Phytoliths in pottery reveal the use of spice in European prehistoric cuizine. PLoS One 8(8):15.Google Scholar
Saul, H., Wilson, J., Heron, C. P., Glykou, A., Hartz, S., and Craig, O. E. 2012. A systematic approach to the recovery and identification of starches from carbonised deposits on ceramic vessels. Journal of Archaeological Science 39(12):34833492.Google Scholar
Scarry, C. M. and Steponaitis, V. P. 1997. Between farmstead and center: the natural and social landscape of Moundville. In: `Gremillion, K. J. (eds.) People, Plants, and Landscapes: Studies in Paleoethnobotany, pp. 107122. Tuscaloosa: University of Alabama Press.Google Scholar
Scheel-Ybert, R., Beauclair, M., and Buarque, A. 2014. The forest people: landscape and firewood use in the Araruama region (Southeastern Brazil) during the late Holocene. Vegetation History and Archaeobotany 23(2):97111.Google Scholar
Schlumbaum, A., Tensen, M., and Jaenicke-Després, V. 2008. Ancient plant DNA in archaeobotany. Vegetation History and Archaeobotany 17(2):233244.Google Scholar
Schoch, W. H., Pawlik, B., and Schweingruber, F. H. 1988. Botanische Makrorests/Botanical Macro-Remains/Macrorestes Botaniques. Berne and Stuttgart: Paul Haupt.Google Scholar
Smith, B. D. 2001. Low Level Food Production. Journal of Archaeological Research 9(1):143.Google Scholar
Smith, B. D. 2007. Niche construction and the behavioral context of plant and animal domestication. Evolutionary Anthropology 16(5):188199.Google Scholar
Smith, B. D. 2012. A cultural niche construction theory of initial domestication. Biological Theory 6(3):112.Google Scholar
Smith, B. D. 2015. A comparison of niche construction theory and diet breadth models as explanatory frameworks for the initial domestication of plants and animals. Journal of Archaeological Research 23(3):215262.Google Scholar
Steward, J. H. 1959. The concept and method of cultural ecology. Readings in Anthropology 2:8195.Google Scholar
Struever, S. 1968. Flotation techniques for recovery of small-scale archaeological remains. American Antiquity 33(3):353362.Google Scholar
Szymanski, R. M. and Morris, C. F. 2015. Internal structure of carbonized wheat (Triticum spp.) grains: relationships to kernel texture and ploidy. Vegetation History and Archaeobotany 24(4):503515.Google Scholar
Talay, L., Keller, D.A., and Munson, P. J. 1984. Hickory nuts, walnuts, butternuts, and hazelnuts: Observations and experiments relevant to their Aboriginal exploitation in eastern North America. In: `Munson, P. J. (ed.) Experiments and Observations on Aboriginal Wild Plant Food Utilization in Eastern North America, pp. 338359. Indianapolis: Prehistory Research Series, Vol. VI, No. 2. Indiana Historical Society.Google Scholar
Tester, R. F., Karkalas, J., and Qi, X. 2004. Starch: Composition, fine structure and architecture. Journal of Cereal Science 39(2):151165.Google Scholar
Théry-Parisot, I., Chabal, L., and Chrzavzez, J. 2010. Anthracology and taphonomy, from wood gathering to charcoal analysis: A review of the taphonomic processes modifying charcoal assemblages in archaeological contexts. Palaeogeography, Palaeoclimatology, Palaeoecology 291:142153.Google Scholar
Thiébault, S. 1997. Early Holocene vegetation and the human impact in central Provence (Var, France): Charcoal analysis of the Baume de Fontbrégoua. The Holocene 7(3):343349.Google Scholar
`Thiébault, S. (ed.) 2002. Charcoal analysis: Methodological Approaches, Palaeoecological Results and Wood Uses. Proceedings of the Second International Meeting of Anthracology. B.A.R. International Series 1063. Oxford: Archaeopress.Google Scholar
Torrence, R. 2006a. Description, classification, and identification. In: `Torrence, R. and `Barton, H. (eds.) Ancient Starch Research, pp. 115143. Walnut Creek, CA: Left Coast Press.Google Scholar
Torrence, R. 2006b. Starch in sediments. In: `Torrence, R. and `Barton, H. (eds.) Ancient Starch Research, pp. 145176. Walnut Creek, CA: Left Coast Press.Google Scholar
Torrence, R. and Barton, H. 2006. Ancient Starch Research. Walnut Creek, CA: Left Coast Press.Google Scholar
Trigger, B. G. 2006. A History of Archaeological Thought, 2nd ed. Cambridge: Cambridge University Press.Google Scholar
Tsartsidou, G., Lev-Yadun, S., Efstratiou, N., and Weiner, S. 2008. Ethnoarchaeological study of phytolith assemblages from an agro-pastoral village in northern Greece (Sarakini): Development and application of a phytolith difference index. Journal of Archaeological Science 35(3):600613.Google Scholar
Tsartsidou, G., Lev-Yadun, S., Efstratiou, N., and Weiner, S. 2009. Use of space in a Neolithic village in Greece (Makri): Phytolith analysis and comparison of phytolith assemblages from an ethnographic setting in the same area. Journal of Archaeological Science 36(10):23422352.Google Scholar
Valamoti, S. M. 2011. Grain for the dead? Archaeobotanical evidence from Mavropigi-Fylotsairi Kozanis. In: `Karametreou-Mentesidi, G. (ed.) The Archaeological Work in Upper Macedonia 1, 2009, pp. 245256. Kozani: Archaeological Ergo in Ano Macedonia.Google Scholar
Valamoti, S. M., Moniaki, A., and Karathanou, A. 2011. An investigation of processing and consumption of pulses among prehistoric societies: Archaeobotanical, experimental and ethnographic evidence from Greece. Vegetation History and Archaeobotany 20(5):381396.Google Scholar
Valamoti, S. M., Samuel, D., Bayram, M., and Marinova, E. 2008. Prehistoric cereal foods from Greece and Bulgaria: Investigation of starch microstructure in experimental and archaeological charred remains. Vegetation History and Archaeobotany 17 (Suppl. 1):S265S276.Google Scholar
van der Veen, M. 2007. Formation processes of desiccated and carbonized plant remains: The identification of routine practice. Journal of Archaeological Science 34(6):968990.Google Scholar
van der Veen, M. 2011. Consumption, Trade and Innovation: Exploring the Botanical Remains from the Roman and Islamic Ports at Qudseir Al-Qadim, Egypt. Frankfurt: Africa Magna Verlag.Google Scholar
VanDerwarker, A. M. and Detwiler, K. R. 2002. Gendered practice in Cherokee foodways: A spatial analysis of plant remains from the Coweeta Creek Site. Southeastern Archaeology 21(1):2128.Google Scholar
VanDerwarker, A. M., Scarry, M., and Eastman, J. M. 2007. Menus for families and feasts: Household and community consumption of plants at Upper Saratown, North Carolina. In: `Twiss, K. (ed.) Archaeology of Food and Identity, pp. 1649. Carbondale: Centre for Archaeological Investigations, Southern Illinois University.Google Scholar
Van Vilsteren, V. T. 1984. The medieval village of Dommelen: A case study for the interpretation of charred seeds from postholes. In: `van Zeist, W. and `Casparie, W. A. (eds.) Plants and Ancient Man, pp. 227235. Rotterdam: Balkema.Google Scholar
van Zeist, W. and Casparie, W. A. 1984. Plants and Ancient Man: Studies in Palaeoethnobotany. Rotterdam: Balkema.Google Scholar
van Zeist, W., Wasylikova, K., and Berhe, K.-E. 1991. Progress in Old World Palaeoethnobotany. Rotterdam: Balkema.Google Scholar
Vernet, J.-L., Ogereau, P., Figueiral, I., Machado Yanes, C., and Uzquiano, P. 2001. Guide d’identification des charbons de bois préhistoriques et récents: Sud-Ouest de l’Europe: France, Péninsule Ibérique et Îles Canaries. Paris: CNRS editions.Google Scholar
Wagner, G. E. 1988. Comparability among recovery techniques. In: `Hastorf, C. A. and `Popper, V. A. (eds.) Current Palaeoethnobotany, pp. 1735. Chicago: University of Chicago Press.Google Scholar
Walshaw, S. C. 2010. Converting to rice: urbanisation, Islamization and crops on Pemba Island, Tanzania, AD 700–1500. World Archaeology 42(1):137154.Google Scholar
Wasylikowa, K., Mitka, J., Wendorf, F., and Schild, R. 1997. Exploitation of wild plants by the early Neolithic hunter–gatherers of the Western Desert, Egypt: Nabta Playa as a case-study. Antiquity 71:932941.Google Scholar
Watson, P. J. 1976. In pursuit of prehistoric subsistence: A comparative account of some contemporary flotation systems. Mid-Continental Journal of Archaeology 1(1):77100.Google Scholar
Watson, P. J. 1997. The shaping of modern paleoethnobotany. In: `Gremillion, K. J. (ed.) People, Plants, and Landscapes: Studies in Paleoethnobotany, pp. 1322. Tuscaloosa: University of Alabama Press.Google Scholar
Watson, P. J. and Kennedy, M. C. 1991. The development of horticulture in the Eastern Woodlands of North America: Women’s role. In: `Gero, J. M. and `Conkey, M. W. (eds.) Engendering Archaeology: Women and Prehistory, pp. 255275. Oxford: Blackwell.Google Scholar
Weber, S. A. 1999. Seeds of urbanism: Palaeoethnobotany and the Indus Civilization. Antiquity 73:813826.Google Scholar
Weiss, E. and Kislev, M. E. 2004. Plant remains as indicators for economic activity: A case study from Iron Age Ashkelon. Journal of Archaeological Science 31(1):113.Google Scholar
Weiss, E., Kislev, M. E., Simchoni, O., Nadel, D., and Tschauner, H. 2008. Plant-food preparation area on an Upper Paleolithic brush hut floor at Ohalo II, Israel. Journal of Archaeological Science 35(8):24002414.Google Scholar
Welch, P. D. and Scarry, C. M. 1995. Status-related variation in foodways in the Moundville chiefdom. American Antiquity 60(3):397419.Google Scholar
Willcox, G. 2002. Evidence for ancient forest cover and deforestation from charcoal analysis of ten archaeological sites on the Euphrates. In: `Thiébault, S. (ed.) Charcoal Analysis. Methodological Approaches, Palaeoecological Results and Wood Uses, pp. 141145. BAR International Series 1063. Oxford: Archaeopress.Google Scholar
Willcox, G. 2012. Pre-domestic cultivation during the late Pleistocene and early Holocene in the northern Levant. In: `Gepts, P., `Famula, T. R., `Bettinger, R. L., `Brush, S. B., `Damania, A. B., `McGuire, P. E. and `Qualset, C. O. (eds.) Biodiversity in Agriculture: Domestication, Evolution and Sustainability, pp. 92109. Cambridge: Cambridge University Press.Google Scholar
Willcox, G., Nesbitt, M., and Bittmann, F. 2012. From collecting to cultivation: Transitions to a production economy in the Near East. (Editorial). Special Issue The Origins of Agriculture in the Near East. Vegetation History and Archaeobotany 21(2):8183.Google Scholar
Winterhalder, B. and Goland, C. 1997. An evolutionary ecology perspective on diet choice, risk, and plant domestication. In: `Gremillion, K. J. (ed.) People, Plants, and Landscapes: Studies in Paleoethnoboany, pp. 123160. Tuscaloosa: University of Alabama Press.Google Scholar
Wollstonecroft, M. M. 2002. The fruit of their labour: plants and plant processing at EeRb 140 (860 ± 60 uncal BP to 160± 50 uncal B.P.) a late prehistoric hunter-gatherer-fisher site on the southern Interior Plateau, British Columbia, Canada. Vegetation History and Archaeobotany 11(1–2):6170.Google Scholar
Wollstonecroft, M. M. 2011. Investigating the role of food processing in human evolution: A niche construction approach. Archaeological and Anthropological Sciences 3(1):141150.Google Scholar
Wright, P. J. 2003. Preservation or destruction of plant remains by carbonization? Journal of Archaeological Science 30(5):577583.Google Scholar
Wright, P. J. 2008. Understanding the carbonization and preservation of sunflower and sumpweed remains. Midcontinental Journal of Archaeology 33(2):137153.Google Scholar
Yang, X., Ma, Z., Li, Q., Perry, L., Huan, X., Wan, Z., Li, M., and Zheng, J. 2014a. Experiments with lithic tools: Understanding starch residues from crop harvesting. Archaeometry 56(5):828840.Google Scholar
Yang, X., Ma, Z., Wang, T., Perry, L., Li, Q., Huan, X., and Yu, J. 2014b. Chinese Science Bulletin 59(32):43524358.Google Scholar
Yang, X. Y., Yu, J. C., Lu, H. Y., Cui, T. X., Guo, J. N., and Ge, Q. S. 2009. Starch grain analysis reveals function of grinding stone tools at Shangzhai Site, Beijing. Science in China Series D, Earth Sciences 52(8):11641171.Google Scholar
Yarnell, R. A. 1970. Paleo-ethnobotany in America. In: `Brothwell, D. and `Higgs, E. (eds.) Science and Archaeology, pp. 215228. New York: Praeger.Google Scholar
Zarrillo, S., Pearsall, D. M., Raymond, J. S., Tisdale, M. A., and Quon, D. J. 2008. Directly dated starch residues document early formative maize (Zea mays L.) in tropical Ecuador. Proceedings of the National Academy of Sciences 105(13):50065011.Google Scholar
Zeder, M. A., Bradley, D. G., Emshwiller, E., and Smith, D. B. 2006. Documenting Domestication: New Genetic and Archaeological Paradigms. Berkeley: University of California Press.Google Scholar
Zohary, D. and Hopf, M. 2000. Domestication of Plants in the Old World, 3rd ed. New York: Oxford University Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×