Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-25T01:00:06.523Z Has data issue: false hasContentIssue false

Part IV - Environmental Archaeology

Published online by Cambridge University Press:  19 December 2019

Michael P. Richards
Affiliation:
Simon Fraser University, British Columbia
Kate Britton
Affiliation:
University of Aberdeen
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Archaeological Science
An Introduction
, pp. 213 - 332
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Albarella, U. 2003. Tawyers, tanners, horn trade and the mystery of the missing goat. In: `Murphy, P. and `Wiltshire, P. E. J. (eds.) The Environmental Archaeology of Industry, pp. 7186. Oxford: Oxbrow Books.Google Scholar
Albarella, U., Johnstone, C., and Vickers, K. 2008. The development of animal husbandry from the Late Iron Age to the end of the Roman period: A case study from South-East Britain. Journal of Archaeological Science 35(7):18281848.Google Scholar
Alen, A. and Ervynck, A. 2005. The large scale and specialised late medieval urban craft of marrow extraction: Archaeological and historical evidence from Malines (Belgium), confronted with experimental work. In: `Mulville, J. and `Outram, A. K. (eds.) The Zooarchaeology of Fats, Oils, Milk and Dairying, pp. 193200. Oxford: Oxbow Books.Google Scholar
Antikas, T. G. 2008. They didn’t shoot horses: Fracture management in a horse of the 5th century BC from Sindos, Central Macedonia, Greece. Veterinarija and Zootechnika 42:2427.Google Scholar
Ashby, S. 2002. The role of zooarchaeology in the interpretation of socioeconomic status: A discussion with reference to medieval Europe. Archaeological Review from Cambridge 18:3759.Google Scholar
Bartosiewicz, L. 2006. Taphonomy and palaeopathology in archaeozoology. Geobios 41(2008):6977.CrossRefGoogle Scholar
Balasse, M. and Ambrose, S. 2005. Distinguishing sheep and goats using dental morphology and stable carbon isotopes in C4 grassland environments. Journal of Archaeological Science 32:691702.CrossRefGoogle Scholar
Boëda, E., Geneste, J.-M., Griggo, C., Mercier, N., Muhesen, S., Reyss, J. L., Taha, A., and Valladas, H. 1999. A Levallois point embedded in the vertebra of a wild ass (Equus africanus): Hafting, projectile and Mousterian hunting weapons. Antiquity 73(1999):394402.Google Scholar
Boessneck, J. 1969. Osteological differences between sheep (Ovis aries Linné) and goats (Capra hircus Linné). In: `Brothwell, D. and `Higgs, E. S. (eds.) Science in Archaeology, pp. 331358. London: Thames and Hudson.Google Scholar
Bökönyi, S. 1970. A new method for determining the number of individuals in animal bone material. American Journal of Archaeology 74:291292.Google Scholar
Bond, J. M. and O’Connor, T. P. 1999. Bones from Medieval Deposits at 16–22 Coppergate and Other Sites in York. York: Council for British Archaeology.Google Scholar
Clason, A. T. and Prummel, W. 1977. Collecting, sieving, and archaeozoological research. Journal of Archaeological Science 4:171175.Google Scholar
Crabtree, P. 1990. Zooarchaeology and complex societies: Some uses of faunal analysis for the study of trade, social status, and ethnicity. Archaeological Method and Theory 2:155205.Google Scholar
Daróczi-Szabó, L. 2002. Animal bones as indicators of Kosher food refuse from 14th Century AD Buda, Hungry. In: `Jones O’Day, S., `Van Neer, W., and `Ervynck, A. (eds.) Behaviour Behind Bones: The Zooarchaeology of Ritual, Religion, Status and Identity, pp. 252261. Oxford: Oxbow Books.Google Scholar
Darwin, C. 1868. The Variation of Animals and Plants under Domestication. 2 vols. London: John Murray.Google Scholar
Davis, S. J. 1987. The Archaeology of Animals. New Haven: Yale University Press.Google Scholar
Dobney, K., Anezaki, T., Hongo, H., Matsui, A., Yamazaki, K., Ervynck, A., Albarella, U., and Rowley-Conwy, P. 2005. The transition from wild boar to domestic pig as illustrated by dental enamel defects (LEH): A Japanese case study including the site of Torihama. Torihama Shell Midden Papers 4, 5:5178.Google Scholar
Dobney, K., Ervynck, A., Albarella, U., and Rowley-Conwy, P. 2004. The chronology and frequency of a stress marker (linear enamel hypoplasia) in recent and archaeological populations of Sus scrofa in north-west Europe, and the effects of early domestication. Journal of Zoology 264:197208.Google Scholar
Dobney, K., Ervynck, A., Albarella, U., and Rowley-Conwy, P. 2007. The transition from wild boar to domestic pig in Eurasia, illustrated by a tooth developmental defect and biometric data. In: `Albarella, U., `Dobney, K., `Ervynck, A. and `Rowley-Conwy, P. (eds.) Pigs and Humans: 10,000 Years of Interaction, pp. 5782. Oxford: Oxford University Press.Google Scholar
Dobney, K., Hall, A. R., Kenward, H. K., and Milles, A. 1992. A working classification of sample types for environmental archaeology. Circaea 9:2426.Google Scholar
Dobney, K. and Reilly, K. 1988. A method for recording information about mammal bones: The use of diagnostic zones. Circaea 5(2):7996.Google Scholar
Enloe, J. G. 1993. Ethnoarchaeology of marrow cracking: Implications for the recognition of prehistoric subsistence organization. In: `Hudson, J. (ed.) From Bones to Behavior: Ethnoarchaeological and Experimental Contributions to the Interpretation of Faunal Remains, pp. 82100. Occasional Paper No. 21, Center for Archaeological Investigations, Southern Illinois University at Carbondale, Illinois.Google Scholar
Ervynck, A., Dobney, K., Hongo, H., and Meadow, R. 2001. Born free? New evidence of the status of pigs at Neolithic çayönü Tepesi Southeastern Anatolia, Turkey. Palaeorient 27:4773.Google Scholar
Ervynck, A. Hillewaert, A. Maes, A., and Van Strydonck, M. 2003. Tanning and horn working at late and post-medieval Bruges: The organic evidence. In: `Murphy, P. and `Wiltshire, P. E. J. (eds.) The Environmental Archaeology of Industry, pp. 6070. Oxford: Oxbow Books.Google Scholar
Evin, A., Dobney, K., Schafberg, R., Owen, J., Strand Vidarsdottir, U., Larson, G., and Cucchi, T. 2015. Phenotype and animal domestication: A study of dental variation between domestic, wild, captive, hybrid and insular Sus scrofa. BMC Evolutionary Biology 15:6.Google Scholar
Gordon, E. A. 1993. Screen size and differential faunal recovery: A Hawaiian example. Journal of Field Archaeology 20(4):453460.Google Scholar
Grant, A. 1982. The use of tooth wear as a guide to the age of domestic ungulates. In: `Wilson, B., `Grigson, C., and `Payne, S. (eds.) Aging and Sexing Animal Bone from Archaeological Sites, pp. 91108. BAR International series 109. Oxford: BAR.Google Scholar
Grant, A. 1988a. Animal resources. In: `Astill, G. and `Grant, A. (eds.) The Countryside in Medieval England, pp. 149187. Oxford: Basil Blackwell.Google Scholar
Grant, A. 1988b. Food, status and religion in England in the Middle Ages: An archaeozoological perspective. In: `Bodson, L. (ed.) L’animal dans l’alimentation humaine: Les criteres de choix, pp. 139146. Actes du colloque international de Liège. Paris: HASRI.Google Scholar
Grayson, D. K. 1984. Quantitative Zooarchaeology. New York: Academic Press.Google Scholar
Hill, M. E., Hill, M. G., and Widge, C. G. 2008. Late Quaternary Bison diminution on the Great Plains of North America: Evaluating the role of human hunting versus climate change. Quaternary Science Reviews 27(17–18):17521771.Google Scholar
Hillson, S. 1986. Teeth. Cambridge: Cambridge University Press.Google Scholar
Klein, R. G. and Cruz-Uribe, K. 1984. The Analysis of Animal Bones from Archaeological Sites. Chicago: University of Chicago Press.Google Scholar
Legge, A. J. and Rowley-Conwy, P. 1987. Gazelle killing in Stone Age Syria. Scientific American 257(2):8895.Google Scholar
Legge, A. J. and Rowley-Conwy, P. 2000. The exploitation of animals. In: `Moore, G. C. `Hillman, A. M. T., and `Legge, A. J. (eds.) Village on the Euphrates, pp. 475525. Oxford: Oxford University Press.Google Scholar
Lippold, S., Matzke, N. J., Reissmann, M., and Hofreiter, M. 2011. Whole mitochondrial genome sequencing of domestic horses reveals incorporation of extensive wild horse diversity during domestication. BMC Evolutionary Biology 11:328.Google Scholar
Lyman, R. L. 1994a. Vertebrate Taphonomy. Cambridge: Cambridge University Press.Google Scholar
Lyman, R. L. 1994b. Quantitative units and terminology in zooarchaeology. American Antiquity 59(1):3671.Google Scholar
MacGregor, A. and Mainman, A. 2001. The bone and antler industry in Anglo-Scandinavian York: The evidence from Coppergate. In: `Choyke, A. M. and `Bartosiewicz, L. (eds.) Crafting Bone: Skeletal Technologies through Time and Space. Proceedings of the 2nd meeting of the (ICAZ) Worked Bone Research Group, Budapest, pp. 343347. BAR International Series 937. Oxford: Archaeopress.Google Scholar
Martin, L., Edwards, Y., and Garrard, A. 2010. Hunting practices at an Eastern Jordanian Epipalaeolithic aggregation site: The case of Kharaneh IV. Levant 42(2): 107135.Google Scholar
Mateos, A. 2005. Meat and fat: Intensive exploitation strategies in the Upper Palaeolithic approached from bone fracturing analysis. In: `Mulville, J. and `Outram, A. K. (eds.) The Zooarchaeology of Fats, Oils, Milk and Dairying, pp. 150159. Oxford: Oxbow Books.Google Scholar
Münzel, S. C. 1988. Quantitative analysis and archaeological site interpretation. Archaeozoologia 2(1,2):93110.Google Scholar
Nichol, R. K. and Wild, C. J. 1984. “Numbers of individuals” in faunal analysis: The decay of fish bone in archaeological sites. Journal of Archaeological Science 11(1):3551.Google Scholar
Noe-Nygaard, N. 1977. Butchering and marrow fracturing as a taphonomic factor in archaeological deposits. Paleobiology 3:218237.Google Scholar
O’Connor, T. P. 2000. Bones as evidence of meat production and distribution in York. In: `White, E. (ed.) Feeding a City: York. The Provision of Food from Roman Times to the Beginning of the Twentieth Century, pp. 4360. Devon, UK: Prospect Books.Google Scholar
`O’Day, S. J., `Van Neer, W., and `Ervynck, A. (eds.) 2004. Behaviour behind bones: The zooarchaeology of ritual, religion, status and identity. Proceedings of the 9th ICAZ Conference, Durham 2002, Vol. 1. Oxford: Oxbow Books.Google Scholar
Outram, A. K. 2005. Distinguishing bone fat exploitation from other taphonomic processes: What caused the high level of bone fragmentation at the Middle Neolithic site of Ajvide, Gotland? In: `Mulville, J. and `Outram, A. K. (eds.) The Zooarchaeology of Fats, Oils, Milk and Dairying, pp. 3243. Oxford: Oxbow Books.Google Scholar
Payne, S. 1969. A metrical distinction between sheep and goat metacarpals. In: `Ucko, P. J. and `Dimbleby, G. W. (eds.) The Domestication and Exploitation of Plants and Animals, pp. 295305. London: Duckworth.Google Scholar
Payne, S. 1972. Partial recovery and sample bias: The results of some sieving experiments. In: `Higgs, E. S. (ed.) Papers in Economic Prehistory, pp. 4964. Cambridge: Cambridge University Press.Google Scholar
Payne, S. 1973. Kill-off patterns in sheep and goats. The mandibles from Asvan Kale. Anatolian Studies 23:281303.Google Scholar
Perdikaris, S., Hambrecht, G., Brewington, S., and McGovern, T. H. 2007. Across the fish event horizon: A comparative approach. In: `Plogmann, H. (ed.) The Role of Fish in Ancient Time. Proceedings of the 13th Meeting of the ICAZ Fish Remains Working Group, August 2005, Basel, pp. 5162. Rahden: Leidorf.Google Scholar
Peres, T. M. 2010. Methodological issues in zooarchaeology. In: `VanDerwarker, A. M. and `Peres, T. M. (eds.) Integrating Zooarchaeology and Paleoethnobotany: A Consideration of Issues, Methods, and Cases, pp. 1536. New York: Springer.Google Scholar
Perkins, D. 1973. A critique on the methods of quantifying faunal remains from archaeological sites. In: `Matolcsi, J. (ed.) Domestikationsforschung und Geschichte der Haustiere, pp. 367369. Budapest: Akadémiai Kiadö.Google Scholar
Reitz, E. J. and Wing, E. S. 2008. Zooarchaeology, 2nd ed. Cambridge: Cambridge University Press.Google Scholar
Rowley-Conwy, P. 1995. Meat, furs and skins: Mesolithic animal bones from Ringkloster, a seasonal hunting camp in Jutland. Journal of Danish Archaeology 12:8798.Google Scholar
Rowley-Conwy, P. 1998. Improved separation of Neolithic metapodials of sheep (Ovis) and goats (Capra) from Arene Candide Cave, Liguria, Italy. Journal of Archaeological Science 25:251258.Google Scholar
Rowley-Conwy, P. and Dobney, K. 2007. Wild boar and domestic pigs in Mesolithic and Neolithic southern Scandinavia. In: `Albarella, U., `Dobney, K., `Ervynck, A., and `Rowley-Conwy, P. (eds.) Pigs and Humans: 10,000 Years of Interaction, pp. 131155. Oxford: Oxford University Press.Google Scholar
`Ruscillo, D. (ed.) 2005. Recent Advances in Ageing and Sexing Animal Bones. Proceedings of the 9th ICAZ Conference, Durham. Oxford: Oxbow Books.Google Scholar
Saint-Germain, C. 2005. Animal fat in the cultural world of the native peoples of Northeastern America. In: `Mulville, J. and `Outram, A. K. (eds.) The Zooarchaeology of Fats, Oils, Milk and Dairying, pp. 107113. Oxford: Oxbow Books.Google Scholar
Schmid, E. 1972. Atlas of Animals Bones for Prehistorians, Archaeologists and Quaternary Geologists. Amsterdam: Elsevier Science Publishers.Google Scholar
Shaffer, B. S. 1992. Quarter-inch screening: Understanding biases in recovery of vertebrate faunal remains. American Antiquity 57(1):129136.Google Scholar
Shaffer, B. S. and Sanchez, J. L. 1994. Comparison of 1/8 and 1/4 mesh recovery of controlled samples of small-to-medium-sized mammals. American Antiquity 59(3):525530.Google Scholar
Silver, I. A. 1970. The aging of domestic animals. In: `Brothwell, D. R. and `Higgs, E. S. (eds.) Science in Archaeology: A Survey of Progress and Research, 2nd ed., pp. 283302. New York: Praeger PublishingGoogle Scholar
von den Driesch, A. 1976. A Guide to the Measurement of Animal Bones from Archaeological Sites. Peabody Museum Bulletin 1. Cambridge, Massachusetts: Harvard University Press.Google Scholar
von den Driesch, A., Kessler, D., and Peters, J. 2004. Mummified baboons and other primates from the Saitic-Ptolemaic animal necropolis of Tuna el-Gebel. Middle Egypt. Documenta Archaeobiologicae: Conservation Policy and Current Research 2:231278.Google Scholar
Weissbrod, L. and Bar-Oz, G. 2002. Caprines and toads: Taphonomic patterning of animal offering practices in a Late Bronze Age burial assemblage. In: `Jones O’Day, S., `Van Neer, W., and `Ervynck, A. 2002. Behaviour behind Bones: The Zooarchaeology of Ritual, Religion, Status and Identity, pp. 2024. Oxford: Oxbow Books.Google Scholar
West, B. 1995. The case of the missing victuals. Historical Archaeology 29:2042Google Scholar
White, T. E. 1953. A method for calculating the dietary percentage of various food animals utilized by Aboriginal people. American Antiquity 18(4):396398.Google Scholar
Wilson, J. P. N. 1978. The interpretation of epiphysial fusion data. In: `Brothwell, D. R., `Thomas, K. D., and `Clutton-Brock, J. (eds.) Research Problems in Zooarchaeology, pp. 97101. Institute of Archaeology Occasional Publication 3. London: University of London.Google Scholar
Wing, E. S. and Quitmyer, I. R. 1985. Screen size for optimal data recovery: A case study. In: `Adams, W. H. (ed.) Aboriginal Subsistence and Settlement Archaeology of the Kings Bay Locality, Vol. 2: Zooarchaeology, pp. 4958. Reports of Investigations No. 2. Department of Anthropology, University of Florida, Gainesville.Google Scholar
Zeder, M. A. 2006. Archaeological approaches to documenting animal domestication. In: `Zeder, M. A., `Emshwiller, E., `Smith, B. D., and `Bradley, D. G. (eds.) Documenting Domestication, pp. 171180. Berkeley: University of California Press.Google Scholar
Zeder, M. A. 2008. Domestication and early agriculture in the Mediterranean Basin: Origins, diffusion, and impact. Proceedings of the National Academy of Sciences 105(33):1159711604.Google Scholar
Zohar, I. and Cooke, R. G. 1997. The impact of salting and drying on fish bones: Preliminary observations on four marine species from Parita Bay, Panamá. Archaeofauna 6:5966.Google Scholar

References

Adams, M. E. and Jenkins, D. L. 2017. An early Holocene record of Cimex (Hemiptera: Cimicidae) from western North America. Journal of Medical Entomology 54:934944.Google Scholar
`Allen, M. J. (ed.) 2017a. Molluscs in Archaeology: Methods, Approaches and Applications. Oxford: Oxbow Books.Google Scholar
Allen, M. J. 2017b. The geoarchaeology of context: Sampling for land snails (on archaeological sites and colluvium). In: `Allen, M. J. (ed.) Molluscs in Archaeology: Methods, Approaches and Applications, pp. 3047.Oxford: Oxbow Books.Google Scholar
Álvarez-Fernández, E., Ontañón-Peredo, R., and Molares-Vila, J. 2010. Archaeological data on the exploitation of the goose barnacle Pollicipes pollicipes (Gmelin, 1790) in Europe. Journal of Archaeological Science 37:402408.Google Scholar
Andersen, S. H. 2000. ‘Køkkenmøddinger’ (shell middens) in Denmark: A survey. Proceedings of the Prehistoric Society 66:361384.Google Scholar
Andrews, M. V., Gilbertson, D. D., and Mellars, P. A. 1985. Biometric studies of morphological variation in the intertidal gastropod Nucella lapillus (L): Environmental and palaeoeconomic significance. Journal of Biogeography 12:7187.Google Scholar
Andrus, C. F. T. 2011. Shell midden sclerochronology. Quaternary Science Reviews 30:28922905.Google Scholar
Arriaza, B., Orellana, N. C., Barbosa, H. S., Menna-Barreto, R. F. S., Araújo, A., and Standen, V. 2012. Severe head lice infestation in an Andean mummy of Arica, Chile. Journal of Parasitology 98:433436.Google Scholar
Aspöck, H., Auer, H., Picher, O., and Platzer, W. 2000. Parasitological examination of the Iceman. In: `Bortenschlager, S. and `Oeggl, K. (eds.) The Iceman and his Natural Environment, pp. 127136. Vienna: Springer Verlag.Google Scholar
Atkinson, T. C., Briffa, K. R., Coope, G. R., Joachim, M., and Perry, D. W. 1986. Climatic calibration of coleopteran data. In: `Berglund, B. (ed.) Handbook of Holocene Palaeoecology and Palaeohydrology, pp. 851858. New York: Wiley.Google Scholar
Bailey, G. 1993. Shell mounds in 1972 and 1992: Reflections on recent controversies at Ballina and Weipa. Australian Archaeology 37:218.Google Scholar
Bailey, G. N. and Craighead, A. S. 2003. Late Pleistocene and Holocene coastal palaeoeconomies: A reconsideration of the molluscan evidence from Northern Spain. Geoarchaeology 18: 175204.Google Scholar
Bajnóczi, B., Schöll-Barna, G., Kalicz, N., Siklósi, Z., Hourmouziadis, G. H., Ifantidis, F., Kyparissi-Apostolika, A., Pappa, M., Veropoulidou, R., and Ziota, C. 2013. Tracing the source of Late Neolithic Spondylus shell ornaments by stable isotope geochemistry and cathodoluminescence microscopy. Journal of Archaeological Science 40:874882.CrossRefGoogle Scholar
Baker, A. S. 2009. Acari in archaeology. Experimental and Applied Acarology 49:147160.Google Scholar
Barnes, R. S. K., Calow, P., Olive, P. J. W., Golding, D. W., and Spicer, J. I. 2001. The Invertebrates: A Synthesis, 3rd ed. Oxford: Blackwell Science.Google Scholar
Barrett, J., Hall, A., Johnstone, C., Kenward, H., O’Connor, T., and Ashby, S. 2007. Interpreting the plant and animal remains from Viking-age Kaupang. In: `Skre, D. (ed.) Kaupang in Skiringssal, pp. 283310. Aarhus: Aarhus University Press and The Kaupang Excavation Project, University of Oslo.Google Scholar
`Bar-Yosef Mayer, D. E. (ed.) 2005. Archaeomalacology: Molluscs in Former Environments of Human Behaviour. Oxford: Oxbow Books.Google Scholar
Bianucci, R., Mattutino, G., Lallo, R., Charlier, P., Jouin-Spriet, H., Peluso, A., Higham, T., Torre, C., and Rabino Massa, E. 2008. Immunological evidence of Plasmodium falciparum infection in an Egyptian child mummy from the Early Dynastic Period. Journal of Archaeological Science 35:18801885.CrossRefGoogle Scholar
Black, H. D., Andrus, C. F. T., Lambert, W. J., Rick, T. C., and Gillikin, D. P. 2017. δ15N values in Crassostrea virginica shells provides early direct evidence for nitrogen loading to Chesapeake Bay. Scientific Reports 7:44241.Google Scholar
Bonizzoni, L., Bruni, S., Girod, A., and Guglielmi, V. 2009. Archaeometric study of shells of Helicidae from the Edera cave (northeastern Italy). Archaeometry 51:151173.Google Scholar
Bonomo, M. and Aguirre, M. L. 2009. Holocene molluscs from archaeological sites of the Pampean region of Argentina: Approaches to past human uses. Geoarchaeology 24:5985.Google Scholar
Bosch, M. D., Mannino, M. A., Prendergast, A. L., Wesselingh, F. P., O’Connell, T. C., and Hublin, J.-J. 2017. Year-round shellfish exploitation in the Levant and implications for Upper Palaeolithic hunter-gatherer subsistence. Journal of Archaeological Science: Reports.Google Scholar
Bosch, M. D., Wesselingh, F. P., and Mannino, M. A. 2015. The Ksâr Άkil (Lebanon) mollusc assemblage: Zooarchaeological and taphonomic investigations on Upper Palaeolithic shells. Quaternary International 390:85101.Google Scholar
Buckland, P. C., Panagiotakopulu, E., and Sveinbjarnardóttir, G. 2009. A failed invader in the North Atlantic, the case of Aglenus brunneus Gyll. (Col., Colydiidae), a blind flightless beetle from Iceland. Biological Invasions 11:12391245.Google Scholar
Burchell, M., Hallmann, N., Martindale, A., Cannon, A., and Schöne, B. R. 2013. Seasonality and intensity of shellfish harvesting on the north coast of British Columbia. Journal of Island and Coastal Archaeology 8:152169.Google Scholar
Campbell, G. 2008. Sorry, wrong phylum: A neophyte archaeomalacologist’s experiences in analyzing a European Atlantic sea urchin assemblage. Archaeofauna 17:7790.Google Scholar
Campbell, G. 2017. The collection, processing and curation of archaeological marine shells. In: `Allen, M.J. (ed.) Molluscs in Archaeology: Methods, Approaches and Applications, pp. 273288. Oxford: Oxbow Books.Google Scholar
Cannon, A. and Burchell, M. 2009. Clam growth-stage profiles as a measure of harvest intensity and resource management on the central coast of British Columbia. Journal of Archaeological Science 36:10501060.Google Scholar
Carré, M., Bentaleb, I., Blamart, D., Ogle, N., Cardenas, F., Zevallos, S., Kalin, R.M., Ortlieb, L., and Fontugne, M. 2005. Stable isotopes and sclerochronology of the bivalve Mesodesma donacium: Potential application to Peruvian paleoceanographic reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology 228:425.Google Scholar
Carré, M., Sachs, J. P., Purca, S., Schauer, A. J., Braconnot, P., Falcón, R. A., Julien, M., and Lavallée, D. 2014. Holocene history of ENSO variance and asymmetry in the eastern tropical Pacific. Science 345: 10451048.Google Scholar
Carrott, J. and Kenward, H. 2001. Species associations among insect remains from urban archaeological deposits and their significance in reconstructing the past human environment. Journal of Archaeological Science 28:887905.Google Scholar
Carter, S. P. 1990. The stratification and taphonomy of shells in calcareous soils: Implications for land snail analysis in archaeology. Journal of Archaeological Science 17:495507.Google Scholar
Claassen, C. 1998. Shells. Cambridge: Cambridge University Press.Google Scholar
Colonese, A. C. 2017. Stable isotope ecology of terrestrial gastropod shells. In: `Allen, M. J. (ed.) Molluscs in Archaeology: Methods, Approaches and Applications, pp. 400413. Oxford: Oxbow Books.Google Scholar
Colonese, A. C., Mannino, M. A., Bar-Yosef Mayer, D. E., Fa, D. A., Finlayson, J. C., Lubell, D., and Stiner, M. C. 2011. Marine mollusc exploitation in Mediterranean prehistory: An overview. Quaternary International 239:86103.Google Scholar
Colonese, A. C., Netto, S. A., Francisco, A. S., DeBlasis, P., Villagran, X. S., de Almeida Rocha Ponzoni, R., Hancock, Y., Hausmann, N., Sunderlick Eloy de Farias, D., Prendergast, A., Schöne, B., William da Cruz, F., and Fonseca Giannini, P. C. 2017. Shell sclerochronology and stable isotopes of the bivalve Anomalocardia flexuosa (Linnaues, 1767) from southern Brazil: Implications for environmental and archaeological studies. Palaeogeography, Palaeoclimatology, Palaeoecology 484:721.Google Scholar
Colonese, A. C., Zanchetta, G., Fallick, A. E., Martini, F., Manganelli, G., and Drysdale, R. N. 2009. Stable isotope composition of Helix ligata (Müller, 1774) from Late Pleistocene-Holocene archaeological record from Grotta della Serratura (Southern Italy): Palaeoclimatic implications. Global and Planetary Change 71:249257.Google Scholar
Coope, G. R. and Kenward, H. K. 2007. Evidence from coleopteran assemblages for a short but intense cold interlude during the latter part of the MIS11 Interglacial from Quinton, West Midlands, UK. Quaternary Science Reviews 26:32763285.Google Scholar
Crabtree, P. J., Reilly, E., Wouters, B., Devos, Y., Bellens, T., and Schryvers, A. 2017. Environmental evidence from early urban Antwerp: New data from archaeology, micromorphology, macrofauna and insect remains. Quaternary International 460:108123.Google Scholar
Culleton, B. J., Kennett, D. J., and Jones, T. L. 2009. Oxygen isotope seasonality in a temperate estuarine shell midden: A case study from CA-ALA-17 on the San Francisco Bay, California. Journal of Archaeological Science 36:13541363.Google Scholar
Davies, P. 2008. Snails: Archaeology and Landscape Change. Oxford: Oxbow Books.Google Scholar
Davis, L. G. and Muehlenbachs, K. 2001. A Late Pleistocene to Holocene record of precipitation reflected in Margaritifera falcata shell δ18O from three archaeological sites in the Lower Salmon River Canyon, Idaho. Journal of Archaeological Science 28:291303.Google Scholar
Deith, M. R. 1983. Molluscan calendars: The use of growth-line analysis to establish seasonality of shellfish collection at the Mesolithic site of Morton, Fife. Journal of Archaeological Science 10:423440.Google Scholar
Deith, M. R. 1986. Subsistence strategies at a Mesolithic camp site: Evidence from stable isotope analyses of shells. Journal of Archaeological Science 13:6178.Google Scholar
Demarchi, B., O’Connor, S., de Lima Ponzoni, A., de Almeida Rocha Ponzoni, R., Sheridan, A., Penkman, K., Hancock, Y., and Wilson, J. 2014. An integrated approach to the taxonomic identification of prehistoric shell ornaments. PloS One 9(6):e99839.Google Scholar
d’Errico, F., Vanhaeren, M., and Wadley, L. 2008. Possible shell beads from the Middle Stone Age layers of Sibudu Cave, South Africa. Journal of Archaeological Science 35:26752685.CrossRefGoogle Scholar
Douka, K. 2017. Radiocarbon dating of marine and terrestrial shell. In: `Allen, M. J. (ed.) Molluscs in Archaeology: Methods, Approaches and Applications, pp. 381399. Oxford: Oxbow Books.Google Scholar
Dupont, C. 2006. La malacofaune de sites mésolithiques et néolithiques de la façade atlantique: contribution à l’économie et à l’identité culturelle des groupes concernés. British Archaeological Reports S1571. Oxford: Archaeopress.Google Scholar
Eerkens, J. W., Herbert, G. S., Rosenthal, J. S., and Spero, H. J. 2005. Provenance analysis of Olivella biplicata shell beads from the California and Oregon Coast by stable isotope fingerprinting. Journal of Archaeological Science 32:15011514.Google Scholar
Elias, S. A. 1994. Quaternary Insects and their Environments. Washington D.C.: Smithsonian Institution Press.Google Scholar
Elias, S. A., 2010. Advances in Quaternary Entomology. Developments in Quaternary Sciences 12. Amsterdam: Elsevier.Google Scholar
Elias, S. A., Webster, L., and Amer, M. 2009. A beetle’s eye view of London from the Mesolithic to Late Bronze Age. Geological Journal 44:537567.Google Scholar
Erlandson, J. M. 2013. Shell middens and other anthropogenic soils as global stratigraphic signatures of the Anthropocene. Anthropocene 4:2432.Google Scholar
Erlandson, J. M. and Moss, M. L. 2001. Shellfish feeders, carrion eaters, and the archaeology of aquatic adaptations. American Antiquity 66:413432.Google Scholar
Erlandson, J. M., Rick, T. C., Braje, T. J., Steinberg, A., and Vellanoweth, R. L. 2008. Human impacts on ancient shellfish: A 10,000 year record from San Miguel Island, California. Journal of Archaeological Science 35:21442152.Google Scholar
Evans, J. G. 1972. Land Snails in Archaeology. London: Seminar Press.Google Scholar
Faulkner, P. 2009. Focused, intense and long-term: Evidence for granular ark (Anadara granosa) exploitation from late Holocene shell mounds of Blue Mud Bay, northern Australia. Journal of Archaeological Science 36:821834.Google Scholar
Fernández-López de Pablo, J., Badal, E., Ferrer García, C., Martínez-Ortí, A., and Sanchis Serra, A. 2014. Land snails as a diet diversification proxy during the early Upper Palaeolithic in Europe. PLoS One 9(8):e104898.Google Scholar
Fitzgerald, R. T., Jones, T. L., and Schroth, A. 2005. Ancient long-distance trade in Western North America: New AMS radiocarbon dates from Southern California. Journal of Archaeological Science 32:423434.Google Scholar
Forbes, V., Dugmore, A. J., and Ólafsson, E. 2016. The life and death of barn beetles: Faunas from manure and stored hay inside farm buildings in northern Iceland. Ecological Entomology 41:480499.Google Scholar
Giovas, C. M., Fitzpatrick, S. M., Clark, M., and Abed, M. 2010. Evidence for size increase in an exploited mollusc: Humped conch (Strombus gibberulus) at Chelechol ra Orrak, Palau from ca. 3000–0 BP. Journal of Archaeological Science 37:27882798.Google Scholar
Goodfriend, G. A. 1992. The use of land snail shells in paleoenvironmental reconstruction. Quaternary Science Reviews 11:665685.Google Scholar
Gutiérrez Zugasti, F. I. 2009. La explotación de moluscos y otros recursos litorales en la región cantábrica durante el Pleistoceno final y el Holoceno inicial. Santander: Ediciones de la Universidad de Cantabria.Google Scholar
Hallmann, N., Burchell, M., Schöne, B. R., Irvine, G. V., and Maxwell, D. 2009. High-resolution sclerochronological analysis of the bivalve mollusk Saxidomus gigantea from Alaska and British Columbia: Techniques for revealing environmental archives and archaeological seasonality. Journal of Archaeological Science 36:23532364.Google Scholar
Hardy, K., Camara, A., Piqué, R., Dioh, E., Guèye, M., Diadhiou, H. D., Faye, M., and Carré, M. 2016. Shellfishing and shell midden construction in the Saloum Delta, Senegal. Journal of Anthropological Archaeology 41:1932.Google Scholar
Hausmann, N. and Meredith-Williams, M. 2017. Exploring accumulation rates of shell deposits through seasonality data. Journal of Archaeological Method and Theory 24:776795.Google Scholar
Hawass, Z., Gad, Y. Z., Ismail, S., Khairat, R., Fathalla, D., Hasan, N., Ahmed, A., Elleithy, H., Ball, M., Gaballah, F., Wasef, S., Fateen, M., Amer, H., Gostner, P., Selim, A., Zink, A., and Pusch, C. M. 2010. Ancestry and pathology in King Tutankhamun’s family. Journal of the American Medical Association 303:8647.Google Scholar
Hunt, C. O. and Hill, E. A. 2017. Caves and molluscs. In: `Allen, M. J. (ed.) Molluscs in Archaeology: Methods, Approaches and Applications, pp. 100110. Oxford: Oxbow Books.Google Scholar
Jerardino, A. 1997. Changes in shellfish species composition and mean shell size from a Late-Holocene record of the west coast of Southern Africa. Journal of Archaeological Science 24:10311044.Google Scholar
Jerardino, A. and Marean, C. W. 2010. Shellfish gathering, marine paleoecology and modern human behavior: Perspectives from cave PP13B, Pinnacle Point, South Africa. Journal of Human Evolution 59:412424.Google Scholar
Jerardino, A. and Navarro, R. 2002. Cape rock lobster (Jasus lalandii) remains from South African west coast shell middens: Preservational factors and possible bias. Journal of Archaeological Science 29:993999.Google Scholar
Joordens, J. C. A, d’Errico, F., Wesselingh, F. P., Munro, S., de Vos, J., Wallinga, J., Ankjærgaard, C., Reimann, T., Wijbrans, J. R., Kuiper, K. F., Mücher, H. J., Coqueugniot, H., Prié, V., Joosten, I., van Os, B., Schulp, A. S., Panuel, M., van der Haas, V., Lustenhouwer, W., Reijmer, J. J. G., and Roebroeks, W. 2015. Homo erectus at Trinil on Java used shells for tool production and engraving. Nature 518:228231.Google Scholar
Kenward, H. 2001. Pubic lice in Roman and Medieval Britain. Trends in Parasitology 17:167168.Google Scholar
Kenward, H. 2004. Do insect remains from historic-period archaeological occupation sites track climate change in Northern England? Environmental Archaeology 9:4759.Google Scholar
Kenward, H., 2009. Invertebrates in Archaeology in the North of England. Environmental Studies Report. Northern Regional Review of Environmental Archaeology. Research Department Report Series no. 12-2009. London: English Heritage.Google Scholar
Kenward, H. and Hall, A. R. 1995. Biological Evidence from 16–22 Coppergate. Archaeology of York Fascicule 14/7. York: York Archaeological Trust.Google Scholar
Kenward, H. and Tipper, J. 2008. Insect invaders of reconstructed Anglo-Saxon houses at West Stow, Suffolk, England. Environmental Archaeology 13:5157.Google Scholar
King, G. A. 2012. Isotopes as palaeoeconomic indicators: New applications in archaeoentomology. Journal of Archaeological Science 39:511520.Google Scholar
King, G. A., Gilbert, M. T. P., Willerslev, E., Collins, M. J., and Kenward, H. 2009. Recovery of DNA from archaeological insect remains: First results, problems and potential. Journal of Archaeological Science 36:11791183.Google Scholar
King, G. A., Kenward, H., Schmidt, E., and Smith, D. 2014. Six-legged hitchhikers: An archaeobiogeographical account of the early dispersal of grain beetles. Journal of the North Atlantic 23:118.CrossRefGoogle Scholar
Kintigh, K. W., Altschul, J. H., Beaudry, M. C., Drennan, R. D., Kinzig, A. P., Kohler, T. A., Limp, W. F., Maschner, H. D. G., Michener, W. K., Pauketat, T. R., Peregrine, P., Sabloff, J. A., Wilkinson, T. J., Wright, H. T., and Zeder, M.A. 2014. Grand challenges for archaeology. Proceedings of the National Academy of Sciences of the USA 111:879880.Google Scholar
Leles, D., Reinhard, K. J., Fugassa, M., Ferreira, L. F., Iñiguez, A. M., and Araújo, A. 2010. A parasitological paradox: Why is ascarid infection so rare in the prehistoric America? Journal of Archaeological Science 37:15101520.Google Scholar
Leng, M. J. and Lewis, J. P. 2016. Oxygen isotopes in molluscan shell: Applications in environmental archaeology. Environmental Archaeology 21:295306.Google Scholar
Losey, R. J., Yamada, S. B., and Largaespada, L. 2004. Late-Holocene Dungeness crab (Cancer magister) harvest at an Oregon coast estuary. Journal of Archaeological Science 31:16031612.Google Scholar
Lubell, D. 2004. Are land snails a signature for the Mesolithic-Neolithic transition? Documenta Praehistorica 31:124.Google Scholar
Mannino, M. A., Spiro, B. F., and Thomas, K. D. 2003. Sampling shells for seasonality: oxygen isotope analysis on shell carbonates of the inter-tidal gastropod Monodonta lineata (da Costa) from populations across its modern range and from a Mesolithic site in southern Britain. Journal of Archaeological Science 30:667679.Google Scholar
Mannino, M. A. and Thomas, K. D. 2001. Intensive Mesolithic exploitation of coastal resources? Evidence from a shell deposit on the Isle of Portland (Southern England) for the impact of human foraging on populations of inter-tidal rocky shore molluscs. Journal of Archaeological Science 28:11011114.Google Scholar
Mannino, M. A., Thomas, K. D., Leng, M. J., and Sloane, H. J. 2008. Shell growth and oxygen isotopes in the topshell Osilinus turbinatus (von Born): Resolving past inshore sea surface temperatures. Geo-Marine Letters 28:309325.Google Scholar
Mannino, M. A., Thomas, K. D., Leng, M. J., Piperno, M., Tusa, S., and Tagliacozzo, A. 2007. Marine resources in the Mesolithic and Neolithic at the Grotta dell’Uzzo (Sicily): Evidence from isotope analyses of marine shells. Archaeometry 49:117133.Google Scholar
Marean, C. W., Bar-Matthews, M., Bernatchez, J., Fisher, E., Goldberg, P., Herries, A. I. R., Jacobs, Z., Jerardino, A., Karkanas, P., Minichillo, T., Nilssen, P. J., Thompson, E., Watts, I., and Williams, H. M. 2007. Early human use of marine resources and pigment in South Africa during the Middle Pleistocene. Nature 449:905908.Google Scholar
Meehan, B. 1982. Shell Bed to Shell Midden. Canberra: Australian Institute of Aboriginal Studies.Google Scholar
Milner, N. 2001. At the cutting edge: Using thin sectioning to determine season of death of the European oyster, Ostrea edulis. Journal of Archaeological Science 28:861873.Google Scholar
Mitchell, P. D. 2013. The origins of human parasites: Exploring the evidence for endoparasitism throughout human evolution. International Journal of Palaeopathology 3:1198.Google Scholar
Mitchell, P. D. 2017. Human parasites in the Roman World: Health consequences of conquering an empire. Parasitology 144:4858.Google Scholar
Mitchell, P. D., Yeh, H.-Y., Appleby, J., and Buckley, R. 2013. The intestinal parasites of King Richard III. Lancet 382:888.Google Scholar
Montenegro, A., Araujo, A., Eby, M., Ferreira, L. F., Hetherington, R., and Weaver, A. J. 2006. Parasites, paleoclimate, and the peopling of the Americas. Current Anthropology 47:193200.Google Scholar
Moss, M. L. and Erlandson, J. M. 2010. Diversity in North Pacific shellfish assemblages: The barnacles of Kit’n’Kaboodle Cave, Alaska. Journal of Archaeological Science 37:33593369.Google Scholar
Nystrom, K. C., Goff, A., and Lee Goff, M. 2005. Mortuary behavior reconstruction through palaeoentomology: A case study from Chachapoya, Perú. International Journal of Osteoarchaeology 15:175185.Google Scholar
Panagiotakopulu, E. 2001. New records for ancient pests: Archaeoentomology in Egypt. Journal of Archaeological Science 28:12351246.Google Scholar
Panagiotakopulu, E. and Buckland, P. C. 2017. A thousand bites – Insect introductions and late Holocene environments. Quaternary Science Reviews 156:2335.Google Scholar
Panagiotakopulu, E., Skidmore, P., and Buckland, P. 2007. Fossil insect evidence for the end of the Western Settlement in Norse Greenland. Naturwissenschaften 94:300306.Google Scholar
Penkman, K. E. H., Preece, R. C., Bridgland, D. R., Keen, D. H., Meijer, T., Parfitt, S. A., White, T. S., and Collins, M. J. 2013. An aminostratigraphy for the British Quaternary based on Bithynia opercula. Quaternary Science Reviews 61:111134.Google Scholar
Plarre, R. 2010. An attempt to reconstruct the natural and cultural history of the granary weevil, Sitophilus ggranaries (Coleoptera: Curculionidae). European Journal of Entomology 107:111.Google Scholar
Preece, R. C. and Bridgland, D. R. 1999. Holywell Coombe, Folkestone: A 13,000 year history of an English chalkland valley. Quaternary Science Reviews 18:10751125.Google Scholar
Prendergast, A. L., Azzopardi, M., O’Connell, T. C., Hunt, C., Barker, G., and Stevens, R. E. 2013. Oxygen isotopes from Phorcus (Osilinus) turbinatus shells as a proxy for sea surface temperature in the central Mediterranean. Chemical Geology 345:7786.Google Scholar
Prendergast, A. L., Stevens, R. E., O’Connell, T. C., Hill, E. A., Hunt, C. O., and Barker, G. W. 2016. A late Pleistocene refugium in Mediterranean North Africa? Palaeoenvironmental reconstruction from stable isotope analyses of land snail shells (Haua Fteah, Libya). Quaternary Science Reviews 139:94109.Google Scholar
Prendergast, A. L., Versteegh, E. A. A., and Schöne, B.R. 2017. New research on the development of high-resolution palaeoenvironmental proxies from geochemical properties of biogenic carbonates. Palaeogeography, Palaeoclimatology, Palaeoecology 484:16.Google Scholar
Price, P. W. 1997. Insect Ecology. New York: Wiley.Google Scholar
Reese, D. S. 1991. The trade of Indo-Pacific shells into the Mediterranean basin and Europe. Oxford Journal of Archaeology 10:159196.Google Scholar
Reilly, E. 2012. Fair and foul: analysis of sub-fossil insect remains from Troitsky XI-XIII, Novgorod (1996–2002). In: `Brisbane, M. A., `Makarov, N.A., and `Nosov, E. N. (eds.) The Archaeology of Medieval Novgorod in Context. Studies in Centre/Periphery Relations, pp. 265282. Oxford: Oxbow Books.Google Scholar
Reinhard, K. J. 1990. Archaeoparasitology in North America. American Journal of Physical Anthropology 82:145163.Google Scholar
Reinhard, K. J. and Araújo, A. 2008. Archaeoparasitology. In: `Pearsall, D. M. (ed.) Encyclopedia of Archaeology, pp. 494501. New York: Elsevier.Google Scholar
Rick, T. C., Reeder-Myers, L. A., Hofman, C. A., Breitburg, D., Lockwood, R., Henkes, G., Kellogg, L., Lowery, D., Luckenbach, M. W., Mann, R., Ogburn, M. B., Southworth, M., Wah, J., Wesson, J., and Hines, A. H. 2016. Millennial-scale sustainability of the Chesapeake Bay Native American oyster fishery. Proceedings of the National Academy of Sciences of the USA 113:65686573.Google Scholar
Rigaud, S., d’Errico, F., and Vanhaeren, M. 2015. Ornaments reveal resistance of North European cultures to the spread of farming. PLoS One 10(4):e0121166.Google Scholar
Robinson, M. 2001. Insects as Palaeoenvironmental Indicators. In: `Brothwell, D.R. and `Pollard, A. M. (eds.) Handbook of Archaeological Sciences, pp. 121133. Chichester: John Wiley and Sons, Ltd.Google Scholar
Rosendahl, D., Ulm, S., and Weisler, M. I. 2007. Using foraminifera to distinguish between natural and cultural shell deposits in coastal eastern Australia. Journal of Archaeological Science 34:15841593.CrossRefGoogle Scholar
Sallares, R. and Gomzi, S. 2001. Biomolecular archaeology of malaria. Ancient Biomolecules 3:195213.Google Scholar
Schapira, D., Montaño, I. A., Antczak, A., and Posada, J. M. 2009. Using shell middens to assess effects of fishing on queen conch (Strombus gigas) populations in Los Roques Archipelago National Park, Venezuela. Marine Biology 156:787795.Google Scholar
Schelvis, J. 1992. The identification of archaeological dung deposits on the basis of remains of predatory Mites (Acari; Gamasida). Journal of Archaeological Science 19: 677682.Google Scholar
Schimmelmann, A., DeNiro, M. J., Poulicek, M., Voss-Foucart, M-.F., Goffinet, G., and Jeuniaux, C. 1986. Stable isotopic composition of chitin from arthropods recovered in archaeological contexts as palaeoenvironmental indicators. Journal of Archaeological Science 13:553566.Google Scholar
Schöne, B. R. 2008. The curse of physiology – challenges and opportunities in the interpretation of geochemical data from mollusk shells. Geo-Marine Letters 38:269285.Google Scholar
Shackleton, J. and Elderfield, H. 1990. Strontium isotope dating of the source of Neolithic European Spondylus shell artefacts. Antiquity 64:312315.Google Scholar
Shackleton, N. J. 1973. Oxygen isotope analysis as a means of determining season of occupation of prehistoric midden sites. Archaeometry 15:133141.Google Scholar
Shackleton, N. and Renfrew, C. 1970. Neolithic trade routes re-aligned by oxygen isotope analyses. Nature 228:10621065.Google Scholar
Skeates, R. 1993. Mediterranean coral: Its use and exchange in and around the Alpine region during the later Neolithic and Copper Age. Oxford Journal of Archaeology 12:281292.Google Scholar
Stephens, M., Mattey, D., Gilbertson, D. D., and Murray-Wallace, C.V. 2008. Shell-gathering from mangroves and the seasonality of the Southeast Asian Monsoon using high-resolution stable isotopic analysis of the tropical estuarine bivalve (Geloina erosa) from the Great Cave of Niah, Sarawak: methods and reconnaissance of molluscs of early Holocene and modern times. Journal of Archaeological Science 35:26862697.Google Scholar
Stone, T. 1995. Shell mound formation in coastal northern Australia. Marine Geology 129:77100.Google Scholar
Sutton, M. Q. 1995. Archaeological aspects of insect use. Journal of Archaeological Method and Theory 2:253298.Google Scholar
Szabó, K. 2008. Shell as a raw material: Mechanical properties and working techniques in the tropical Indo-West Pacific. Archaeofauna 17:125138.Google Scholar
Szabó, K. 2017. Shell middens. In: `Gilbert, A. S. (ed.) Encyclopedia of Geoarchaeology, pp. 772788. Dordrecht: Springer.Google Scholar
Taborin, Y. 1993. La parure en coquillage au Paleolithique. Gallia Préhistoire, Supplement 29.Google Scholar
Thakar, H. B. 2011. Intensification of shellfish exploitation: Evidence of species-specific deviation from traditional expectations. Journal of Archaeological Science 38:25962605.Google Scholar
Thomas, K. D. 2015a. Molluscs emergent, part I: Themes and trends in the scientific investigation of mollusc shells as resources for archaeological research. Journal of Archaeological Science 56:133140.Google Scholar
Thomas, K. D. 2015b. Molluscs emergent, part II: Themes and trends in the scientific investigation of molluscs and their shells as past human resources. Journal of Archaeological Science 56:159167.Google Scholar
Thomas, K. D. and Mannino, M. A. 2001. The exploitation of invertebrates and invertebrate products. In: `Brothwell, D. R. and `Pollard, A. M. (eds.) Handbook of Archaeological Sciences, pp. 427440. Chichester: John Wiley and Sons, Ltd.Google Scholar
Twaddle, R. W., Ulm, S., Hinton, J., Wurster, C. M., and Bird, M. I. 2016. Sclerochronological analysis of archaeological mollusc assemblages: Methods, applications and future prospects. Archaeological and Anthropological Sciences 8:359379.Google Scholar
Vanhaeren, M. and d’Errico, F. 2006. Aurignacian ethno-linguistic geography of Europe revealed by personal ornaments. Journal of Archaeological Science 33:11051128.Google Scholar
Vanhaeren, M., d’Errico, F., Billy, I., and Grousset, F. 2004. Tracing the source of Upper Palaeolithic shell beads by strontium isotope dating. Journal of Archaeological Science 31:14811488.Google Scholar
Vanhaeren, M., d’Errico, F., Stringer, C., James, S. L., Todd, J. A., and Mienis, H. K. 2006. Middle Paleolithic shell beads in Israel and Algeria. Science 312:17851788.Google Scholar
Vanin, S. and Huchet, J.-B. 2017. Forensic entomology and funerary archaeoentomology. In: `Schotsmans, E. M. J., `Márquez-Grant, N., and `Forbes, S. L. (eds.) Taphonomy of Human Remains: Forensic Analysis of the Dead and the Depositional Environment, pp. 167186. Chichester: John Wiley and Sons Ltd.Google Scholar
Vermeij, G. J. 1993. A Natural History of Shells. Princeton: Princeton University Press.Google Scholar
Walz, J. 2017. Toward an ethnoarchaeomalacology of Achatina in East Africa. Ethnobiology Letters 8:9096.Google Scholar
Waselkov, G. A. 1987. Shellfish and shell midden archaeology. Advances in Archaeological Method and Theory 10:93210.Google Scholar
Webb, S. C., Hedges, R. E. M., and Robinson, M. 1998. The seaweed fly Thoracochaeta zosterae (Hal.) (Diptera: Sphaerocidae) in inland archaeological contexts: δ13C and δ15N solves the puzzle. Journal of Archaeological Science 25:12531259.Google Scholar
Wefer, G. and Berger, W. H. 1991. Isotope paleontology: Growth and composition of extant calcareous species. Marine Geology 100:207248.Google Scholar
Whitaker, A. R. 2008. Incipient aquaculture in prehistoric California? Long-term productivity and sustainability vs. immediate returns for the harvest of marine invertebrates. Journal of Archaeological Science 35:11141123.Google Scholar
White, D., Preece, R. C., Shchetnikov, A. A., Parfitt, S. A., and Dlussky, K. G. 2008. A Holocene molluscan succession from floodplain sediments of the upper Lena River (Lake Baikal region), Siberia. Quaternary Science Reviews 27:962987.Google Scholar
Whitehouse, N. J. 2006. The Holocene British and Irish ancient forest fossil beetle fauna: implications for forest history, biodiversity and faunal colonization. Quaternary Science Reviews 25:17551789.Google Scholar
Yeh, H.-Y., Pluskowski, A., Kalējs, U., and Mitchell, P. D. 2014. Intestinal parasites in a mid-14th century latrine from Riga, Latvia: Fish tapeworm and the consumption of uncooked fish in the medieval eastern Baltic region. Journal of Archaeological Science 49:8389.Google Scholar
Zilhão, J., Angelucci, D. E., Badal-García, E., d’Errico, F., Daniel, F., Dayet, L., Douka, K., Higham, T. F. G., Martínez-Sánchez, M. J., Montes-Bernárdez, R., Murcia-Mascarós, S., Pérez-Sirvent, C., Roldán-García, C., Vanhaeren, M., Villaverde, V., Wood, R., and Zapata, J. 2010. Symbolic use of marine shells and mineral pigments by Iberian Neandertals. Proceedings of the National Academy of Sciences of the USA 107:10231028.Google Scholar
Zuschin, M., Stachowitsch, M., and Stanton, R. J. Jr. 2003. Patterns and processes of shell fragmentation in modern and ancient environments. Earth Science Reviews 63:3382.Google Scholar

References

Abbo, S., Zezak, I., Schwartz, E., Lev-Yadun, S., and Gopher, A. 2008. Experimental harvesting of wild peas in Israel: Implications for the origins of Near East farming. Journal of Archaeological Science 35(4):922929.Google Scholar
Adams, K. and Murray, S. S. n.d. Identification criteria for plant remains recovered from archaeological sites in the Central Mesa Verde Region. www.crowcanyon.org/researchreports/Archaeobotanical/Plant_Identification/plant_identification.asp (accessed July 9, 2019).Google Scholar
Antolín, F. and Jacomet, S. 2015. Wild fruit use among early farmers in the Neolithic (5400–2300 cal BC) in the north-east of the Iberian Peninsula: An intensive practice? Vegetation History and Archaeobotany 24(1):1933.Google Scholar
Atalay, S. and Hastorf, C. A. 2006. Food, meals, and daily activities: Food habitus at Neolithic Çatalhöyük. American Antiquity 71(2):283319.Google Scholar
Ball, T.B., Davis, A., Evett, R. R., Ladwig, J. L., Tromp, M., Out, W. A., and Portillo, M. 2016. Morphometric analysis of phytoliths: Recommendations towards standardization from the International Committee for Phytolith Morphometrics. Journal of Archaeological Science 68:106111.Google Scholar
Barton, H. and Fullagar, R. 2006. Microscopy. In: `Torrence, R. and `Barton, H. (eds.) Ancient Starch Research, pp. 4774. Walnut Creek, CA: Left Coast Press.Google Scholar
Barton, H., Torrence, R., and Fullagar, R. 1998. Clues to stone tool function re-examined: Comparing starch grain frequencies on used and unused obsidian artefacts. Journal of Archaeological Science 25(12):12311238.Google Scholar
Beck, W. E. 1989. The taphonomy of plants. In: `Beck, W.E., `Clarke, A., and `Head, L. (eds.) Plants in Australian Archaeology. Tempus. Vol. 1. St. Lucia: University of Queensland Anthropology Museum.Google Scholar
Beijerinck, W. 1947. Zadenatlas Der Nederlandische Flora. Wageningen: H. Veenman and Zonen.Google Scholar
Belitz, H.-D., Grosch, W., and Schieberle, P. 2009. Food Chemistry, 4th ed. New York: Springer Verlag.Google Scholar
Berggren, G. 1969. Atlas of Seeds and Small Fruits of North-West European Plant Species with Morphological Descriptions: Part 2. Cyperaceae. Halmstad, Sweden: Berlings.Google Scholar
Berggren, G. 1981. Atlas of Seeds and Small Fruits of North-West European Plant Species with Morphological Descriptions: Part 3. Salicaceae-Cruciferae. Halmstad, Sweden: Academic Press.Google Scholar
Boardman, S. and Jones, G. 1990. Experiments on the effects of charring on cereal plant components. Journal of Archaeological Science 17(1):112.Google Scholar
Bogaard, A. 2004. Neolithic Farming in Central Europe: An Archaeobotanical Study of Crop Husbandry Practices. London: Routledge.Google Scholar
Bogaard, A., Charles, M., Twiss, K. C., Fairbairn, A., Yalman, N., Filipovic, D., Demirergi, G. A., Ertuğ, F., Russell, N., and Henecke, J. 2009. Private pantries and celebrated surplus: Storing and sharing food at Neolithic Çatalhöyük. Antiquity 83:649668.Google Scholar
Bottema, S. 1984. The composition of modern charred seed assemblages. In: van `Zeist, W. and `Casparie, W. A. (eds.) Plants and Ancient Man, pp. 207212. Rotterdam: Balkema.Google Scholar
Bottema, S. and Woldring, H. 1990. Anthropogenic indicators in the pollen record of the Eastern Mediterranean. In: `Bottema, S., `Entjes-Nieborg, G., and van `Zeist, W. (eds.) Man’s Role in the Shaping of the Eastern Mediterranean Landscape, pp. 231264. Rotterdam: Balkema.Google Scholar
Bourdieu, P. 1977. Outline of a Theory of Practice. Cambridge: Cambridge University Press.Google Scholar
Bowdery, D., Hart, D. M., Lentfer, C., and Wallis, L. A. 2001. A universal phytolith key. In: `Meunier, J. D. and `Colin, F. (eds.) Phytoliths: Applications in Earth Science and Human History, pp. 267278. Rotterdam: Balkema.Google Scholar
Boyd, M. C., Surette, C., and Nicholson, B. A. 2006. Archaeobotanical evidence of maize (Zea mays) consumption at the northern edge of the Great Plains. Journal of Archaeological Science 33:11291140.Google Scholar
Braadbaart, F., Poole, I., and van Brussel, A. A. 2009. Preservation potential of charcoal in alkaline environments: an experimental approach and implications for the archaeological record. Journal of Archaeological Science 36(8):16721679.Google Scholar
Braadbaart, F. and van Bergen, P. F. 2005. Digital imaging analysis of size and shape of wheat and pea upon heating under anoxic conditions as a function of the temperature. Vegetation History and Archaeobotany 14(1):6775.Google Scholar
Brown, T. A., Cappellini, E., Kistler, L., Lister, D. L., Oliveira, H. R., Wales, N., and Schlumbaum, A. 2015. Recent advances in ancient DNA research and their implications for archaeobotany. Vegetation History and Archaeobotany 24(1):207214.Google Scholar
Bryant, V. M. Jr. 1989. Botanical remains in archaeological sites. In: `Mathewson, C. C. (ed.) Interdisciplinary Workshop on the Physical-Chemical-Biological Processes Affecting Archaeological Sites, pp. 85115. Vicksburg, MI: Environmental Impact Research Program, Contract Report EL-89-1. Environmental Laboratory, US Army Engineer Waterways Experiment Station.Google Scholar
Bryant, V. M. Jr. and Dean, G. W. 2006. Archaeological coprolite science: the legacy of Eric O. Callen (1912–1970). Palaeogeography, Palaeoclimatology, Palaeoecology 237(1):5166.Google Scholar
Bryant, V. M. Jr. and Holloway, R. G. 1983. The role of palynology in archaeology. In: `Schiffer, M. B. (ed.) Advances in Archaeological Method and Theory, Vol. 6, pp. 191223. New York: Academic Press.Google Scholar
Bryant, V. M. Jr. and Holloway, R. G. 1996. New frontiers in palynology: archaeological palynology. In: `Jansonius, J. and `McGregor, D. C. (eds.) Palynology: Principles and Applications, Vol. 3, pp. 913917. Dallas: American Association of Stratigraphic Palynologists Foundation.Google Scholar
Bryant, V. M. Jr. and Morris, D. P. 1986. Uses of ceramic vessels and grinding implements: the pollen evidence. In: `Morris, D. P. (ed.) Archaeological Investigations at Antelope House, pp. 489500. Washington DC: National Park Service, US Department of the Interior.Google Scholar
Bryant, V. M. Jr. and Murray, R. E. 1982. Preliminary analysis of amphora contents. In: `Bass, G. F. and van `Doorninick, F. H. Jr. (eds.) Yassi Ada, Vol. 1: A Seventh-Century Byzantine Shipwreck, pp. 327331. College Station: Texas A&M University Press.Google Scholar
Butler, E. A. 1988. The SEM and seed identification, with particular reference to the Vicieae. In: `Olsen, S. L. (ed.) Scanning Electron Microscopy in Archaeology, pp. 215224. Oxford: B.A.R.Google Scholar
Butler, E. A. 1996. Trifoleae and related seeds from archaeological contexts: Problems in identification. Vegetation History and Archaeobotany 5(1–2):157167.Google Scholar
Cabanis, M. and Marguerie, D. 2013. Wood resources in the Clermont-Ferrand Basin from the Neolithic to the Roman Period based on dendro-anthracological analysis. Quaternaire 24(2):129139.Google Scholar
Callen, E. O. 1970. Diet as revealed by coprolites. In: `Brothwell, D. and `Higgs, E. (eds.) Science and Archaeology: A Survey of Progress and Research, 2nd ed., pp. 235243. New York: Praeger.Google Scholar
Cappers, R. T. J. 1993. Seed dispersal by water: A contribution to the interpretation of seed assemblages. Vegetation History and Archaeobotany 2(3):173186.Google Scholar
Cappers, R. T. J. 2006. Roman Foodprints at Berenike: Archaeobotanical Evidence of Subsistence and Trade in the Eastern Desert of Egypt. Berenike Reports No. 6. Los Angeles: Cotsen Institute of Archaeology.Google Scholar
Cappers, R. T. J., Bekker, R. M., and Jans, J. E. A. 2006. Digitale Zadenatlas van Nederland/Digital Seed Atlas of the Netherlands, 1st ed. Groningen: Barkhuis and Groningen University Library.Google Scholar
Cappers, R. T. J., Bekker, R. M., and Jans, J. E. A. 2012. Digitale Zadenatlas van Nederland/Digital Seed Atlas of the Netherlands, 2nd ed. Groningen: Barkhuis and Groningen University Library. http://www.plantatlas.eu/ (accessed July 9, 2019).Google Scholar
Chabal, L. 1997. Forêts et sociétés en Languedoc (Néolihique final, Antiquité tardive). L’anthracologie, méthode et paléoécologie. Documents d’Archéologie Française 63, Paris: Editions de la Maison des Sciences de l’Homme.Google Scholar
Chandler-Ezell, K. C. and Pearsall, D. M. 2003. “Piggy-back” microfossil processing: Joint starch and phytolith sampling from stone tools. Phytolitharian Newsletter 15(3):28.Google Scholar
Charles, M., Bogaard, A., Jones, G., Hodgson, J., and Halstead, P. 2002. Towards the archaeobotanical identification of intensive cereal cultivation: Present-day ecological investigation in the mountains of Asturias, northwest Spain. Vegetation History and Archaeobotany 11(1–2):133142.Google Scholar
Charles, M., Jones, G., and Hodgson, J. G. 1997. FIBS in archaeobotany: Functional interpretation of weed floras in relation to husbandry practices. Journal of Archaeological Science 24(12):11511161.Google Scholar
Clark, J. S. and Royall, P. D. 1995. Transformation of a northern hardwood forest by Aboriginal (Iroquois) fir: Charcoal evidence from Crawford Lake, Ontario, Canada. The Holocene 5(1):19.Google Scholar
Colinvaux, P., de Oliveira, P. E., and Moreno Patiño, J. E. 1999. Amazon Pollen Manual and Atlas. Amsterdam: Harwood Academic Publishers.Google Scholar
Colledge, S. 2001. Plant Exploitation on Epipalaeolithic and Early Neolithic Sites in the Levant. B.A.R. International Series 986. Oxford: British Archaeological Reports.Google Scholar
Colledge, S., Conolly, J., and Shennan, S. 2004. Archaeobotanical evidence for the spread of farming in the eastern Mediterranean. Current Anthropology 45:S35S58.Google Scholar
Crawford, G. W. 1997. Anthropogenesis in prehistoric northeastern Japan. In: `Gremillion, K. J. (ed.) People, Plants, and Landscapes: Studies in Paleoethnobotany, pp. 86103. Tuscaloosa: University of Alabama Press.Google Scholar
Crawford, G. W. and Smith, D. G. 2003. Palaeoethnobotany in the Northeast. In: `Minnis, P. (ed.) People and Plants in Ancient Eastern North America, pp. 172257. Washington DC: Smithsonian Institution Press.Google Scholar
Crowther, A. 2012. The differential survival of native starch during cooking and implications for archaeological analyses: A review. Archaeological and Anthropological Sciences 4(3):221235.Google Scholar
D’Andrea, A. C. 2008. T’ef (Eragrostis tef) in ancient agricultural systems of highland Ethiopia. Economic Botany 62(4):547566.Google Scholar
D’Andrea, A. C., Logan, A. L., and Watson, D. J. 2006. Oil palm and prehistoric subsistence in tropical West Africa. Journal of African Archaeology 4(2):195222.CrossRefGoogle Scholar
D’Andrea, A. C. and Haile, Mitiku. 2002. Traditional emmer processing in highland Ethiopia. Journal of Ethnobiology 22(2):179217.Google Scholar
Delcourt, P. A., Delcourt, H. R., Ison, C. R., Sharp, W. E., and Gremillion, K. 1998. Prehistoric human use of fire, the eastern agricultural complex, and Appalachian oak-chestnut forests: paleoecology of Cliff Palace Pond, Kentucky. American Antiquity 63(2):263278.Google Scholar
Del Pilar Babot, M. and Apella, M. C. 2003. Maize and bone: Residues of grinding in northwestern Argentina. Archaeometry 45(1):121132.Google Scholar
Dennell, R. W. 1976. The economic importance of plant resources represented on archaeological sites. Journal of Archaeological Science 3(3):229247.Google Scholar
Dimbleby, G. W. 1978. Plants and Archaeology, 2nd ed. New Jersey: Humanities Press.Google Scholar
Dimbleby, G. W. 1985. The Palynology of Archaeological Sites. London: Academic Press.Google Scholar
Duncan, N. A., Pearsall, D. M., and Benfer, R. A. Jr. 2009. Gourd and squash artifacts yield starch grains of feasting foods from preceramic Peru. Proceedings of the National Academy of Sciences 106(32):1320213206.Google Scholar
Dupont, J., Nebout, N. C., Cazet, J.-P., Causse, F., and Lebbe, R. V. 2010. New key-tools for pollen identification in research and education. In: `Nimis, P L. and `Lebbe, R. V. (eds.) Tools for Identifying Biodiversity: Progress and Problems, pp. 383387. Trieste: Edizioni Università di Trieste.Google Scholar
Evershed, R. P. 1993. Biomolecular archaeology and lipids. World Archaeology 25(1):7493.Google Scholar
Faegri, K., Kaland, P. E., and Krzywinski, K. 1989. Textbook of Pollen Analysis, 4th ed. Chichester: John Wiley and Sons.Google Scholar
Fairbairn, A., Asouti, E., Near, J., and Martinoli, D. 2002. Macro-botanical evidence for plant use at Neolithic Çatalhöyük, south-central Anatolia, Turkey. Vegetation History and Archaeobotany 11(1–2):4154.Google Scholar
Fahmy, A. G. 2008. Diversity of lobate phytoliths in grass leaves from the Sahel region, West tropical Africa: Tribe Paniceae. Plant Systematics and Evolution 270(1–2):123.Google Scholar
Field, J. 2006. Reference collections. In: `Torrence, R. and `Barton, H. (eds.) Ancient Starch Research, pp. 95113. Walnut Creek, CA: Left Coast Press.Google Scholar
Flenley, J. R. 1994. Pollen in Polynesia: The use of palynology to detect human activity in the Pacific Islands. In: `Hather, J. G. (ed.) Tropical Archaeobotany, pp. 202214. New York: Routledge.Google Scholar
Ford, R. A. 1979. Paleoethnobotany in American archaeology. In: `Schiffer, M. B. (ed.) Advances in Archaeological Method and Theory, pp. 285336. New York: Academic Press.Google Scholar
Fowler, C. S. and Rhode, D. E. 2011. Plant foods and foodways among the Great Basin’s Indigenous peoples. In: `Smith, B. D. (ed.) Subsistence Economies of Indigenous North American Societies, pp. 233270. Washington DC: Smithsonian Institution Scholarly Press.Google Scholar
Fredlund, G. 1986. Problems in the simultaneous extraction of pollen and phytoliths from clastic sediments. In: `Rovner, I. (ed.) Plant Opal Phytolith Analysis in Archaeology and Paleoecology. The Phytolitharian, pp. 102110. Occasional Paper No. 1. Raleigh: North Carolina State University.Google Scholar
French, D. H. 1971. An experiment in water-sieving. Anatolian Studies 21:5964.Google Scholar
Fritz, G. 2005. Paleoethnobotanical methods and applications. In: `Maschner, H. D. G. and `Chippindale, C. (eds.) Handbook of Archaeological Methods, Vol. 1, pp. 771832. Walnut Creek, CA: Altamira Press.Google Scholar
Fritz, G. n.d. Laboratory Guide to Archaeological Plant Remains from Eastern North America. http://artsci.wustl.edu/~gjfritz/ (accessed July 9, 2019).Google Scholar
Fritz, G. J. 1999. Gender and the early cultivation of gourds in Eastern North America. American Antiquity 64(3):417429.Google Scholar
Fox, C. L., Juan, J., and Albert, R. M. 1996. Phytolith analysis on dental calculus, enamel surface, and burial soil: Information about diet and paleoenvironment. American Journal of Physical Anthropology 101(1):101113.Google Scholar
Fullagar, R. 2006. Starch on artefacts. In: `Torrence, R. and `Barton, H. (eds.) Ancient Starch Research, pp. 177203. Walnut Creek, CA: Left Coast Press.Google Scholar
Fuller, D. Q. 2005. Ceramics, seeds and culinary change in prehistoric India. Antiquity 79:761–77.Google Scholar
Fuller, D. Q. 2007. Contrasting patterns in crop domestication and domestication rates: Recent archaeobotanical insights from the Old World. Annals of Botany 100(5):903924.Google Scholar
Fuller, D. Q. and Harvey, E. L. 2006. The archaeobotany of Indian Pulses: Identification, processing and evidence for cultivation. Environmental Archaeology 11(2):219246.Google Scholar
Fuller, D. Q. and Stevens, C. J. 2009. Agriculture and the development of complex societies: an archaeobotanical agenda. In: `Fairbairn, A. and `Weiss, E. (eds.) Ethnobotanist of Distant Pasts: Papers in Honour of Gordon Hillman, pp. 3757. Oxford: Oxbow Books.Google Scholar
Gasser, R. E. and Adams, E. C. 1981. Aspects of deterioration of plant remains in archaeological sites. Journal of Ethnobiology 1(1):182192.Google Scholar
Goette, S., Williams, M., Johannessen, S., and Hastorf, C. A. 1994. Toward reconstructing ancient maize: Experiments in processing and charring. Journal of Ethnobiology 14(1):122.Google Scholar
Gremillion, K. J. 1997. People, Plants, and Landscapes: Studies in Paleoethnobotany. Tuscaloosa: University of Alabama Press.Google Scholar
Gremillion, K. J. 2002. Foraging theory and hypothesis testing in archaeology: An exploration of methodological problems and solutions. Journal of Anthropological Archaeology 21(2):142164.Google Scholar
Gremillion, K. J. and Piperno, D. R. 2009. Human behavioral ecology, phenotypic (developmental) plasticity, and agricultural origins: Insights from the emerging evolutionary synthesis. Current Anthropology 50(5):615619.Google Scholar
Gu, Y., Zhao, Z., and Pearsall, D. M. 2013. Phytolith morphology research on wild and domesticated rice species in East Asia. Quaternary International 287:141148.Google Scholar
Hageman, J. B. and Goldstein, D. J. 2009. An integrated assessment of archaeobotanical recovery methods in the neotropical rainforest of northern Belize: Flotation and dry screening. Journal of Archaeological Science 36(12):28412852.Google Scholar
Hally, D. J. 1981. Plant preservation and the content of palaeoethnobotanical Samples: A case study. American Antiquity 46(4):723742.Google Scholar
Harris, D. R. 1996. Domesticatory relations of people, plants and animals. In: `Ellen, R. and `Fukui, K. (eds.) Redefining Nature, pp. 437463. Oxford: Berg.Google Scholar
Harvey, E. and Fuller, D. Q. 2005. Investigating crop processing using phytolith analysis: The example of rice and millets. Journal of Archaeological Science 32(5):739752.Google Scholar
Haslam, M. 2004. The decomposition of starch grains in soils: Implications for archaeological residue analyses. Journal of Archaeological Science 31:17151734.Google Scholar
Hastorf, C. A. 1990. The effect of the Inka state on Sausa agricultural production and crop consumption. American Antiquity 55(2):262290.Google Scholar
Hastorf, C. A. 1991. Gender, space and food in prehistory. In: `Gero, J. M. and `Conkey, M. W. (eds.) Engendering Archaeology: Women and Prehistory, pp. 132159. Oxford: Blackwell.Google Scholar
Hastorf, C. A. 1999. Recent research in paleoethnobotany. Journal of Archaeological Research 7(1):55103.Google Scholar
Hastorf, C. A. and Popper, V. S. 1988. Current Paleoethnobotany. Chicago: University of Chicago Press.Google Scholar
Hather, J. 1993. An Archaeobotanical Guide to Root and Tuber Identification. Vol. 1: Europe and Southwest Asia. Oxford: Oxbow Books.Google Scholar
Hather, J. 1994. Tropical Archaeobotany: Applications and New Developments. London: Routledge.Google Scholar
Helbaek, H. 1959. The domestication of food plants in the Old World. Science 130:365372.Google Scholar
Helbaek, H. 1969. Plant collecting, dry-farming, and irrigation agriculture in prehistoric Deh Luran. In: `Hole, F., `Flannery, K. V., and `Neeley, J. A. (eds.) Prehistory and Human Ecology of the Deh Luran Plain, pp. 383426. Ann Arbor: Memoirs of the Museum of Anthropology, No. 1, University of Michigan.Google Scholar
Henry, A. G., Brooks, A. S., and Piperno, D. R. 2011. Microfossils in calculus demonstrate consumption of plants and cooked foods in Neanderthal diets (Shanidar III, Iraq; Spy I and II, Belgium). Proceedings of the National Academy of Sciences 108(2):486491.Google Scholar
Henry, A. G., Hudson, H. F., and Piperno, D. P. 2009. Changes in starch grain morphologies from cooking. Journal of Archaeological Science 36(3):915922.Google Scholar
Hildebrand, E. 2007. A tale of two tuber crops: How attributes of enset and yams may have shaped prehistoric human-plant interactions in southwest Ethiopia. In: `Denham, T., `Vrydaghs, L., and `Iríarte, J. (eds.) Rethinking Agriculture, pp. 273298. Berkeley: Left Coast Press.Google Scholar
Hill, B., Overholts, L. O., and Popp, H. W. 1936. Botany. New York: McGraw Hill.Google Scholar
Hillman, G. C. 1984. Interpretation of archaeological plant remains: Ethnographic models from Turkey. In: `van Zeist, W. and `Casparie, W. A. (eds.) Plants and Ancient Man, pp. 142. Rotterdam: Balkema.Google Scholar
Hillman, G. C. and Davies, M. S. 1990. Measured domestication rates in wild wheats and barley under primitive cultivation and their archaeological implications. Journal of World Prehistory 4(2):157222.Google Scholar
Hilu, K. W., De Wet, J. M. J., and Harlan, J. R. 1979. Archaeobotanical studies of Eleusine coracana ssp. coracana (finger millet). American Journal of Botany 66(3):330333.Google Scholar
Hole, F., Flannery, K. V., and Neely, J. A. 1969. Prehistory and Human Ecology of the Deh Luran Plain. Ann Arbor: Memoirs of the Museum of Anthropology, No. 1, University of Michigan.Google Scholar
Horrocks, M. 2005. A combined procedure for recovering phytoliths and starch residues from soils, sedimentary deposits and similar materials. Journal of Archaeological Science 32(8):11691175.Google Scholar
Horrocks, M. and Nunn, P. D. 2007. Evidence for introduced taro (Colocasia esculenta) and lesser yam (Dioscorea esculenta) in Lapita-era (c. 3050–2500 cal. yr BP) deposits from Bourewa, southwest Viti Levu Island, Fiji. Journal of Archaeological Science 34(5):739748.Google Scholar
Hubbard, R. N. L. B. and al Azm, A. 1990. Quantifying preservation and distortion in carbonized seeds and investigating the history of friké production. Journal of Archaeological Science 17:103106.Google Scholar
Iríarte, J. 2003. Assessing the feasibility of identifying maize through the analysis of cross-shaped size and three-dimensional morphology of phytoliths in the grasslands of southeastern South America. Journal of Archaeological Science 30(9):10851094.Google Scholar
Jacomet, S. 2008. Identification of Cereal Remains from Archaeological Sites, 3rd ed. Basel: University of Basel.Google Scholar
Jacomet, S. 2009. Plant economy and village life in Neolithic lake dwellings at the time of the alpine iceman. Vegetation History and Archaeobotany 18(1):4759.Google Scholar
Jacomet, S. and Kreuz, A. 1999. Archäobotanik. Aufgaben, Methoden und Ergebnisse vegetations- und agrargeschichtlicher Forschung. Stuttgart: Ulmer.Google Scholar
Jamieson, R. W. and Sayre, M. B. 2010. Barley and identity in the Spanish colonial Audiencia of Quito: Archaeobotany of the 18th century San Blas neighborhood in Riobamba. Journal of Anthropological Archaeology 29(2):208218.Google Scholar
Jones, G. 1984. Interpretation of archaeological plant remains: Ethnographic models from Greece. In: van `Zeist, W. and `Casparie, W. A. (eds.) Plants and Ancient Man: Studies in Paleoethnobotany, pp. 4361. Rotterdam: Ballkema.Google Scholar
Jones, G. 1987. A statistical approach to the archaeological identification of crop processing. Journal of Archaeological Science 14(3):311323.Google Scholar
Jones, G., Charles, M., Bogaard, A., Hodgson, J. G., and Palmer, C. 2005. The functional ecology of present-day arable weed floras and its applicability for the identification of past crop husbandry. Vegetation History and Archaeobotany 14(4):493504.Google Scholar
Juggins, S. and Cameron, N. 1999. Diatoms and archaeology. In: `Stoermer, E. F. and `Smit, J. P. (eds.) The Diatoms, pp. 389401. Cambridge: Cambridge University Press.Google Scholar
Kahlheber, S. 1999. Indications for agroforestry: archaeobotanical remains of crops and woody plants from Medieval Saouga, Burkina Faso. In: `van der Veen, M. (ed.) The Exploitation of Plant Resources in Ancient Africa, pp, 89100. New York: Kluwer Academic.Google Scholar
Kapp, R. O. 1969. How to Know Pollen and Spores. Dubuque, Iowa: Brown.Google Scholar
Kelso, G. K., Dimmick, F. R., Dimmick, D. H., and Largy, T. B. 2006. An ethnopalynological test of task-specific area analysis: Bay View Stable, Cataumet, Massachusetts. Journal of Archaeological Science 33(7):953960.Google Scholar
Kennett, D. J., Voorhies, B., and Martorana, D. 2006. An ecological model for the origins of maize-based food production on the Pacific coast of southern Mexico. In: `Kennett, D. J. and `Winterhalder, B. (eds.) Behavioral Ecology and the Transition to Agriculture, pp. 103136. Berkeley: University of California Press.Google Scholar
Korstanje, M. A. and Cuenya, P. 2010. Ancient agriculture and domestic activities: a contextual approach studying silica phytoliths and other microfossils in soils. Environmental Archaeology 15(1):4363.Google Scholar
Kreuz, A. 1990. Searching for “single activity refuse” in Linearbandkeramik settlements. An archaeobotanical approach. In: `Robinson, D. E. (ed.) Experimentation and Reconstruction in Environmental Archaeology, pp. 6374. Symposia of the Association for Environmental Archaeology No. 9, Roskilde, Denmark. Oxford: Oxbow Books.Google Scholar
Laland, K. N., Odling-Smee, F. J., and Feldman, N. W. 2001. Cultural niche construction and human evolution. Journal of Evolutionary Biology 14:2223.Google Scholar
Langford, M., Taylor, G. E., and Flenley, J. R. 1990. Computerized identification of pollen grains by texture analysis. Review of Palaeobotany and Palynology 64(1–4):197203.Google Scholar
Lebreton, V., Messager, E., Marquer, L., and Renault-Miskovsky, J. 2010. A neotaphonomic experiment in pollen oxidation and its implications for archaeopalynology. Review of Palaeobotany and Palynology 162:2938.Google Scholar
Lennstrom, H. A. and Hastorf, C. A. 1995. Interpretation in context: Sampling and analysis in paleoethnobotany. American Antiquity 60:701721.Google Scholar
Lentfer, C. J. and Boyd, W. E. 2000. Simultaneous extraction of phytoliths, pollen and spores from sediments. Journal of Archaeological Science 27(5):363372.Google Scholar
Lentfer, C., Therin, M., and Torrence, R. 2002. Starch grains and environmental reconstruction: A modern test case from West New Britain, Papua, New Guinea. Journal of Archaeological Science 29(7):687698.Google Scholar
Lentz, D. L. 1991. Maya diets of the rich and poor: paleoethnobotanical evidence from Copan. Latin American Antiquity 2(3):269287.Google Scholar
Lepofsky, D., Hallett, D., Washbrook, K., McHalsie, A., Lertzman, K., and Mathewes, R. 2005. Documenting precontact plant management on the Northwest Coast: An example of prescribed burning in the central and upper Fraser Valley, British Columbia. In: `Deur, D. E. and `Turner, N. J. Keeping It Living: Traditions of Plant Use and Civilization on the Northwest Coast of North America, pp. 218239. Seattle: University of Washington Press.Google Scholar
Li, M. Q., Yang, X. Y., Wang, H., Wang, Q., Jia, X., and Ge, Q. S. 2010. Starch grains from dental calculus reveal ancient plant foodstuffs at Chenqimogou site, Gansu Province. Science China Earth Sciences 53(5):694699.Google Scholar
Liu, L., Field, J., Fullagar, R., Bestel, S., Chen, X. C., and Ma, X. L. 2010. What did grinding stones grind? New light on early Neolithic subsistence economy in the Middle Yellow River Valley, China. Antiquity 84:816833.Google Scholar
Logan, A. L. 2012. A history of food without history: Food, trade, and environment in West-Central Ghana in the second millennium AD. Doctoral thesis, Department of Anthropology, University of Michigan.Google Scholar
Logan, A. L. and D’Andrea, A. C. 2012. Oil palm, arboriculture, and changing subsistence practices during Kintampo times, 3900–3600 bp. Quaternary International 249:6371.Google Scholar
Logan, A. L., Hastorf, C. A., and Pearsall, D. M. 2012. “Let’s drink together”: Early ceremonial use of maize in the Titicaca basin. Latin American Antiquity 23(3):235258.Google Scholar
Lopinot, N. H. and Brussell, D. E. 1982. Assessing carbonized seeds from open-air sites in mesic environments: An example from southern Illinois. Journal of Archaeological Science 9(1):95108.Google Scholar
Loy, T. H. 1994. Methods in the analysis of starch residues on prehistoric stone tools. In: `Hather, J. G. (ed.) Tropical Archaeobotany: Applications and New Developments, pp. 86114. London: Routledge.Google Scholar
Loy, T. H., Spriggs, M., and Wickler, S. 1992. Direct evidence of human use of plants 28,000 years ago: Starch residues on stone artefacts from the northern Solomon Islands. Antiquity 66:898912.Google Scholar
Madella, M., Lancelotti, C., and Garcia-Granero, J. J. 2013. Millet microremains: An alternative approach to understand cultivation and use of critical crops in prehistory. Archaeological and Anthropological Sciences 8(1):1728.Google Scholar
Madella, M., Lancelotti, C., and Savard, M. 2014. Ancient Plants and People. Tucson: University of Arizona Press.Google Scholar
Margaritis, E. and Jones, M. K. 2008. Olive oil production in Hellenistic Greece: The interpretation of charred olive remains from the site of Tria Platania, Macedonia, Greece (fourth–second century B.C.). Vegetation History and Archaeobotany 17(4):393401.Google Scholar
Märkle, T. and Rösch, M. 2008. Experiments on the effects of carbonization on some cultivated plant seeds. Vegetation History and Archaeobotany 17 (Suppl 1):S257S263.Google Scholar
Marston, J. M. 2011. Archaeological markers of agricultural risk management. Journal of Anthropological Archaeology 3(2):190205.Google Scholar
Marston, J. M., Guedes, J. D., and Warinner, C. 2014. Method and Theory in Paleoethnobotany. Boulder: University Press of Colorado.Google Scholar
Martin, A. C. 1946. The comparative internal morphology of seeds. American Midland Naturalist 36(3):513660.Google Scholar
Martin, A. C. and Barkley, W. D. 1961. Seed Identification Manual. Berkeley: University of California Press.Google Scholar
Mercuri, A. M. 2008. Plant exploitation and ethnopalynological evidence from the Wadi Teshuinat area (Tadrart Acacus, Libyan Sahara). Journal of Archaeological Science 35(6):16191642.Google Scholar
Mercuri, A. M., Allevato, E., Arobba, D., Mazzanti, M. B., Bosi, G., Caramiello, R., Castiglioni, E., Carra, M. L., Celant, A., Costantini, L. Di Pasquale, G., Fiorentino, G., Florenzano, A., Guido, M., Marchesini, M., Lippi, M. M., Marvelli, S., Miola, A., Montanari, C., Nisbet, R., Pena-Chocarro, L., Perego, R,. Ravazzi, C., Rottoli, M., Sadori, L., Ucchesu, M., and Rinaldi, R. 2015. Pollen and macroremains from Holocene archaeological sites: a dataset for the understanding of the bio-cultural diversity of the Italian landscape. Review of Palaeobotany and Palynology 218:250266.Google Scholar
Mercuri, A. M., Mazzanti, M. B., Florenzano, A., Montecchi, M. C., Rattighieri, E., and Torri, P. 2013. Anthropogenic pollen indicators (API) from archaeological sites as local evidence of human-induced environments in the Italian peninsula. Annali di Botanica 3:143153.Google Scholar
Miller, N. F. 1985. Paleoethnobotanical evidence for deforestation in ancient Iran: A case study of urban Malyan. Journal of Ethnobiology 5(1):119.Google Scholar
Minnis, P. E. 1981. Seeds in archaeological sites: sources and some interpretive problems. American Antiquity 46(1):143152.Google Scholar
Montgomery, F. H. 1977. Seeds and Fruits of Plants of Eastern Canada and Northeastern United States. Toronto: University of Toronto Press.Google Scholar
Moore, P. D., Webb, J.A., and Collinson, M. E. 1991. Pollen Analysis, 2nd ed. Oxford: Blackwell.Google Scholar
Morales, J., Navarro-Mederos, J. F., and Rodríguez-Rodríguez, A. 2011. Plant offerings to the gods: Seed remains from a pre-Hispanic sacrificial altar in La Gomera Island (Canary Islands, Spain). In: `Fahmy, A. G., `Kahlheber, S., and `D’Andrea, A. C. (eds.) Windows on the African Past: Current Approaches to African Archaeobotany, pp. 6778. Frankfurt: Africa Magna Verlag.Google Scholar
Morehart, C. T. and Eisenberg, D. T. A. 2009. Prosperity, power and change: Modeling maize at Postclassic Xaltocan, Mexico. Journal of Anthropological Archaeology 29(1):94112.Google Scholar
Morehart, C. T., Lentz, D. L., and Prufer, K. M. 2005. Wood of the gods: The Ritual Use of Pine (Pinus spp.) by the Ancient Lowland Maya. Latin American Antiquity 16(3):255274.Google Scholar
Moreno-Larrazabal, A., Teira-Brión, A., Sopelana-Salcedo, I., Arranz-Otaegui, A., and Zapata, L. 2015. Ethnobotany of millet cultivation in the north of the Iberian Peninsula. Vegetation History and Archaeobotany 2(4):541554.Google Scholar
Morris, L. R., Ryel, R. J., and West, N. E. 2010. Can soil phytolith analysis and charcoal be used as indicators of historic fire in the pinyon-juniper and sagebrush steppe ecosystem types of the Great Basin Desert, USA? The Holocene 20(1):105114.Google Scholar
Murray, M. A., Fuller, D. Q., and Cappeza, C. 2007. Crop production on the Senegal River in the early first millennium AD: Preliminary archaeobotanical results from Cubalel. In: `Cappers, R. (ed.) Fields of Change, Progress in African Archaeobotany, pp. 6370. Groningen: Barkhuis Publishing.Google Scholar
Nasu, H., Momohara, A., Yasuda, Y., and He, J. 2007. The occurrence and identification of Setaria italica (L.) P. Beauv. (foxtail millet) grains from the Chengtoushan site (ca. 5800 cal B.P.) in central China, with reference to the domestication centre in Asia. Vegetation History and Archaeobotany 16(6):481494.Google Scholar
Neff, H., Pearsall, D. M, Jones, J. G., Arroyo, B., Collins, S. K., and Friedel, D. E. 2006. Early Maya adaptive patterns: Mid-Late Holocene paleoenvironmental evidence from Pacific Guatemala. Latin American Antiquity 17(3):287315.Google Scholar
Nesbitt, M. 2006. Identification Guide for Near Eastern Grass Seeds. London: Institute of Archaeology, University College London.Google Scholar
Nesbitt, M., Colledge, S. and Murray, M. A. 2003. Organization and management of seed reference collections. Environmental Archaeology 8(1):7784.Google Scholar
Nesbitt, M. and Greig, J. 1989. A bibliography for the archaeobotanical identification of seeds from Europe and the Near East. Circaea 7(1):11:30.Google Scholar
Neumann, K. 2005. The romance of farming: plant cultivation and domestication in Africa. In: `Stahl, A. B. (ed.) African Archaeology, pp. 249275. Oxford: Blackwell.Google Scholar
Novello, A. and Barboni, D. 2015. Grass inflorescence phytoliths of useful species and wild cereals from sub-Saharan Africa. Journal of Archaeological Science 59:1022.Google Scholar
Odling-Smee, F.J., Laland, K. N., and Feldman, M.W. 2003. Niche Construction: The Neglected Process in Evolution. Monographs in Population Biology 37. Princeton: Princeton University Press.Google Scholar
Out, W. A. and Madella, M. 2015. Morphometric distinction between bilobate phytoliths from Panicum miliaceum and Setaria italica leaves. Archaeological and Anthropological Sciences 8(3):505521.Google Scholar
Palmer, C. and van der Veen, M. 2002. Archaeobotany and the social context of food. Acta Palaeobotanica 42(2):195202.Google Scholar
Panshin, A. J. and de Zeeuw, C. 1980. Textbook of Wood Technology. New York: McGraw Hill.Google Scholar
Pearsall, D. M. 1983. Evaluating the stability of subsistence strategies by use of paleoethnobotanical data. Journal of Ethnobiology 3(2):121137.Google Scholar
Pearsall, D. M. 2000. Paleoethnobotany: A Handbook of Procedures, 2nd ed. New York: Academic Press.Google Scholar
Pearsall, D. M. 2011. Phytoliths in the Flora of Ecuador: The University of Missouri Online Phytolith Database. http://phytolith.missouri.edu/ (accessed July 19, 2019).Google Scholar
Pearsall, D. M. 2015. Paleoethnobotany: A Handbook of Procedures, 3rd ed. Walnut Creek, CA: Left Coast Press.Google Scholar
Pearsall, D. M., Chandler-Ezell, K., and Zeidler, J. A. 2004. Maize in ancient Ecuador: Results of residue analysis of stone tools from the Real Alto site. Journal of Archaeological Science 31(4):423442.Google Scholar
Peña-Chocarro, L. Peña, L. Z., Urquijo, J. E. G., and Estévez, J. J. I. 2009. Einkorn (Triticum monococcum L.) cultivation in mountain communities of the Western Rif (Morocco): An ethnoarchaeological project. In: `Fairbairn, A. S. and `Weiss, E. (eds.) From Foragers to Farmers: Papers in Honour of Gordon C. Hillman, pp. 103111. Oxford: Oxbow Books.Google Scholar
Perry, L. 2004. Starch analyses reveal the relationship between tool type and function: An example from the Orinoco valley of Venezuela. Journal of Archaeological Science 31(8):10691081.Google Scholar
Perry, L., Dickau, R., Zarrillo, S., Holst, I., Pearsall, D. M., Piperno, D. R., Berman, M. J., Cooke, R. G., Rademaker, K., Ranere, A. J., Raymond, J. C., Sandweiss, D. H., Scaramelli, F., Tarble, K., and Zeidler, J. A. 2007. Starch fossils and the domestication and dispersal of chili peppers (Capsicum spp. L.) in the Americas. Science 315:986988.Google Scholar
Piperno, D. R. 1991. The status of phytolith analysis in the American tropics. Journal of World Prehistory 5(2):155191.Google Scholar
Piperno, D. R. 2006a. The origins of plant cultivation and domestication in the Neotropics: A behavioural ecology perspective. In: `Kennett, D. J. and `Winterhalder, B. (eds.) Behavioral Ecology and the Transition to Agriculture, pp. 137166. Berkeley: University of California Press.Google Scholar
Piperno, D. R. 2006b. Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists. Lanham, MD: AltaMira Press.Google Scholar
Piperno, D. R. and Dillehay, T. D. 2008. Starch grains on human teeth reveal early broad crop diet in northern Peru. Proceedings of the National Academy of Sciences 105:1962219627.Google Scholar
Piperno, D. R. and Jones, J. G. 2003. Paleoecological and archaeological implications of a Late Pleistocene/Early Holocene record of vegetation and climate from the Pacific coastal plain of Panama. Quaternary Research 59(1):7987.Google Scholar
Piperno, D. R. and Pearsall, D. M. 1993. The nature and status of phytolith analysis. In: `Pearsall, D. M. and `Piperno, D. R. (eds.) Current Research in Phytolith Analysis: Applications in Archaeology and Paleoecology, pp. 918. Philadelphia: University Museum of Archaeology and Anthropology, University of Pennsylvania.Google Scholar
Piperno, D. R., Weiss, E., Holst, I., and Nadel, D. 2004. Processing of wild cereal grains in the Upper Palaeolithic revealed by starch grain analysis. Nature 430:670673.Google Scholar
Power, M. J., Whitlock, C., Bartlein, P. J., and Stevens, L. 2006. Fire and vegetation history during the last 3800 years in northwestern Montana. Geomorphology 75:420436.Google Scholar
Ramsey, M. N., Rosen, A. M., and Nadel, D. 2017. Centered on the wetlands: Integrating new phytolith evidence of plant-use from the 23,000-year old site of Ohalo II, Israel. American Antiquity 84(2):702722.Google Scholar
Reddy, S. N. 1997. If the threshing floor could talk: integration of agriculture and pastoralism during the Late Harappan in Gujarat, India. Journal of Anthropological Archaeology 16:162187.Google Scholar
Reinhard, K. J., Geib, P. R., Callahan, M. M., and Hevly, R. H. 1992. Discovery of colon contents in a skeletonized burial: Soil sampling for dietary remains. Journal of Archaeological Science 19(6):697705.Google Scholar
Renfrew, J. 1973. Palaeoethnobotany: The Prehistoric Food Plants of the Near East and Europe. New York: Columbia University Press.Google Scholar
Revedin, A., Aranguren, B., Becattini, R., Longo, L., Marconi, E., Lippi, M. M., Skakun, N., Sinitsyn, A., Spiridonova, E., and Svoboda, J. 2010. Thirty-thousand-year-old evidence of plant food processing. Proceedings of the National Academy of Sciences 107(44):1881518819.Google Scholar
Riehl, S. 2009. Archaeobotanical evidence for the interrelationship of agricultural decizion-making and climate change in the ancient Near East. Quaternary International 19(1–2):93114.Google Scholar
Rindos, D. 1984. The Origins of Agriculture: An Evolutionary Perspective. New York: Academic Press.Google Scholar
Rösch, M. 2005. Pollen analysis of the contents of excavated vessels: Direct archaeobotanical evidence of beverages. Vegetation History and Archaeobotany 14(3):179188.Google Scholar
Rosen, A. M. and Weiner, S. 1994. Identifying irrigation: A new method using opaline phytoliths from emmer wheat. Journal of Archaeological Science 21(1):125132.Google Scholar
Saul, H., Madella, M., Fischer, A., Glykou, A., Hartz, S., and Craig, O. E. 2013. Phytoliths in pottery reveal the use of spice in European prehistoric cuizine. PLoS One 8(8):15.Google Scholar
Saul, H., Wilson, J., Heron, C. P., Glykou, A., Hartz, S., and Craig, O. E. 2012. A systematic approach to the recovery and identification of starches from carbonised deposits on ceramic vessels. Journal of Archaeological Science 39(12):34833492.Google Scholar
Scarry, C. M. and Steponaitis, V. P. 1997. Between farmstead and center: the natural and social landscape of Moundville. In: `Gremillion, K. J. (eds.) People, Plants, and Landscapes: Studies in Paleoethnobotany, pp. 107122. Tuscaloosa: University of Alabama Press.Google Scholar
Scheel-Ybert, R., Beauclair, M., and Buarque, A. 2014. The forest people: landscape and firewood use in the Araruama region (Southeastern Brazil) during the late Holocene. Vegetation History and Archaeobotany 23(2):97111.Google Scholar
Schlumbaum, A., Tensen, M., and Jaenicke-Després, V. 2008. Ancient plant DNA in archaeobotany. Vegetation History and Archaeobotany 17(2):233244.Google Scholar
Schoch, W. H., Pawlik, B., and Schweingruber, F. H. 1988. Botanische Makrorests/Botanical Macro-Remains/Macrorestes Botaniques. Berne and Stuttgart: Paul Haupt.Google Scholar
Smith, B. D. 2001. Low Level Food Production. Journal of Archaeological Research 9(1):143.Google Scholar
Smith, B. D. 2007. Niche construction and the behavioral context of plant and animal domestication. Evolutionary Anthropology 16(5):188199.Google Scholar
Smith, B. D. 2012. A cultural niche construction theory of initial domestication. Biological Theory 6(3):112.Google Scholar
Smith, B. D. 2015. A comparison of niche construction theory and diet breadth models as explanatory frameworks for the initial domestication of plants and animals. Journal of Archaeological Research 23(3):215262.Google Scholar
Steward, J. H. 1959. The concept and method of cultural ecology. Readings in Anthropology 2:8195.Google Scholar
Struever, S. 1968. Flotation techniques for recovery of small-scale archaeological remains. American Antiquity 33(3):353362.Google Scholar
Szymanski, R. M. and Morris, C. F. 2015. Internal structure of carbonized wheat (Triticum spp.) grains: relationships to kernel texture and ploidy. Vegetation History and Archaeobotany 24(4):503515.Google Scholar
Talay, L., Keller, D.A., and Munson, P. J. 1984. Hickory nuts, walnuts, butternuts, and hazelnuts: Observations and experiments relevant to their Aboriginal exploitation in eastern North America. In: `Munson, P. J. (ed.) Experiments and Observations on Aboriginal Wild Plant Food Utilization in Eastern North America, pp. 338359. Indianapolis: Prehistory Research Series, Vol. VI, No. 2. Indiana Historical Society.Google Scholar
Tester, R. F., Karkalas, J., and Qi, X. 2004. Starch: Composition, fine structure and architecture. Journal of Cereal Science 39(2):151165.Google Scholar
Théry-Parisot, I., Chabal, L., and Chrzavzez, J. 2010. Anthracology and taphonomy, from wood gathering to charcoal analysis: A review of the taphonomic processes modifying charcoal assemblages in archaeological contexts. Palaeogeography, Palaeoclimatology, Palaeoecology 291:142153.Google Scholar
Thiébault, S. 1997. Early Holocene vegetation and the human impact in central Provence (Var, France): Charcoal analysis of the Baume de Fontbrégoua. The Holocene 7(3):343349.Google Scholar
`Thiébault, S. (ed.) 2002. Charcoal analysis: Methodological Approaches, Palaeoecological Results and Wood Uses. Proceedings of the Second International Meeting of Anthracology. B.A.R. International Series 1063. Oxford: Archaeopress.Google Scholar
Torrence, R. 2006a. Description, classification, and identification. In: `Torrence, R. and `Barton, H. (eds.) Ancient Starch Research, pp. 115143. Walnut Creek, CA: Left Coast Press.Google Scholar
Torrence, R. 2006b. Starch in sediments. In: `Torrence, R. and `Barton, H. (eds.) Ancient Starch Research, pp. 145176. Walnut Creek, CA: Left Coast Press.Google Scholar
Torrence, R. and Barton, H. 2006. Ancient Starch Research. Walnut Creek, CA: Left Coast Press.Google Scholar
Trigger, B. G. 2006. A History of Archaeological Thought, 2nd ed. Cambridge: Cambridge University Press.Google Scholar
Tsartsidou, G., Lev-Yadun, S., Efstratiou, N., and Weiner, S. 2008. Ethnoarchaeological study of phytolith assemblages from an agro-pastoral village in northern Greece (Sarakini): Development and application of a phytolith difference index. Journal of Archaeological Science 35(3):600613.Google Scholar
Tsartsidou, G., Lev-Yadun, S., Efstratiou, N., and Weiner, S. 2009. Use of space in a Neolithic village in Greece (Makri): Phytolith analysis and comparison of phytolith assemblages from an ethnographic setting in the same area. Journal of Archaeological Science 36(10):23422352.Google Scholar
Valamoti, S. M. 2011. Grain for the dead? Archaeobotanical evidence from Mavropigi-Fylotsairi Kozanis. In: `Karametreou-Mentesidi, G. (ed.) The Archaeological Work in Upper Macedonia 1, 2009, pp. 245256. Kozani: Archaeological Ergo in Ano Macedonia.Google Scholar
Valamoti, S. M., Moniaki, A., and Karathanou, A. 2011. An investigation of processing and consumption of pulses among prehistoric societies: Archaeobotanical, experimental and ethnographic evidence from Greece. Vegetation History and Archaeobotany 20(5):381396.Google Scholar
Valamoti, S. M., Samuel, D., Bayram, M., and Marinova, E. 2008. Prehistoric cereal foods from Greece and Bulgaria: Investigation of starch microstructure in experimental and archaeological charred remains. Vegetation History and Archaeobotany 17 (Suppl. 1):S265S276.Google Scholar
van der Veen, M. 2007. Formation processes of desiccated and carbonized plant remains: The identification of routine practice. Journal of Archaeological Science 34(6):968990.Google Scholar
van der Veen, M. 2011. Consumption, Trade and Innovation: Exploring the Botanical Remains from the Roman and Islamic Ports at Qudseir Al-Qadim, Egypt. Frankfurt: Africa Magna Verlag.Google Scholar
VanDerwarker, A. M. and Detwiler, K. R. 2002. Gendered practice in Cherokee foodways: A spatial analysis of plant remains from the Coweeta Creek Site. Southeastern Archaeology 21(1):2128.Google Scholar
VanDerwarker, A. M., Scarry, M., and Eastman, J. M. 2007. Menus for families and feasts: Household and community consumption of plants at Upper Saratown, North Carolina. In: `Twiss, K. (ed.) Archaeology of Food and Identity, pp. 1649. Carbondale: Centre for Archaeological Investigations, Southern Illinois University.Google Scholar
Van Vilsteren, V. T. 1984. The medieval village of Dommelen: A case study for the interpretation of charred seeds from postholes. In: `van Zeist, W. and `Casparie, W. A. (eds.) Plants and Ancient Man, pp. 227235. Rotterdam: Balkema.Google Scholar
van Zeist, W. and Casparie, W. A. 1984. Plants and Ancient Man: Studies in Palaeoethnobotany. Rotterdam: Balkema.Google Scholar
van Zeist, W., Wasylikova, K., and Berhe, K.-E. 1991. Progress in Old World Palaeoethnobotany. Rotterdam: Balkema.Google Scholar
Vernet, J.-L., Ogereau, P., Figueiral, I., Machado Yanes, C., and Uzquiano, P. 2001. Guide d’identification des charbons de bois préhistoriques et récents: Sud-Ouest de l’Europe: France, Péninsule Ibérique et Îles Canaries. Paris: CNRS editions.Google Scholar
Wagner, G. E. 1988. Comparability among recovery techniques. In: `Hastorf, C. A. and `Popper, V. A. (eds.) Current Palaeoethnobotany, pp. 1735. Chicago: University of Chicago Press.Google Scholar
Walshaw, S. C. 2010. Converting to rice: urbanisation, Islamization and crops on Pemba Island, Tanzania, AD 700–1500. World Archaeology 42(1):137154.Google Scholar
Wasylikowa, K., Mitka, J., Wendorf, F., and Schild, R. 1997. Exploitation of wild plants by the early Neolithic hunter–gatherers of the Western Desert, Egypt: Nabta Playa as a case-study. Antiquity 71:932941.Google Scholar
Watson, P. J. 1976. In pursuit of prehistoric subsistence: A comparative account of some contemporary flotation systems. Mid-Continental Journal of Archaeology 1(1):77100.Google Scholar
Watson, P. J. 1997. The shaping of modern paleoethnobotany. In: `Gremillion, K. J. (ed.) People, Plants, and Landscapes: Studies in Paleoethnobotany, pp. 1322. Tuscaloosa: University of Alabama Press.Google Scholar
Watson, P. J. and Kennedy, M. C. 1991. The development of horticulture in the Eastern Woodlands of North America: Women’s role. In: `Gero, J. M. and `Conkey, M. W. (eds.) Engendering Archaeology: Women and Prehistory, pp. 255275. Oxford: Blackwell.Google Scholar
Weber, S. A. 1999. Seeds of urbanism: Palaeoethnobotany and the Indus Civilization. Antiquity 73:813826.Google Scholar
Weiss, E. and Kislev, M. E. 2004. Plant remains as indicators for economic activity: A case study from Iron Age Ashkelon. Journal of Archaeological Science 31(1):113.Google Scholar
Weiss, E., Kislev, M. E., Simchoni, O., Nadel, D., and Tschauner, H. 2008. Plant-food preparation area on an Upper Paleolithic brush hut floor at Ohalo II, Israel. Journal of Archaeological Science 35(8):24002414.Google Scholar
Welch, P. D. and Scarry, C. M. 1995. Status-related variation in foodways in the Moundville chiefdom. American Antiquity 60(3):397419.Google Scholar
Willcox, G. 2002. Evidence for ancient forest cover and deforestation from charcoal analysis of ten archaeological sites on the Euphrates. In: `Thiébault, S. (ed.) Charcoal Analysis. Methodological Approaches, Palaeoecological Results and Wood Uses, pp. 141145. BAR International Series 1063. Oxford: Archaeopress.Google Scholar
Willcox, G. 2012. Pre-domestic cultivation during the late Pleistocene and early Holocene in the northern Levant. In: `Gepts, P., `Famula, T. R., `Bettinger, R. L., `Brush, S. B., `Damania, A. B., `McGuire, P. E. and `Qualset, C. O. (eds.) Biodiversity in Agriculture: Domestication, Evolution and Sustainability, pp. 92109. Cambridge: Cambridge University Press.Google Scholar
Willcox, G., Nesbitt, M., and Bittmann, F. 2012. From collecting to cultivation: Transitions to a production economy in the Near East. (Editorial). Special Issue The Origins of Agriculture in the Near East. Vegetation History and Archaeobotany 21(2):8183.Google Scholar
Winterhalder, B. and Goland, C. 1997. An evolutionary ecology perspective on diet choice, risk, and plant domestication. In: `Gremillion, K. J. (ed.) People, Plants, and Landscapes: Studies in Paleoethnoboany, pp. 123160. Tuscaloosa: University of Alabama Press.Google Scholar
Wollstonecroft, M. M. 2002. The fruit of their labour: plants and plant processing at EeRb 140 (860 ± 60 uncal BP to 160± 50 uncal B.P.) a late prehistoric hunter-gatherer-fisher site on the southern Interior Plateau, British Columbia, Canada. Vegetation History and Archaeobotany 11(1–2):6170.Google Scholar
Wollstonecroft, M. M. 2011. Investigating the role of food processing in human evolution: A niche construction approach. Archaeological and Anthropological Sciences 3(1):141150.Google Scholar
Wright, P. J. 2003. Preservation or destruction of plant remains by carbonization? Journal of Archaeological Science 30(5):577583.Google Scholar
Wright, P. J. 2008. Understanding the carbonization and preservation of sunflower and sumpweed remains. Midcontinental Journal of Archaeology 33(2):137153.Google Scholar
Yang, X., Ma, Z., Li, Q., Perry, L., Huan, X., Wan, Z., Li, M., and Zheng, J. 2014a. Experiments with lithic tools: Understanding starch residues from crop harvesting. Archaeometry 56(5):828840.Google Scholar
Yang, X., Ma, Z., Wang, T., Perry, L., Li, Q., Huan, X., and Yu, J. 2014b. Chinese Science Bulletin 59(32):43524358.Google Scholar
Yang, X. Y., Yu, J. C., Lu, H. Y., Cui, T. X., Guo, J. N., and Ge, Q. S. 2009. Starch grain analysis reveals function of grinding stone tools at Shangzhai Site, Beijing. Science in China Series D, Earth Sciences 52(8):11641171.Google Scholar
Yarnell, R. A. 1970. Paleo-ethnobotany in America. In: `Brothwell, D. and `Higgs, E. (eds.) Science and Archaeology, pp. 215228. New York: Praeger.Google Scholar
Zarrillo, S., Pearsall, D. M., Raymond, J. S., Tisdale, M. A., and Quon, D. J. 2008. Directly dated starch residues document early formative maize (Zea mays L.) in tropical Ecuador. Proceedings of the National Academy of Sciences 105(13):50065011.Google Scholar
Zeder, M. A., Bradley, D. G., Emshwiller, E., and Smith, D. B. 2006. Documenting Domestication: New Genetic and Archaeological Paradigms. Berkeley: University of California Press.Google Scholar
Zohary, D. and Hopf, M. 2000. Domestication of Plants in the Old World, 3rd ed. New York: Oxford University Press.Google Scholar

References

Ammerman, A. J. 1996. The Eridanos valley and the Athenian Agora. American Journal of Archaeology 100:699715.Google Scholar
Angelucci, D. E., Soares, A. M., Almeida, L., Brito, R., and Leitão, V. 2007. Neolithic occupation and mid-Holocene soil formation at Encosta de Sant’Ana (Lisbon, Portugal): A geoarchaeological approach. Journal of Archaeological Science 34:16411648.Google Scholar
Ashley, G. M., Tactikos, J. C., and Owen, R. B. 2009. Hominin use of springs and wetlands: Paleoclimate and archaeological records from Olduvai Gorge (~1.79–1.74 Ma). Palaeogeography, Palaeoclimatology, Palaeoecology 272:116.Google Scholar
Berna, F., Behar, A., Shahack-Gross, R., Berg, J., Boaretto, E., Gilboa, A., Sharon, I., Shalev, S., Shilstein, S., Yahalom-Mack, N., Zorn, J.R., and Weiner, S. 2007. Sediments exposed to high temperatures: Reconstructing pyrotechnological processes in Late Bronze and Iron Age Strata at Tel Dor (Israel). Journal of Archaeological Science 34:358373.Google Scholar
Bintliff, J. 2002. Time, process and catastrophism in the study of Mediterranean alluvial history: A review. World Archaeology 33:417435.Google Scholar
Boschian, G. and Montagnari-Kokelj, E. 2000. Prehistoric shepherds and caves in Trieste Karst (northeastern Italy). Geoarchaeology: An International Journal 15:332371.Google Scholar
Butzer, K. W. 1981. Cave sediments, Upper Pleistocene stratigraphy and Mousterian facies in Cantabrian Spain. Journal of Archaeological Science 8:133183.Google Scholar
Butzer, K. W. 1982. Archaeology as Human Ecology. Cambridge: Cambridge University Press.Google Scholar
Butzer, K. W. 2005. Environmental history in the Mediterranean world: Cross-disciplinary investigation of cause-and-effect for degradation and soil erosion. Journal of Archaeological Science 32:17331800.Google Scholar
Butzer, K. W. 2008. Challenges for a cross-disciplinary geoarchaeology: The intersection between environmental history and geomorphology. Geomorphology 101:402411.Google Scholar
Butzer, K. W., Miralles, I., and Mateu, J. F. 1983. Urban geo-archaeology in Medieval Alzira (Prov. Valencia, Spain). Journal of Archaeological Science 10:333349.Google Scholar
Courty, M. A. 2001. Microfacies analysis assisting archaeological stratigraphy. In: `Goldberg, P., `Holliday, V. T, and `Ferring, C.R. (eds.) Earth Sciences and Archaeology, pp. 205239. New York: Kluwer Academic/Plenum Publishers.Google Scholar
Courty, M. A., Goldberg, P., and Macphail, R. 1989. Soils and Micromorphology and Archaeology, Cambridge Manuals in Archaeology. Cambridge: Cambridge University Press.Google Scholar
Courty, M. A. and Vallverdu, J. 2001. The microstratigraphic record of abrupt climate change in cave sediments of the western Mediterranean. Geoarchaeology: An International Journal 16:467500.Google Scholar
Davidson, D. A. and Carter, S. P. 1998. Micromorphological evidence of past agricultural practices in cultivated soils: The impact of a traditional agricultural system on soils in Papa Stour, Shetland. Journal of Archaeological Science 25:827838.Google Scholar
Davidson, D. A., Dercon, G., Stewart, M., and Watson, F. 2006. The legacy of past urban waste disposal on local soils. Journal of Archaeological Science 33:78783.Google Scholar
Davidson, D. A. and Shackley, M. L. 1976. Geoarchaeology: Earth Science and the Past. London: Duckworth.Google Scholar
Draut, A. E., Rubin, D. M., Dierker, J. L., Fairley, H. C., Griffiths, R. E., Hazel, J. E. Jr., Hunter, R. E., Kohl, K., Leap, L. M., Nials, F. L., Topping, D. J., and Yeatts, M. 2008. Application of sedimentary-structure interpretation to geoarchaeological investigations in the Colorado River corridor, Grand Canyon, Arizona. Geomorphology 101:497509.Google Scholar
Ferring, C. D. 2001. Geoarchaeology in alluvial landscapes. In: `Goldberg, P., `Holliday, V. T. and `Ferring, C. R. (eds.) Earth Sciences and Archaeology, pp. 77106. New York: Kluwer Academic/Plenum Publishers.Google Scholar
Frederick, C. 2001. Evaluating causality of landscape change. Examples from alluviation. In: `Goldberg, P., `Holliday, V. T., and `Ferring, C. R. (eds.) Earth Sciences and Archaeology, pp. 5576. New York: Kluwer Academic/Plenum Publishers.Google Scholar
French, C. A. I. 2003. Geoarchaeology in Action: Studies in Soil Micromorpholgy and Landscape Evolution. New York: Routledge.Google Scholar
Ge, T., Courty, M. A., Matthews, W., and Wattez, J. 1993. Sedimentary formation processes of occupation surfaces. In: `Goldberg, P., `Nash, D. T., and `Petraglia, M. (eds.) Formation Processes in Archaeological Context, pp. 149163. Monographs in World Archaeology, 17. Madison, WI: Prehistory Press.Google Scholar
Gladfelter, B. G. 1985. On the interpretation of archaeological sites in alluvial settings. In: `Stein, J. K. and `Farrand, W. R. (eds.) Archaeological Sediments in Context, pp. 4152. Peopling of the Americas, edited volume series: Vol. 1. Center for the Study of Early Man. Institute for Quaternary Studies, University of Maine at Orono.Google Scholar
Glais, A., Lespez, L., Vannière, B., and López-Sáez, J. A. 2017. Human-shaped landscape history in NE Greece: A palaeoenvironmental perspective. Journal of Archaeological Science: Reports 15:405422.Google Scholar
Goldberg, P. 2003. Some observations on Middle and Upper Palaeolithic ashy cave and rockshelter deposits in the Near East. In: `Goring-Morris, A. N. and `Belfer-Cohen, A. (eds.) More than Meets the Eye: Studies on Upper Palaeolithic Diversity in the Near East, pp. 1932. Oxford: Oxbow Books.Google Scholar
Goldberg, P., Laville, H., and Meignen, L. 2007. Stratigraphy and Geoarchaeological History of Kebara Cave, Mount Carmel. In: `Bar-Yosef, O. and `Meignen, L. (eds.) Kebara Cave, Part 1, pp. 4989. Cambridge, MA: Peabody Museum of Archaeology and Ethnology Harvard University.Google Scholar
Goldberg, P. and Macphail, R. I. 2006. Practical and Theoretical Geoarchaeology. Malden: Blackwell Publishing.Google Scholar
Goldberg, P., Miller, C. E., Schiegl, S., Ligouis, B., Berna, F., Conard, N. J., and Wadley, L., 2009. Bedding, hearths, and site maintenance in the Middle Stone Age of Sibudu Cave, KwaZulu-Natal, South Africa. Archaeological and Anthropological Sciences 1(2):95122.Google Scholar
Goren, Y. and Goldberg, P. 1991. Petrographic thin sections and the development of Neolithic plaster production in Northern Israel. Journal of Field Archaeology 18:131138.Google Scholar
Hassan, F. A. 1985. Fluvial systems and geoarchaeology in arid lands: With examples from North Africa, the Near East and the American Southwest. In: `Stein, J. K. and `Farrand, W. R. (eds.) Archaeological Sediments in Context, pp. 5368. Peopling of the Americas, edited volume series: Vol. 1. Center for the Study of Early Man. Institute for Quaternary Studies, University of Maine at Orono.Google Scholar
Holliday, V. T. 2004. Soils in Archaeological Research. Oxford: Oxford University Press.Google Scholar
Huckleberry, G. A. 1995. Archaeological implications of Late-Holocene channel changes on the Middle Gila River, Arizona. Geoarchaeology: An International Journal 10:159182.Google Scholar
Huckleberry, G. A. 1999. Assessing Hohokam canal stability through stratigraphy. Journal of Field Archaeology 26:118.Google Scholar
Karkanas, P. 2001. Site formation processes in Theopetra cave: A record of climatic change during the Late Pleistocene and early Holocene in Thessaly, Greece. Geoarchaeology: An International Journal 16:373399.Google Scholar
Karkanas, P. 2006. Late Neolithic household activities in marginal areas: The micromorphological evidence from Kouveleiki caves, Pelopennese, Greece. Journal of Archaeological Science 33:16281641.Google Scholar
Karkanas, P. 2007. Identification of lime plaster in prehistory using petrographic methods: A review and reconsideration of the data on the basis of experimental and case studies. Geoarchaeology: An International Journal 22:775796.Google Scholar
Karkanas, P. 2010. Preservation of anthropogenic materials under different geochemical processes: A mineralogical approach. Quaternary International 210: 6369.Google Scholar
Karkanas, P., Bar-Yosef, O., Goldberg, P., and Weiner, S. 2000. Diagenesis in prehistoric caves: The use of minerals that form in situ to assess the completeness of the archaeological record. Journal of Archaeological Science 27:915929.Google Scholar
Karkanas, P., Brown, K. S., Fisher, E. C., Jacobs, J., and Marean, C. W. 2015. Interpreting human behavior from depositional rates and combustion features through the study of sedimentary microfacies at site Pinnacle Point 5–6, South Africa. Journal of Human Evolution 85:121.Google Scholar
Karkanas, P. and Efstratiou, N. 2009. Floor sequences in Neolithic Makri, Greece: Micromorphology reveals cycles of renovation. Antiquity 83(322):955967.Google Scholar
Karkanas, P. and Goldberg, P. 2013. Micromorphology of cave sediments. In: `Shroder, J. F. (Editor-in-chief) and `Frumkin, A. (Volume Editor) Treatise on Geomorphology, Vol. 6, pp. 286297. Karst Geomorphology, San Diego: Academic Press.Google Scholar
Karkanas, P., and Goldberg, P. 2019. Reconstructing Archaeological Sites. Understanding the Geoarchaeological Matrix. Chichester: Wiley-Blackwell.Google Scholar
Karkanas, P., Rigaud, J.-Ph., Simek, J. F., Albert, R. A., and Weiner, S. 2002. Ash, bones and guano: A study of the minerals and phytoliths in the sediment of Grotte XVI, Dordogne, France. Journal of Archaeological Science 29:721732.Google Scholar
Karkanas, P., Shahack-Gross, R., Ayalon, A., Bar-Matthews, M., Barkai, R., Frumkin, A., Gopher, A., and Stiner, M. 2007. Evidence for habitual use of fire at the end of the Lower Paleolithic: Site formation processes at Qesem Cave, Israel. Journal of Human Evolution 53:197212.Google Scholar
Karkanas, P., Schepartz, L. A., Miller-Antonio, S., Wei, W., and Weiwen, H. 2008. Late Middle Pleistocene climate in southwestern China: Inferences from the stratigraphic record of Panxian Dadong Cave, Guizhou. Quaternary Science Reviews 27:15551570.Google Scholar
Karkanas, P. and Van de Moortel, A. 2014. Micromorphological analysis of sediments at the Bronze Age site of Mitrou, central Greece: Patterns of floor construction and maintenance. Journal of Archaeological Science 43:198213.Google Scholar
King, S. M. 2008. The spatial organization of food sharing in Early Postclassic households: An application of soil chemistry in Ancient Oaxaca, Mexico. Journal of Archaeological Science 35:12241239.Google Scholar
Krahtopoulou, A. and Frederick, C. 2008. The stratigraphic implications of long-term terrace agriculture in dynamic landscapes: polycyclic terracing from Kythera Island, Greece. Geoarchaeology: An International Journal 23:550585.Google Scholar
Lenoble, A., Bertran, P., and Lacrampe, F. 2008. Solifluction-induced modifications of archaeological levels: Simulation based on experimental data from a modern periglacial slope and application to French Palaeolithic sites. Journal of Atmospheric Science 35:99110.Google Scholar
Macphail, R. 1986. Paleosols in archaeology: Their role in understanding Flandrian pedogenesis. In: `Wright, V. P. (ed.) Paleosols: Their Recognition and Interpretation, pp. 262290. Oxford: Blackwell.Google Scholar
Macphail, R. I. and McAvoy, J. M. 2008. A micromorphological analysis of stratigraphic integrity and site formation at Cactus Hill, an Early Paleoindian and hypothesized pre-Clovis occupation in South-Central Virginia, USA. Geoarchaeology 23:675694.Google Scholar
Macphail, R. I., Courty, M. A., and Gebhardt, A. 1990. Soil micromorphological evidence of early agriculture in north-west Europe. World Archaeology 22:5369.Google Scholar
Macphail, R., Courty, M. A., Hather, J., and Wattez, J. 1997. The soil micromorphological evidence of domestic occupation and stabling activities. In: `Maggi, R. (ed.) Arene Candide: A Functional and Environmental Assessment of the Holocene Sequences Excavated by L. Bernabò Brea (1940–1950), pp. 5388. Roma: Memorie dell’Instituto Italiano di Paleontologia Umana.Google Scholar
Macphail, R. I., Graham, E., Crowther, J., and Turner, S. 2017. Marco Gonzalez, Ambergris Caye, Belize: A geoarchaeological record of ground raising associated with surface soil formation and the presence of a Dark Earth. Journal of Archaeological Science 77:3551.Google Scholar
Macphail, R. I., Romans, J. C. C., and Robertson, L. 1987. The application of micromorphology to the understanding of Holocene soil development in the British Isles; with special reference to cultivation. In: `Fedoroff, N., `Bresson, L. M., and `Courty, M. A. (eds.) Soil Micromorphology, pp. 669676. Plaisir: Assosiation Française pour l’ Étude du Sol.Google Scholar
Mallol, C. 2006. What’s in a beach? Soil micromorphology of sediments from the Lower Paleolithic site of ‘Ubeidiya, Israel. Journal of Human Evolution 51:185206.Google Scholar
Mallol, C., VanNieuwenhuyse, D., and Zaidner, Y. 2011. Depositional and Paleoenvironmental setting of the Bizat Ruhama early pleistocene archaeological assemblages, Northern Negev, Israel: a microstratigraphic perspective. Geoarchaeology 26:118141.Google Scholar
Mandel, R. D. 1992. Soils and Holocene landscape evolution in central and southwestern Kansas: Implications for archaeological research. In: `Holliday, V.T. (ed.) Soils in Archaeology, pp. 41100. Washington: Smithsonian Institution Press.Google Scholar
Mandel, R. D. 2000. Geoarchaeology of the Great Plains. Norman, OK: University of Oklahoma Press.Google Scholar
Mandel, R. D. and III Bettis, A. 2001. Use and analysis of soils by archaeologists and geoscientists: A North American perspective. In: `Goldberg, P., `Holliday, V. T., and `Ferring, C. R. (eds.) Earth Sciences and Archaeology, pp. 173204. New York: Kluwer Academic/Plenum Publishers.Google Scholar
Matthews, W. 1995. Micromorphological characterization and interpretation of occupation deposits and microstratigraphic sequences at Abu Salabick, Iraq. In: `Barham, A. J. and `Macphail, R. I. (eds.) Archaeological Sediments and Soils: Analysis, Interpretation and Management, pp. 4174. London: Institute of Archaeology.Google Scholar
Matthews, W., French, C., Lawrence, T., and Cutler, D. 1996. Multiple surfaces: The micromorphology. In: `Hodder, I. (ed.) On the Surface: Çatalhöyük 1993–95, pp. 301342. Cambridge: The MacDonald Institute for Research and British Institute of Archaeology of Ankara.Google Scholar
Matthews, W. and Postage, J. N. 1994. The imprint of living in an early Mesopotamian city: Questions and answers. In: `Luff, R. and `Rowley-Conwy, P. (eds.) Whither Environmental Archaeology?, pp. 171212. Monograph 38. Oxford: Oxbow Books.Google Scholar
Meignen, L., Goldberg, P., and Bar-Yosef, O. 2007. The hearths at Kebara Cave and their role in site formation processes. In: `Bar-Yosef, O. and `Meignen, L. (eds.) Kebara Cave, Part 1, pp. 91122. Cambridge, MA: Peabody Museum of Archaeology and Ethnology Harvard University.Google Scholar
Mentzer, S. M., Romano, D. G., and Voyatzis, M. E., 2017. Micromorphological contributions to the study of ritual behavior at the ash altar to Zeus on Mt. Lykaion, Greece. Archaeological and Anthropological Sciences 9:10171043.Google Scholar
Middleton, W. D., 2004. Identifying chemical activity residues on prehistoric house floors: A methodology and rationale for multi-elemental characterization of a mild acid extract of anthropogenic sediments. Archaeometry 46:4765.Google Scholar
Milek, K. B. and Roberts, H. M. 2013. Integrated geoarchaeological methods for the determination of site activity areas: A study of a Viking Age house in Reykjavik, Iceland. Journal of Archaeological Science 40:18451865.Google Scholar
Miller, C. E., Goldberg, P., and Berna, F. 2013. Geoarchaeological investigations at Diepkloof Rock Shelter, Western Cape, South Africa. Journal of Archaeological Science 40:34323452.Google Scholar
Nodarou, E., Frederick, C., and Hein, A. 2008. Another (mud)brick in the wall: Scientific analysis of Bronze Age earthen construction materials from East Crete. Journal of Archaeological Science 35:29973015.Google Scholar
Pavlopoulos, K., Karkanas, P., Triantaphyllou, M., Karymbalis, E., Tsourou, T., and Palyvos, N. 2006. Paleoenvironmental evolution of the coastal plain of Marathon, Greece, during the Late Holocene: Depositional environment, climate, and sea level changes. Journal of Coastal Research 22:424438.Google Scholar
Pavlopoulos, K., Triantaphyllou, M., Karkanas, P., Kouli, K., Syrides, G., Vouvalidis, K., Palyvos, N., and Tsourou, T. 2010. Paleoenvironmental evolution and prehistoric Human environment, in the embayment of Palamari (Skyros Island, Greece) during Middle-Late Holocene. Quaternary International 216:4153.Google Scholar
Quade, J., Semaw, S., Stout, D., Renne, R. P., Rogers, M., and Simpson, S. 2004. Paleoenvironments of the earliest stone toolmakers, Gona, Ethiopia. Geological Society of America Bulletin 116:15291544.Google Scholar
Rapp, G. Jr. and Hill, C. L. 2006. Geoarchaeology: The Earth-Science Approach to Archaeological Interpretation, 2nd ed. New Haven: Yale University Press.Google Scholar
Renfrew, C. 1976. Archaeology and the earth sciences. In: `Davidson, D. A. and `Shackley, M. L. (eds.) Geoarchaeology: Earth Science and the Past, pp. 15. Boulder: Westview Press.Google Scholar
Roberts, N. and Rosen, A. 2009. Diversity and complexity in early farming communities of southwest Asia: New insights into the economic and environmental basis of Neolithic Çatalhöyük. Current Anthropology 50:393402.Google Scholar
Sadori, L., Giraudi, C., Petitti, P., and Ramrath, A. 2004. Human impact at Lago di Mezzano (central Italy) during the Bronze Age: A multidisciplinary approach. Quaternary International 113:517.Google Scholar
Shahack-Gross, R., Albert, R. M., Gilboa, A., Nagar-Hilman, O., Sharon, I., and Weiner, S. 2005. Geoarchaeology in an urban context: The uses of space in a Phoenician monumental building at Tel Dor (Israel). Journal of Archaeological Science 32:14171431.Google Scholar
Shahack-Gross, R., Berna, F., Karkanas, P., Lemorini, C., Gopher, A., and Barkai, R. 2014. Evidence for repeated use of a central hearth at Pleistocene (300 ky ago) Qesem Cave, Israel. Journal of Archaeological Science 44: 1221.Google Scholar
Shahack-Gross, R. and Finkelstein, I. 2008. Subsistence practices in an arid environment: a geoarchaeological investigation in an Iron Age site, the Negev Highlands, Israel. Journal of Archaeological Science 35:965982.Google Scholar
Schiegl, S., Goldberg, P., Bar-Yosef, O., and Weiner, S. 1996. Ash deposits in Hayonim and Kebara caves, Israel: Macroscopic, microscopic and mineralogical observations, and their archaeological implications. Journal of Archaeological Science 23:763781.Google Scholar
Shillito, L.-M. and Matthews, W. 2013. Geoarchaeological Investigations of Midden-Formation Processes in the Early to Late Ceramic Neolithic Levels at Çatalhöyük, Turkey ca. 8550–8370 cal BP. Geoarchaeology 28:2549.Google Scholar
Shillito, L.-M., Matthews, W., Almond, M. J., and Bull, I. D. 2011. The microstratigraphy of middens: Capturing daily routine in rubbish at Neolithic Çatalhöyük, Turkey. Antiquity 85:10241038.Google Scholar
Simpson, I. A., Guttmann, E. B., Cluett, J., and Shepherd, A. 2006. Characterizing anthropic sediments in north European Neolithic settlements: An assessment from Skara Brae, Orkney. Geoarchaeology: An International Journal 21:221235.Google Scholar
Terry, R. E., Fernández, F. G., Parnell, J. J., and Inomata, T. 2004. The story in the floors: chemical signatures of ancient and modern Maya activities at Aguateca, Guatemala. Journal of Archaological Science 31:12371250.Google Scholar
Van Andel, T. H. and Runnels, C. 1995. The earliest farmers in Europe. Antiquity 69:481500.Google Scholar
Van Andel, T. H., Runnels, C. N., and Pope, K. O. 1986. Five thousand years of land use and abuse in the Southern Argolid, Greece. Hesperia 55:103–28.Google Scholar
Vita-Finzi, C. 1969. The Mediterranean Valleys. Cambridge: Cambridge University Press.Google Scholar
Wagstaff, J. M. 1981. Buried assumptions: some problems in the interpretation of the “younger fill” raised by recent data from Greece. Journal of Archaeological Science 8:247264.Google Scholar
Waters, M. R. 1992. Principles of Geoarchaeology: A North American Perspective. Tuscon: The University of Arizona Press.Google Scholar
Weiner, S., Goldberg, P., and Bar-Yosef, O. 1993. Bone preservation in Kebara Cave, Israel using on-site Fourier Transform Infrared spectrometry. Journal of Archaeological Science 20:613627.Google Scholar
Wells, L. E. 2001. A geomorphological approach to reconstructing archaeological settlement patterns based on surficial artifact distribution. Replacing humans on the landscape. In `Goldberg, P., `Holliday, V. T., and `Ferring, C. R. (eds.) Earth Sciences and Archaeology, pp. 107141. New York: Kluwer Academic/Plenum Publishers.Google Scholar
Woodward, J. C. and Goldberg, P. 2001. The sedimentary records in Mediterranean rockshelters and caves: Archives of environmental change. Geoarchaeology: An International Journal 16:327354.Google Scholar
Woodward, J. C., Hamlin, R. H. B., Macklin, M. G., Karkanas, P., and Kotjabopoulou, E. 2001. Quantitative sourcing of slackwater deposits at Boila rockshelter: A record of late-glacial flooding and Palaeolithic settlement in the Pindus Mountains, Northern Greece. Geoarchaeology: An International Journal 16:501536.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×