Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T20:46:58.510Z Has data issue: false hasContentIssue false

Part II - Biomolecular Archaeology

Published online by Cambridge University Press:  19 December 2019

Michael P. Richards
Affiliation:
Simon Fraser University, British Columbia
Kate Britton
Affiliation:
University of Aberdeen
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Archaeological Science
An Introduction
, pp. 11 - 144
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Adler, C. J., Dobney, K., Weyrich, L. S., Kaidonis, J., Walker, A. W., Haak, W., Bradshaw, C. J. A., Townsend, G., Sołtysiak, A., Alt, K. W., and Parkhill, J. 2013. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial Revolutions. Nature Genetics 45(4):450455.Google Scholar
Allentoft, M. E., Collins, M., Harker, D., Haile, J., Oskam, C. L., Hale, M. L., Campos, P. F., Samaniego, J. A., Gilbert, M. T. P., Willerslev, E., and Zhang, G. 2012. The half-life of DNA in bone: Measuring decay kinetics in 158 dated fossils. Proceedings of the Royal Society B: Biological Sciences 279(1748):47244733.CrossRefGoogle ScholarPubMed
Atkinson, Q. D. 2011. Phonemic diversity supports a serial founder effect model of language expansion from Africa. Science 332(6027):346349.Google Scholar
Ballard, J. W. O. and Whitlock, M. C. 2004. The incomplete natural history of mitochondria. Molecular Ecology 13(4):729744.Google Scholar
Balloux, F. 2010. The worm in the fruit of the mitochondrial DNA tree. Heredity 104(5):419.Google Scholar
Bollongino, R., Tresset, A., and Vigne, J.-D. 2008. Environment and excavation: Pre-lab impacts on ancient DNA analyses. Comptes Rendus Palevol 7(2–3):9198.Google Scholar
Bollongino, R. and Vigne, J.-D. 2008. Temperature monitoring in archaeological animal bone samples in the Near East arid area, before, during and after excavation. Journal of Archaeological Science 35(4):873881.Google Scholar
Bramanti, B., Thomas, M. G., Haak, W., Unterlaender, M., Jores, P., Tambets, K., Antanaitis-Jacobs, I. I., Haidle, M. N., Jankauskas, R., Kind, C. J., and Lueth, F. 2009. Genetic discontinuity between local hunter-gatherers and Central Europe’s first farmers. Science 326(5949):137140.Google Scholar
Carpenter, M. L., Buenrostro, J. D., Valdiosera, C., Schroeder, H., Allentoft, M. E., Sikora, M., Rasmussen, M., Gravel, S., Guillén, S., Nekhrizov, G., and Leshtakov, K. 2013. Pulling out the 1%: Whole-genome capture for the targeted enrichment of ancient DNA sequencing libraries. The American Journal of Human Genetics 93(5):852864.Google Scholar
Castelo, R., and Roverato, A. 2012. Inference of regulatory networks from microarray data with R and the bioconductor package qpgraph. Methods Molecular Biology. 802:215233.Google Scholar
Collins, M. J., Nielsen-Marsh, C. M., Hiller, J., Smith, C. I., Roberts, J. P., Prigodich, R. V., Wess, T. J., Csapo, J., Millard, A. R., and Turner-Walker, G. 2002. The survival of organic matter in bone: A review. Archaeometry 44(3):383394.Google Scholar
Cooper, A. and Poinar, H. N. 2000. Ancient DNA: Do it right or not at all. Science 289(5482):1139.Google Scholar
Eriksson, A. and Manica, A. 2012. Effect of ancient population structure on the degree of polymorphism shared between modern human populations and ancient hominins. Proceedings of the National Academy of Sciences 109(35):1395613960.Google Scholar
Fu, Q., Li, H., Moorjani, P., Jay, F., Slepchenko, S. M., Bondarev, A. A., Johnson, P. L. F., Aximu-Petri, A., Prüfer, K., de Filippo, C., and Meyer, M. 2014. Genome sequence of a 45,000-year-old modern human from Western Siberia. Nature 514(7523):445449.Google Scholar
Gerbault, P., Leonardi, M., Powell, A., Weber, C., Benecke, N., Burger, J., and Thomas, M. G. 2012. Domestication and migrations: Using mitochondrial DNA to infer domestication processes of goats and horses. In: `Kaiser, E., `Burger, J., and `Schier, W. (eds.) Population Dynamics in Prehistory and Early History, pp. 1730. Berlin, Boston: De Gruyter.Google Scholar
Gilbert, M. T. P., Bandelt, H.-J., Hofreiter, M., and Barnes, I. 2005. Assessing ancient DNA studies. Trends in Ecology and Evolution 20(10):541544.Google Scholar
Girdland Flink, L., Allen, R., Barnett, R., Malmström, H., Peters, J., Eriksson, J., Andersson, L., Dobney, K., and Larson, G. 2014. Establishing the validity of domestication genes using DNA from ancient chickens. Proceedings of the National Academy of Sciences 111(17):61846189.Google Scholar
Gronau, I., Hubisz, M. J., Gulko, B., Danko, C. G., and Siepel, A. 2011. Bayesian inference of ancient human demography from individual genome sequences. Nature Genetics 43(10):10311034.Google Scholar
Haile, J., Froese, D. G., MacPhee, R. D. E., Roberts, R. G., Arnold, L. J., Reyes, A. V., Rasmussen, M., Nielsen, R., Brook, B. W., Robinson, S., and Demuro, M. 2009. Ancient DNA reveals late survival of mammoth and horse in Interior Alaska. Proceedings of the National Academy of Sciences 106(52):2235222357.Google Scholar
Horsburgh, K. A. 2008. Wild or domesticated? An ancient DNA approach to canid species identification in South Africa’s Western Cape Province. Journal of Archaeological Science 35(6):14741480.CrossRefGoogle Scholar
Knapp, M. and Hofreiter, M. 2010. Next generation sequencing of ancient DNA: Requirements, strategies and perspectives. Genes 1(2):227243.Google Scholar
Korneliussen, T.S., Albrechtsen, A., and Nielsen, R., 2014. ANGSD: Analysis of Next Generation Sequencing Data. BMC Bioinformatics 15:356.Google Scholar
Krause, J., Fu, Q., Good, J. M., Viola, B., Shunkov, M. V., Derevianko, A. P., and Pääbo, S. 2010. The complete mitochondrial DNA genome of an unknown hominin from Southern Siberia. Nature 464(7290):894897.Google Scholar
Krause, J., Lalueza-Fox, C., Orlando, L., Enard, W., Green, R. E., Burbano, H. A., Hublin, J.-J., Hänni, C., Fortea, J., De La Rasilla, M., and Bertranpetit, J. 2007. The derived FOXP2 variant of modern humans was shared with Neandertals. Current Biology 17(21):19081912.Google Scholar
Lalueza-Fox, C., Römpler, H., Caramelli, D., Stäubert, C., Catalano, G., Hughes, D., Rohland, N., Pilli, E., Longo, L., Condemi, S., and De La Rasilla, M. 2007. A melanocortin 1 receptor allele suggests varying pigmentation among Neanderthals. Science 318(5855):14531455.Google Scholar
Larson, G., Albarella, U., Dobney, K., Rowley-Conwy, P., Schibler, J., Tresset, A., Vigne, J.-D., Edwards, C. J., Schlumbaum, A., Dinu, A., and Bălăçsescu, A. 2007. Ancient DNA, pig domestication, and the spread of the Neolithic into Europe. Proceedings of the National Academy of Sciences 104(39):1527615281.Google Scholar
Li, H. and Durbin, R. 2011. Inference of human population history from individual whole-genome sequences. Nature 475(7357):493496.Google Scholar
Lindahl, T. 1993. Instability and decay of the primary structure of DNA. Nature 362(6422):709715.Google Scholar
Linz, B., Balloux, F., Moodley, Y., Manica, A., Liu, H., Roumagnac, P., Falush, D., Stamer, C., Prugnolle, F., van der Merwe, S. W., and Yamaoka, Y. 2007. An African origin for the intimate association between humans and Helicobacter pylori. Nature 445(7130):915918.Google Scholar
Llorente, M. G., Jones, E. R., Eriksson, A., Siska, V., Arthur, K. W., Arthur, J. W., Curtis, M. C., Stock, J. T., Coltorti, M., Pieruccini, P., and Stretton, S. 2015. Ancient Ethiopian genome reveals extensive Eurasian admixture in Eastern Africa. Science 350(6262):820822.Google Scholar
Loog, L., Thomas, M. G., Barnett, R., Allen, R., Sykes, N., Paxinos, P. D., Lebrasseur, O., Dobney, K., Peters, J., Manica, A., and Larson, G. 2017. Inferring allele frequency trajectories from ancient DNA indicates that selection on a chicken gene coincided with changes in medieval husbandry practices. Molecular Biology and Evolution 34(8):19811990.Google Scholar
Ludwig, A., Pruvost, M., Reissmann, M., Benecke, N., Brockmann, G. A., Castanos, P., Cieslak, M., Lippold, S., Llorente, L., Malaspinas, A. S., and Slatkin, M. 2009. Coat color variation at the beginning of horse domestication. Science 324(5926):485.Google Scholar
Malmström, H., Gilbert, M. T. P., Thomas, M. G., Brandström, M., Storå, J., Molnar, P., Andersen, P. K., Bendixen, C., Holmlund, G., Götherström, A., and Willerslev, E. 2009. Ancient DNA reveals lack of continuity between Neolithic hunter-gatherers and contemporary Scandinavians. Current Biology 19(20):17581762.CrossRefGoogle ScholarPubMed
McVean, G. 2009. A genealogical interpretation of principal components analysis. PLoS Genetics 5(10):e1000686.Google Scholar
Meyer, M., Fu, Q., Aximu-Petri, A., Glocke, I., Nickel, B., Arsuaga, J.-L., Martínez, I., Gracia, A., de Castro, J. M. B., Carbonell, E., and Pääbo, S. 2014. A mitochondrial genome sequence of a hominin from Sima de Los Huesos. Nature 505(7483):403406.CrossRefGoogle ScholarPubMed
Molina, J., Sikora, M., Garud, N., Flowers, J., Rubinstein, S., Reynolds, A., Huang, P., Jackson, S., Schaal, B. A., Bustamante, C. D., and Boyko, A. R. 2011. Molecular evidence for a single evolutionary origin of domesticated rice. Proceedings of the National Academy of Sciences 108(20):83518356.Google Scholar
Nielsen, R. 2004. Population genetic analysis of ascertained SNP data. Human Genomics 1(3):218.Google Scholar
Nielsen, R. and Beaumont, M. A. 2009. Statistical inferences in phylogeography. Molecular Ecology 18(6):10341047.Google Scholar
Olalde, I., Allentoft, M. E., Sánchez-Quinto, F., Santpere, G., Chiang, C. W. K., DeGiorgio, M., Prado-Martinez, J,. Rodríguez, J. A., Rasmussen, S., Quilez, J., and Ramírez, O. 2014. Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European. Nature 507(7491):225228.Google Scholar
Oppenheimer, S. 2012. Out-of-Africa, the peopling of continents and islands: Tracing uniparental gene trees across the map. Philosophical Transactions of the Royal Society of London B: Biological Sciences 367(1590):770784.Google Scholar
Orlando, L., Ginolhac, A., Zhang, G., Froese, D., Albrechtsen, A., Stiller, M., Schubert, M., Cappellini, E., Petersen, B., Moltke, I., and Johnson, P. L. 2013. Recalibrating Equus evolution using the genome sequence of an Early Middle Pleistocene horse. Nature 499(7456):7478.Google Scholar
Oskam, C. L., Haile, J., McLay, E., Rigby, P., Allentoft, M. E., Olsen, M. E., Bengtsson, C., Miller, G. H., Schwenninger, J. L., Jacomb, C., and Walter, R. 2010. Fossil avian eggshell preserves ancient DNA. Proceedings of the Royal Society of London B: Biological Sciences 277(1690):19912000.Google ScholarPubMed
Ottoni, C., Girdland Flink, L., Evin, A., Georg, C., De Cupere, B., Van Neer, W., Bartosiewicz, L., Linderholm, A., Barnett, R., Peters, J., and Decorte, R. 2013. Pig domestication and human-mediated dispersal in Western Eurasia revealed through ancient DNA and geometric morphometrics. Molecular Biology and Evolution 30(4):824832.Google Scholar
Palkopoulou, E., Mallick, S., Skoglund, P., Enk, J., Rohland, N., Li, H., Omrak, A., Vartanyan, S., Poinar, H., Götherström, A., and Reich, D. 2015. Complete genomes reveal signatures of demographic and genetic declines in the woolly mammoth. Current Biology 25(10):13951400.Google Scholar
Pang, J.-F., Kluetsch, C., Zou, X.-J., Zhang, A. B., Luo, L.-Y., Angleby, H., Ardalan, A., Ekström, C., Sköllermo, A., Lundeberg, J., and Matsumura, S. 2009. mtDNA data indicate a single origin for dogs south of Yangtze River, less than 16,300 years ago, from numerous wolves. Molecular Biology and Evolution 26(12):28492864.Google Scholar
Parducci, L., Suyama, Y., Lascoux, M., and Bennett, K. D. 2005. Ancient DNA from pollen: A genetic record of population history in Scots Pine. Molecular Ecology 14(9):28732882.Google Scholar
Patterson, N., Moorjani, P., Luo, Y., Mallick, S., Rohland, N., Zhan, Y., Genschoreck, T., Webster, T., and Reich, D. 2012. Ancient Admixture in Human History. Genetics 192:10651093.Google Scholar
Pickrell, J. K. and Reich, D. 2014. Toward a new history and geography of human genes informed by ancient DNA. Trends in Genetics 30(9):377389.Google Scholar
Pinhasi, R., Fernandes, D., Sirak, K., Novak, M., Connell, S., Alpaslan-Roodenberg, S., Gerritsen, F., Moiseyev, V., Gromov, A., Raczky, P., and Anders, A. 2015. Optimal ancient DNA yields from the inner ear part of the human petrous bone. PLoS One 10(6):e0129102.Google Scholar
Poinar, H., Kuch, M., McDonald, G., Martin, P., and Pääbo, S. 2003. Nuclear gene sequences from a Late Pleistocene sloth coprolite. Current Biology 13(13):11501152.Google Scholar
Prendergast, M.E., Lipson, M., Sawchuk, E.A., Olalde, I., Ogola, C.A., Rohland, N., Sirak, K.A., Adamski, N., Bernardos, R., Broomandkhoshbacht, N., Callan, K., Culleton, B.J., Eccles, L., Harper, T.K., Lawson, A.M., Mah, M., Oppenheimer, J., Stewardson, K., Zalzala, F., Ambrose, S.H., Ayodo, G., Gates, H.L., Gidna, A.O., Katongo, M., Kwekason, A., Mabulla, A.Z.P., Mudenda, G.S., Ndiema, E.K., Nelson, C., Robertshaw, P., Kennett, D.J., Manthi, F.K., and Reich, D., 2019. Ancient DNA reveals a multistep spread of the first herders into sub-Saharan Africa. Science 365: eaaw6275.Google Scholar
Pritchard, J.K., Stephens, M., and Donnelly, P. 2000. Inference of Population Structure Using Multilocus Genotype Data. Genetics 155:945959.Google Scholar
Prüfer, K., Racimo, F., Patterson, N., Jay, F., Sankararaman, S., Sawyer, S., Heinze, A., Renaud, G., Sudmant, P. H., De Filippo, C., and Li, H. 2014. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505(7481):4349.CrossRefGoogle ScholarPubMed
Prugnolle, F., Manica, A., and Balloux, F. 2005. Geography predicts neutral genetic diversity of human populations. Current Biology 15(5):R159–160.Google Scholar
Ramachandran, S., Deshpande, O., Roseman, C. C., Rosenberg, N. A., Feldman, M. W., and Cavalli-Sforza, L. L. 2005. Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. Proceedings of the National Academy of Sciences of the United States of America 102(44):1594215947.Google Scholar
Rasmussen, M., Guo, X., Wang, Y., Lohmueller, K. E., Rasmussen, S., Albrechtsen, A, Skotte, L., Lindgreen, S., Metspalu, M., Jombart, T., and Kivisild, T. 2011. An Aboriginal Australian genome reveals separate human dispersals into Asia. Science 334(6052):9498.Google Scholar
Reich, D., Green, R. E., Kircher, M., Krause, J., Patterson, N., Durand, E. Y., Viola, B., Briggs, A. W., Stenzel, U., Johnson, P. L., and Maricic, T. 2010. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468(7327):10531060.Google Scholar
Reich, D., Thangaraj, K., Patterson, N., Price, A. L., and Singh, L. 2009. Reconstructing Indian Population History. Nature 461(7263):489494.Google Scholar
Rieux, A., Eriksson, A., Li, M., Sobkowiak, B., Weinert, L. A., Warmuth, V., Ruiz-Linares, A., Manica, A., and Balloux, F. 2014. Improved calibration of the human mitochondrial clock using ancient genomes. Molecular Biology and Evolution 31(10):27802792.Google Scholar
Rollo, F., Ubaldi, M., Ermini, L., and Marota, I. 2002. Ötzi’s last meals: DNA analysis of the intestinal content of the Neolithic glacier mummy from the Alps. Proceedings of the National Academy of Sciences 99(20):1259412599.Google Scholar
Rosenberg, N. A. and Nordborg, M. 2002. Genealogical trees, coalescent theory and the analysis of genetic polymorphisms. Nature Reviews Genetics 3(5):380390.Google Scholar
Schiffels, S. and Durbin, R. 2014. Inferring human population size and separation history from multiple genome sequences. Nature Genetics 46(8):919925.Google Scholar
Schlebusch, C. M., Malmström, H., Günther, T., Sjödin, P., Coutinho, A., Edlund, H., Munters, A. R., Vicente, M., Steyn, M., Soodyall, H., Lombard, M., and Jakobsson, M., 2017. Southern African ancient genomes estimate modern human divergence to 350,000 to 260,000 years ago. Science 358: 652–655.Google Scholar
Secher, B., Fregel, R., Larruga, J. M., Cabrera, V. M., Endicott, P., Pestano, J. J., and González, A. M. 2014. The history of the North African mitochondrial DNA haplogroup U6 gene flow into the African, Eurasian and American continents. BMC Evolutionary Biology 14(1):109.Google Scholar
Seguin-Orlando, A., Korneliussen, T. S., Sikora, M., Malaspinas, A.-S., Manica, A., Moltke, I., Albrechtsen, A., Ko, A., Margaryan, A., Moiseyev, V., and Goebel, T. 2014. Genomic structure in Europeans dating back at least 36,200 years. Science 346(6213):11131118.CrossRefGoogle Scholar
Skoglund, P., Ersmark, E., Palkopoulou, E., and Dalén, L. 2015. Ancient wolf genome reveals an early divergence of domestic dog ancestors and admixture into high-latitude breeds. Current Biology 25(11):15151519.Google Scholar
Skoglund, P., Northoff, B. H., Shunkov, M. V., Derevianko, A. P., Pääbo, S., Krause, J., and Jakobsson, M. 2014a. Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. Proceedings of the National Academy of Sciences 111(6):22292234.Google Scholar
Skoglund, P., Sjödin, P., Skoglund, T., Lascoux, M., and Jakobsson, M. 2014b. Investigating population history using temporal genetic differentiation. Molecular Biology and Evolution 31(9):25162527.Google Scholar
Skoglund, P., Storå, J., Götherström, A., and Jakobsson, M. 2013. Accurate sex identification of ancient human memains using DNA shotgun sequencing. Journal of Archaeological Science 40(12):44774482.Google Scholar
Skoglund, P., Thompson, J. C., Prendergast, M. E., Mittnik, A., Sirak, K., Hajdinjak, M., Salie, T., Rohland, N., Mallick, S., Peltzer, A., and Heinze, A. 2017. Reconstructing prehistoric African population structure. Cell 171(1):5971.Google Scholar
Smith, C. I., Chamberlain, A. T., Riley, M. S., Stringer, C. B., and Collins, M. J. 2003. The thermal history of human fossils and the likelihood of successful DNA amplification. Journal of Human Evolution 45(3):203217.Google Scholar
Stringer, C. B. 1974. A Multivariate Study of Cranial Variation in Middle and Upper Pleistocene Human Populations. Doctoral thesis, Universiy of Bristol.Google Scholar
Stringer, C. B. and Andrews, P. 1988. Genetic and fossil evidence for the origin of modern humans. Science 239(4845):12631268.Google Scholar
Sunnåker, M., Busetto, A. G., Numminen, E., Corander, J., Foll, M., and Dessimoz, C. 2013. Approximate Bayesian computation. PLoS Comput Biol 9(1):e1002803.Google Scholar
Sverrisdóttir, O. Ó., Timpson, A., Toombs, J., Lecoeur, C., Froguel, P., Carretero, J. M., Arsuaga Ferreras, J. L., Götherström, A., and Thomas, M. G. 2014. Direct estimates of natural selection in Iberia indicate calcium absorption was not the only driver of lactase persistence in Europe. Molecular Biology and Evolution 31(4): 975-983.Google Scholar
Thalmann, O., Shapiro, B., Cui, P., Schuenemann, V. J., Sawyer, S. K., Greenfield, D. L., Germonpré, M. B., Sablin, M. V., López-Giráldez, F., Domingo-Roura, X., and Napierala, H. 2013. Complete mitochondrial genomes of ancient canids suggest a European origin of domestic dogs. Science 342(6160):871874.Google Scholar
Valdiosera, C. E., García, N., Anderung, C., Dalén, L., Crégut-Bonnoure, E., Kahlke, R.-D., Stiller, M., Brandström, M., Thomas, M. G., Arsuaga, J. L., and Götherström, A. 2007. Staying out in the cold: Glacial refugia and mitochondrial DNA phylogeography in ancient European brown bears. Molecular Ecology 16(24):51405148.Google Scholar
Warmuth, V., Eriksson, A., Bower, M. A., Barker, G., Barrett, E., Hanks, B. K., Li, S., Lomitashvili, D., Ochir-Goryaeva, M., Sizonov, G. V., and Soyonov, V. 2012. Reconstructing the origin and spread of horse domestication in the Eurasian Steppe. Proceedings of the National Academy of Sciences 109(21):82028206.Google Scholar
Warmuth, V., Eriksson, A., Bower, M. A., Cañon, J., Cothran, G., Distl, O., Glowatzki-Mullis, M.-L., Hunt, H., Luís, C., do Mar Oom, M., and Yupanqui, I. T. 2011. European domestic horses originated in two Holocene refugia. PLoS One 6(3):e18194.Google Scholar
Weidenreich, F. 1940. Some problems dealing with ancient man. American Anthropologist 42(3):375383.Google Scholar
Wilde, S., Timpson, A., Kirsanow, K., Kaiser, E., Kayser, M., Unterländer, M., Hollfelder, N., Potekhina, I. D., Schier, W., Thomas, M. G., and Burger, J. 2014. Direct evidence for positive selection of skin, hair, and eye pigmentation in Europeans during the last 5,000 Y. Proceedings of the National Academy of Sciences 111(13):48324837.Google Scholar
Wolpoff, M. H. 1989. Multiregional evolution: The fossil alternative to Eden. In: `Mellar, P. and `Stringer, C. (eds.) The Human Revolution, pp. 62108. Princeton, NJ: Princeton University Press.Google Scholar
Yang, D. Y. and Watt, K. 2005. Contamination controls when preparing archaeological remains for ancient DNA analysis. Journal of Archaeological Science 32(3):331336.Google Scholar

References

Abelson, P. H., 1954. Amino acids in fossils. Science 119(3096):576.Google Scholar
Altmeyer, W. et al. 2002. Method for qualitative and/or quantitative determination of gender, species, race and/or geographical origin of biological materials. Patent. Available at: http://google.com/patents/CA2452851A1?cl=zh (accessed June 29, 2019).Google Scholar
Asara, J. M. et al. 2007. Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry. Science 316(5822):280285.Google Scholar
Bada, J. L. 1991. Amino acid cosmogeochemistry. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 333(1268):349358.Google Scholar
Bada, J. L. and Miller, S. L. 1968. Ammonium ion concentration in the primitive ocean. Science 159(3813):423425.Google Scholar
Barker, A. 2011. Archaeological protein residues: New data for conservation science. Ethnobiology Letters 1:5865.Google Scholar
Barker, A., Venables, B., Stevens, S. M. Jr., Seeley, K. W., Wang, P., and Wolverton, S. 2012. An optimized approach for protein residue extraction and identification from ceramics after cooking. Journal of Archaeological Method and Theory 19(3):407439.Google Scholar
Becker, M. A., Willman, P., and Tuross, N. C. 1995. The U.S. First Ladies’ gowns: A biochemical study of silk preservation. Journal of the American Institute for Conservation 34(2):141152.Google Scholar
Bern, M., Phinney, B. S., and Goldberg, D. 2009. Reanalysis of Tyrannosaurus rex mass spectra. Journal of Proteome Research 8(9):43284332.Google Scholar
Brandt, L. Ø., Schmidt, A. L., Mannering, U., Sarret, M., Kelstrup, C. D., Olsen, J. V., and Cappellini, E. 2014. Species identification of archaeological skin objects from Danish bogs: Comparison between mass spectrometry-based peptide sequencing and microscopy-based methods. PloS One 9(9):e106875.Google Scholar
Buckley, M. 2013. A molecular phylogeny of Plesiorycteropus reassigns the extinct mammalian order “Bibymalagasia.” PloS One 8(3):e59614.Google Scholar
Buckley, M. 2015. Ancient collagen reveals evolutionary history of the endemic South American “ungulates.” Proceedings of the Royal Society B-Biological Sciences 282(1806):20142671.Google Scholar
Buckley, M., Anderung, C., Penkman, K., Raney, B. J., Gotherstrom, A., Thomas-Oates, J., and Collins, M. J. 2008b. Comparing the survival of osteocalcin and mtDNA in archaeological bone from four European sites. Journal of Archaeological Science 35:17561764.Google Scholar
Buckley, M., Collins, M., Thomas-Oates, J., and Wilson, J. C. 2009. Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry 23:38433854.Google Scholar
Buckley, M., Fraser, S., Herman, J., Melton, N. D., Mulville, J., and Palsdottir, A. H. 2014. Species identification of archaeological marine mammals using collagen fingerprinting. Journal of Archaeological Science 41:631641.Google Scholar
Buckley, M. and Kansa, S. W. 2011. Collagen fingerprinting of archaeological bone and teeth remains from Domuztepe, South Eastern Turkey. Archaeological and Anthropological Sciences 3(3):271280.Google Scholar
Kansa, S. W., Howard, S., Campbell, S., Thomas-Oates, J., and Collins, M. 2010. Distinguishing between archaeological sheep and goat bones using a single collagen peptide. Journal of Archaeological Science 37:1320.Google Scholar
Buckley, M., Larkin, N., and Collins, M. 2011. Mammoth and mastodon collagen sequences: Survival and utility. Geochimica et Cosmochimica Acta 75(7):20072016.Google Scholar
Buckley, M., Melton, N. D., and Montgomery, J. 2013. Proteomics analysis of ancient food vessel stitching reveals >4000-year-old milk protein. Rapid Communications in Mass Spectrometry 27(4):531538.CrossRefGoogle ScholarPubMed
Buckley, M. and Wadsworth, C. 2014. Proteome degradation in ancient bone: Diagenesis and phylogenetic potential. Palaeogeography, Palaeoclimatology, Palaeoecology 416:6979.Google Scholar
Buckley, M., Walker, A., Ho, S. Y. W., Yang, Y., Smith, C., Ashton, P., Oates, J. T., Cappellini, E., Koon, H., Penkman, K., Elsworth, B., Ashford, D., Solazzo, C., Andrews, P., Strahler, J., Shapiro, B., Ostrom, P., Gandhi, H., Miller, W., Raney, B., Zylber, M. I., Gilbert, M. T. P., Prigodich, R. V., Ryan, M., Rijsdijk, K. F., Janoo, A., and Collins, M. J. 2008a. Comment on “protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry.” Science 319:33.Google Scholar
Buckley, M., Warwood, S., Van Dongen, B., Kitchener, A. C., and Manning, P. L. 2017. A fossil protein chimera: Difficulties in discriminating dinosaur peptide sequences from modern cross-contamination. Proceedings of the Royal Society B-Biological Sciences 284:20170544.Google Scholar
Cappellini, E., Gilbert, M. T. P., Geuna, F., Fiorentino, G., Hall, A., Thomas-Oates, J., Ashton, P. D., Ashford, D. A., Arthur, P., Campos, P. F., Kool, J., Willerslev, E., and Collins, M. J. 2010. A multidisciplinary study of archaeological grape seeds. Naturwissenschaften 97:205217.Google Scholar
Cappellini, E., Jensen, L. J., Szklarczyk, D., Ginolhac, A., Da Fonseca, R. a. R., Stafford, T. W., Holen, S. R., Collins, M. J., Orlando, L., Willerslev, E., Gilbert, M. T. P., and Olsen, J. V. 2012. Proteomic analysis of a Pleistocene mammoth femur reveals more than one hundred ancient bone proteins. Journal of Proteome Research 11:917926.Google Scholar
Cattaneo, C., Gelsthorpe, K., Phillips, P., and Sokol, R. J. 1992. Detection of human proteins in buried blood using Elisa and monoclonal-antibodies – Towards the reliable species indentification of blood stains on buried material. Forensic Science International 57:139146.Google Scholar
Chamberlain, P., Drewello, R., Korn, L., Bauer, W., Gough, T., Al-Fouzan, A., Collins, M., Van Doorn, N., Craig, O., and Heron, C. 2011. Construction of the Khoja Zaynuddin mosque: Use of animal glue modified with urine. Archaeometry 53:830841.Google Scholar
Chambery, A., Di Maro, A., Sanges, C., Severino, V., Tarantino, M., Lamberti, A., Parente, A., and Arcari, P. 2009. Improved procedure for protein binder analysis in mural painting by LC-ESI/Q-q-TOF mass spectrometry: Detection of different milk species by casein proteotypic peptides. Analytical and Bioanalytical Chemistry 395:22812291.Google Scholar
Cleland, T. P., Schroeter, E. R., and Schweitzer, M. H. 2015. Biologically and diagenetically derived peptide modifications in moa collagens. Proceedings of the Royal Society B-Biological Sciences 282:20150015.Google Scholar
Collins, M. J., Nielsen-Marsh, C. M., Hiller, J., Smith, C. I., Roberts, J. P., Prigodich, R. V., Weiss, T. J., Csapo, J., Millard, A. R., and Turner-Walker, G. 2002. The survival of organic matter in bone: A review. Archaeometry 44:383394.Google Scholar
Collins, M. J., Riley, M. S., Child, A. M., and Turnerwalker, G. 1995. A basic mathematical simulation of the chemical degradation of ancient collagen. Journal of Archaeological Science 22:175183.Google Scholar
Corthals, A., Koller, A., Martin, D. W., Rieger, R., Chen, E. I., Bernaski, M., Recagno, G., and Davalos, L. M. 2012. Detecting the immune system response of a 500 year-old Inca mummy. PLoS One 7(7):e41244.Google Scholar
Craig, O. E. and Collins, M. J. 2000. An improved method for the immunological detection of mineral bound protein using hydrofluoric acid and direct capture. Journal of Immunological Methods 236(1–2):8997.Google Scholar
Craig, O., Mulville, J., Pearson, M. P., Sokol, R., Gelsthorpe, K., Stacey, R., and Collins, M. 2000. Detecting milk proteins in ancient pots. Nature 408:312.Google Scholar
Dallongeville, S., Garnier, N., Casasola, D. B., Bonifay, M., Rolando, C., and Tokarski, C. 2011. Dealing with the identification of protein species in ancient amphorae. Analytical and Bioanalytical Chemistry 399:30533063.Google Scholar
Daniel, R. M., Dines, M., and Petach, H. H. 1996. The denaturation and degradation of stable enzymes at high temperatures. Biochemical Journal 317(Pt 1):111.Google Scholar
Demarchi, B. and Collins, M., 2014. Amino acid racemisation dating. In: `Rink, W. J and `Thompson, J. (eds.) Encyclopedia of Scientific Dating Methods, pp. 122. Springer Netherlands.Google Scholar
Demarchi, B., Hall, S., Roncal-Herrero, T., Freeman, C. L., Woolley, J., Crisp, M. K., Wilson, J., Fotakis, A., Fischer, R., Kessler, B. M., Jersie-Christensens, R. R., Olsen, J. V., Haile, J., Thomas, J., Marean, C. W., Parkington, J., Presslee, S., Lee-Thorp, J., Ditchfield, P., Hamilton, J. F., Ward, M. W., Wang, C. M., Shaw, M. D., Harrison, T., Dominguez-Rodrigo, M., Macpheel, R. D. E., Kwekason, A., Ecker, M., Horwitz, L. K., Chazan, M., Kroger, R., Thomas-Oates, J., Harding, J. H., Cappellini, E., Penkman, K., and Collins, M. J. 2016. Protein sequences bound to mineral surfaces persist into deep time. Elife 5:e17092.Google Scholar
Demarchi, B., O’Connor, S., Ponzoni, A. D., Ponzoni, R. D. R., Sheridan, A., Penkman, K., Hancock, Y., and Wilson, J. 2014. An integrated approach to the taxonomic identification of prehistoric shell ornaments. PLoS One 9(6):e99839.Google Scholar
Derbyshire, E., Harris, N., Boulter, D., and Jope, E. M. 1977. The extraction, composition and intra-cellular distribution of protein in early maize grains from an archaeological site in NE Arizona. New Phytologist 78:499504.Google Scholar
Doberenz, A. R. and Wyckoff, R. W. 1967. Fine structure in fossil collagen. Proceedings of the National Academy of Sciences of the United States of America 57(3):539541.Google Scholar
Domon, B. and Aebersold, R. 2006. Mass spectrometry and protein analysis. Science 312(5771):212217.Google Scholar
Downs, E. F. and Lowenstein, J. M. 1995. Identification of archaeological blood proteins: A cautionary note. Journal of Archaeological Science 22(1):1116.Google Scholar
El-Aneed, A., Cohen, A., and Banoub, J. 2009. Mass spectrometry, review of the basics: Electrospray, MALDI, and commonly used mass analyzers. Applied Spectroscopy Reviews 44(3):210230.Google Scholar
Eöry, L., Gilbert, M. T. P., Li, C., Li, B., Archibald, A., Aken, B. L., Zhang, G. J., Jarvis, E., Flicek, P., and Burt, D. W. 2015. Avianbase: A community resource for bird genomics. Genome Biology 16:21.Google Scholar
Evershed, R. P. and Tuross, N. 1996. Proteinaceous material from potsherds and associated soils. Journal of Archaeological Science 23(3):429436.Google Scholar
Fiddyment, S., Holsinger, B., Ruzzier, C., Devine, A., Binois, A., Albarella, U., Fischer, R., Nichols, E., Curtis, A., Cheese, E., Teasdale, M. D., Checkley-Scott, C., Milner, S. J., Rudy, K. M., Johnson, E. J., Vnoucek, J., Garrison, M., Mcgrory, S., Bradley, D. G., and Collins, M. J. 2015. Animal origin of 13th-century uterine vellum revealed using noninvasive peptide fingerprinting. Proceedings of the National Academy of Sciences of the United States of America 112:1506615071.Google Scholar
Heaton, K., Solazzo, C., Collins, M. J., Thomas-Oates, J., and Bergstrom, E. T. 2009. Towards the application of desorption electrospray ionisation mass spectrometry (DESI-MS) to the analysis of ancient proteins from artefacts. Journal of Archaeological Science 36(10):21452154.Google Scholar
Henzel, W. J., Watanabe, C., and Stults, J. T. 2003. Protein identification: The origins of peptide mass fingerprinting. Journal of the American Society for Mass Spectrometry 14(9):931942.Google Scholar
Hill, R. C., Wither, M. J., Nemkov, T., Barrett, A., D’alessandro, A., Dzieciatkowska, M., and Hansen, K. C. 2015. Preserved proteins from extinct bison latifrons identified by tandem mass spectrometry: Hydroxylysine glycosides are a common feature of ancient collagen. Molecular and Cellular Proteomics 14 :19461958.Google Scholar
Hillenkamp, F., Karas, M., Beavis, R. C., and Chait, B. T. 1991. Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Analytical chemistry 63(24):1193A1203A.Google Scholar
Hollemeyer, K., Altmeyer, W., and Heinzle, E. 2002. Identification and quantification of feathers, down, and hair of avian and mammalian origin using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Analytical Chemistry 74(23):59605968.Google Scholar
Hollemeyer, K., Altmeyer, W., Heinzle, E., and Pitra, C. 2008. Species identification of Oetzi’s clothing with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry based on peptide pattern similarities of hair digests. Rapid Communications in Mass Spectrometry 22(18):27512767.Google Scholar
Hollemeyer, K., Altmeyer, W., Heinzle, E., and Pitra, C. 2012. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry combined with multidimensional scaling, binary hierarchical cluster tree and selected diagnostic masses improves species identification of Neolithic keratin sequences from furs of the Tyrolean Iceman Oetzi. Rapid Communications in Mass Spectrometry 26(16):17351745.Google Scholar
Hong, C., Jiang, H. G., Lu, E. G., Wu, Y. F., Guo, L. H., Xie, Y. M., Wang, C. S., and Yang, Y. M. 2012. Identification of milk component in ancient food residue by proteomics. PLoS One 7(5):e37053.Google Scholar
Huq, N. L., Tseng, A., and Chapman, G. E. 1990. Partial amino acid sequence of osteocalcin from an extinct species of ratite bird. Biochemistry International 21(3):491496.Google Scholar
Hyland, D. C., Tersak, J. M., Adovasio, J. M., and Siegel, M. I. 1990. Identification of the species of origin of residual blood on lithic material. American Antiquity 55(1):104112.Google Scholar
Kirby, D. P., Buckley, M., Promise, E., Trauger, S. A., and Holdcraft, T. R. 2013. Identification of collagen-based materials in cultural heritage. The Analyst 138(17):48494858.Google Scholar
Kooyman, B., Newman, M. E., and Ceri, H. 1992. Verifying the reliability of blood residue analysis on archaeological tools. Journal of Archaeological Science 19(3):265269.Google Scholar
Krizkova, M. C., Kuckova, S. H., Santrucek, J., and Hynek, R. 2014. Peptide mass mapping as an effective tool for historical mortar analysis. Construction and Building Materials 50:219225.Google Scholar
Kuckova, S., Crhova, M., Vankova, L., Hnizda, A., Hynek, R., and Kodicek, M. 2009b. Towards proteomic analysis of milk proteins in historical building materials. International Journal of Mass Spectrometry 284:4246.Google Scholar
Kuckova, S., Hynek, R., and Kodicek, M. 2007. Identification of proteinaceous binders used in artworks by MALDI-TOF mass spectrometry. Analytical and Bioanalytical Chemistry 388(1):201206.Google Scholar
Kuckova, S., Hynek, R., and Kodicek, M., 2009a. Application of peptide mass mapping on proteins in historical mortars. Journal of Cultural Heritage 10(2):244247.Google Scholar
Kuckova, S., Nemec, I., Hynek, R., Hradilova, J., and Grygar, T. 2005. Analysis of organic colouring and binding components in colour layer of art works. Analytical and Bioanalytical Chemistry 382(2):275282.Google Scholar
Leach, J. D. and Mauldin, R. P. 1995. Additional comments on blood residue analysis in archaeology. Antiquity 69(266):10201022.Google Scholar
Lees, S. 1989. Some characteristics of mineralised collagen. In: Calcified Tissue, pp. 153173. Topics in Molecular and Structural Biology. London: Macmillan.Google Scholar
Leo, G., Bonaduce, I., Andreotti, A., Marino, G., Pucci, P., Colombini, M. P., and Birolo, L. 2011. Deamidation at asparagine and glutamine as a major modification upon deterioration/aging of proteinaceous binders in mural paintings. Analytical Chemistry 83(6):20562064.Google Scholar
Lowenstein, J. M. 1981. Immunological reactions from fossil material. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences 292(1057):143149.Google Scholar
Loy, T. H. 1983. Prehistoric blood residues: Detection on tool surfaces and identification of species of origin. Science 220(4603):12691271.Google Scholar
Loy, T. H. 1994. Response. Science 266(5183):299300.Google Scholar
Loy, T. H. and Hardy, B. L. 1992. Blood residue analysis of 90,000-year-old stone tools from Tabun Cave, Israel. Antiquity 66(250):2435.Google Scholar
Maixner, F., Overath, T., Linke, D., Janko, M., Guerriero, G., Van Den Berg, B. H. J., Stade, B., Leidinger, P., Backes, C., Jaremek, M., Kneissl, B., Meder, B., Franke, A., Egarter-Vigl, E., Meese, E., Schwarz, A., Tholey, A., Zink, A., and Keller, A. 2013. Paleoproteomic study of the Iceman’s brain tissue. Cellular and Molecular Life Sciences 70(19):37093722.CrossRefGoogle ScholarPubMed
Malainey, M. E. 2011. Blood and protein residue analysis. In: `Malainey, M. E. (ed.) A Consumer’s Guide to Archaeological Science. Manuals in Archaeological Method, Theory and Technique, pp. 219236. Springer New York.Google Scholar
Mann, K. and Mann, M. 2013. The proteome of the calcified layer organic matrix of turkey (Meleagris gallopavo) eggshell. Proteome Science 11(1):40.Google Scholar
Frei, K. M., Mannering, U., Kristiansen, K., Allentoft, M. E., Wilson, A. S., Skals, I., Tridico, S., Nosch, M. L., Willerslev, E., Clarke, L., and Frei, R. 2015. Tracing the dynamic life story of a Bronze Age female. Scientific Reports 5:10431.Google Scholar
Mazel, V., Richardin, P., Debois, D., Touboul, D., Cotte, M., Brunelle, A., Walter, P., and Laprevote, O. 2007. Identification of ritual blood in African artifacts using TOF-SIMS and synchrotron radiation microspectroscopies. Analytical Chemistry 79(24):92539260.Google Scholar
Moini, M., Klauenberg, K., and Ballard, M. 2011. Dating silk by capillary electrophoresis mass spectrometry. Analytical Chemistry 83(19):75777581.Google Scholar
Nielsen-Marsh, C. M., Ostrom, P. H., Gandhi, H., Shapiro, B., Cooper, A., Hauschka, P. V., and Collins, M. J. 2002. Sequence preservation of osteocalcin protein and mitochondrial DNA in bison bones older than 55 ka. Geology 30(12):10991102.Google Scholar
Nielsen-Marsh, C. M., Richards, M. P., Hauschka, P. V., Thomas-Oates, J. E., Trinkaus, E., Pettitt, P. B., Karavanic, I., Poinar, H., and Collins, M. J. 2005. Osteocalcin protein sequences of Neanderthals and modern primates. Proceedings of the National Academy of Sciences of the United States of America 102(12):44094413.Google Scholar
O’Connor, S., Solazzo, C., and Collins, M. 2015. Advances in identifying archaeological traces of horn and other keratinous hard tissues. Studies in Conservation 60(6):393417.Google Scholar
Orlando, L., Ginolhac, A., Zhang, G. J., Froese, D., Albrechtsen, A., Stiller, M., Schubert, M., Cappellini, E., Petersen, B., Moltke, I., Johnson, P. L. F., Fumagalli, M., Vilstrup, J. T., Raghavan, M., Korneliussen, T., Malaspinas, A. S., Vogt, J., Szklarczyk, D., Kelstrup, C. D., Vinther, J., Dolocan, A., Stenderup, J., Velazquez, A. M. V., Cahill, J., Rasmussen, M., Wang, X. L., Min, J. M., Zazula, G. D., Seguin-Orlando, A., Mortensen, C., Magnussen, K., Thompson, J. F., Weinstock, J., Gregersen, K., Roed, K. H., Eisenmann, V., Rubin, C. J., Miller, D. C., Antczak, D. F., Bertelsen, M. F., Brunak, S., Al-Rasheid, K. a. S., Ryder, O., Andersson, L., Mundy, J., Krogh, A., Gilbert, M. T. P., Kjaer, K., Sicheritz-Ponten, T., Jensen, L. J., Olsen, J. V., Hofreiter, M., Nielsen, R., Shapiro, B., Wang, J., and Willerslev, E. 2013. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499(7456):7478.Google Scholar
Ostrom, P. H., Schall, M., Gandhi, H., Shen, T. L., Hauschka, P. V., Strahler, J. R., and Gage, D. A. 2000. New strategies for characterizing ancient proteins using matrix-assisted laser desorption ionization mass spectrometry. Geochimica et Cosmochimica Acta 64(6):10431050.Google Scholar
Palmqvist, P., Grokke, D. R., Arribas, A., and Farina, R. A. 2003. Paleoecological reconstruction of a lower Pleistocene large mammal community using biogeochemical (δ13C, δ15N, δ18O, Sr: Zn) and ecomorphological approaches. Paleobiology 29(2):205229.Google Scholar
Penkman, K. E. H., Kaufman, D. S., Maddy, D., and Collins, M. J. 2008. Closed-system behaviour of the intra-crystalline fraction of amino acids in mollusc shells. Quaternary Geochronology 3(1–2)225.Google Scholar
Penkman, K. E. H., Preece, R. C., Bridgland, D. R., Keen, D. H., Meijer, T., Parfitt, S. A., White, T. S., and Collins, M. J. 2013. An aminostratigraphy for the British Quaternary based on Bithynia opercula. Quaternary Science Reviews 61(C):111134.Google Scholar
Peris-Vicente, J., Simo-Alfonso, E., Adelantado, J. V. G., and Carbo, M. T. D. 2005. Direct infusion mass spectrometry as a fingerprint of protein-binding media used in works of art. Rapid Communications in Mass Spectrometry 19(23):34633467.Google Scholar
Pevzner, P. A., Kim, S., and Ng, J. 2008. Comment on “Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry.” Science 321(5892):1040.Google Scholar
Potter, B. A., Reuther, J. D., Lowenstein, J. M., and Scheuenstuhl, G. 2010. Assessing the reliability of pRIA for identifying ancient proteins from archaeological contexts. Journal of Archaeological Science 37(5):910918.Google Scholar
Rao, H. Y., Li, B., Yang, Y. M., Ma, Q. L., and Wang, C. S. 2015. Proteomic identification of organic additives in the mortars of ancient Chinese wooden buildings. Analytical Methods 7(1):143149.Google Scholar
Rasmussen, M., Li, Y. R., Lindgreen, S., Pedersen, J. S., Albrechtsen, A., Moltke, I., Metspalu, M., Metspalu, E., Kivisild, T., Gupta, R., Bertalan, M., Nielsen, K., Gilbert, M. T. P., Wang, Y., Raghavan, M., Campos, P. F., Kamp, H. M., Wilson, A. S., Gledhill, A., Tridico, S., Bunce, M., Lorenzen, E. D., Binladen, J., Guo, X. S., Zhao, J., Zhang, X. Q., Zhang, H., Li, Z., Chen, M. F., Orlando, L., Kristiansen, K., Bak, M., Tommerup, N., Bendixen, C., Pierre, T. L., Gronnow, B., Meldgaard, M., Andreasen, C., Fedorova, S. A., Osipova, L. P., Higham, T. F. G., Ramsey, C. B., Hansen, T. V. O., Nielsen, F. C., Crawford, M. H., Brunak, S., Sicheritz-Ponten, T., Villems, R., Nielsen, R., Krogh, A., Wang, J., and Willerslev, E. 2010. Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature 463(7282):757762.Google Scholar
Rasmussen, K. L., Tenorio, A. L., Bonaduce, I., Colombini, M. P., Birolo, L., Galano, E., Amoresano, A., Doudna, G., Bond, A. D., Palleschi, V., Lorenzetti, G., Legnaioli, S., Van Der Plicht, J., and Gunneweg, J. 2012. The constituents of the ink from a Qumran inkwell: New prospects for provenancing the ink on the Dead Sea Scrolls. Journal of Archaeological Science 39(9):29562968.Google Scholar
Remington, S. J. 1994. Identifying species of origin from prehistoric blood residues. Science 266(5183):298300.Google Scholar
Richter, K. K., Wilson, J., Jones, A. K. G., Buckley, M., van Doorn, N., and Collins, M. J. 2011. Fish’n chips: ZooMS peptide mass fingerprinting in a 96 well plate format to identify fish bone fragments. Journal of Archaeological Science, 38(7):15021510.Google Scholar
Rybczynski, N., Gosse, J. C., Harington, C. R., Wogelius, R. A., Hidy, A. J., and Buckley, M. 2013. Mid-Pliocene warm-period deposits in the high Arctic yield insight into camel evolution. Nature Communications 4:1550.Google Scholar
Sawafuji, R., Cappellini, E., Nagaoka, T., Fotakis, A. K., Jersie-Christensen, R. R., Olsen, J. V., Hirata, K., and Ueda, S. 2017. Proteomic profiling of archaeological human bone. Royal Society Open Science 4(6):161004.Google Scholar
Schmidt-Schultz, T. H. and Schultz, M. 2007. Well preserved non-collagenous extracellular matrix proteins in ancient human bone and teeth. International Journal of Osteoarchaeology 17(1):9199.Google Scholar
Schroeter, E. R. and Cleland, T. P. 2016. Glutamine deamidation: An indicator of antiquity, or preservational quality? Rapid Communications in Mass Spectrometry 30(2):251255.Google Scholar
Schweitzer, M. H., Zheng, W. X., Organ, C. L., Avci, R., Suo, Z. Y., Freimark, L. M., Lebleu, V. S., Duncan, M. B., Heiden, M. G. V., Neveu, J. M., Lane, W. S., Cottrell, J. S., Horner, J. R., Cantley, L. C., Kalluri, R., and Asara, J. M. 2009. Biomolecular characterization and protein sequences of the Campanian hadrosaur B. canadensis. Science 324(5927):626631.Google Scholar
Shevchenko, A., Yang, Y. M., Knaust, A., Thomas, H., Jiang, H. E., Lu, E. G., Wang, C. S., and Shevchenko, A. 2014. Proteomics identifies the composition and manufacturing recipe of the 2500-year-old sourdough bread from Subeixi cemetery in China. Journal of Proteomics 105:363371.Google Scholar
Shewry, P. R., Kirkman, M. A., Burgess, S. R., Festenstein, G. N., and Miflin, B. J. 1982. A comparison of the protein and amino acid composition of old and recent barley grain. The New Phytologist 90(3):455466.Google Scholar
Smith, P. R. and Wilson, M. T. 1992. Blood residues on ancient tool surfaces: A cautionary note. Journal of Archaeological Science 19(3):237241.Google Scholar
Solazzo, C., Clerens, S., Plowman, J. E., Wilson, J., Peacock, E. E., and Dyer, J. M. 2015. Application of redox proteomics to the study of oxidative degradation products in archaeological wool. Journal of Cultural Heritage 16:896903.Google Scholar
Solazzo, C., Dyer, J. M., Clerens, S., Plowman, J., Peacock, E. E., and Collins, M. J. 2013a. Proteomic evaluation of the biodegradation of wool fabrics in experimental burials. International Biodeterioration and Biodegradation 80:4859.Google Scholar
Solazzo, C., Dyer, J. M., Deb-Choudhury, S., Clerens, S., and Wyeth, P. 2012. Proteomic profiling of the photo-oxidation of silk fibroin: Implications for historic tin-weighted silk. Photochemistry and Photobiology 88(5):12171226.Google Scholar
Solazzo, C., Fitzhugh, W. W., Rolando, C., and Tokarski, C. 2008. Identification of protein remains in archaeological potsherds by proteomics. Analytical Chemistry 80(12):45904597.CrossRefGoogle ScholarPubMed
Solazzo, C., Heald, S., Ballard, M. W., Ashford, D. A., Depriest, P. T., Koestler, R. J., and Collins, M. J. 2011. Proteomics and Coast Salish blankets: A tale of shaggy dogs? Antiquity 85(330):14181432.Google Scholar
Solazzo, C., Wadsley, M., Dyer, J. M., Clerens, S., Collins, M. J., and Plowman, J. 2013b. Characterisation of novel α-keratin peptide markers for species identification in keratinous tissues using mass spectrometry. Rapid Communications in Mass Spectrometry 27(23):26852698.Google Scholar
Solazzo, C., Wadsley, M., Dyer, J. M., Clerens, S., Collins, M. J., and Plowman, J. 2014. Modeling deamidation in sheep α-keratin peptides and application to archeological wool textiles. Analytical Chemistry 86(1):567575.Google Scholar
Steele, T. E. 2015. The contributions of animal bones from archaeological sites: The past and future of zooarchaeology. Journal of Archaeological Science 56:168176.Google Scholar
Stewart, J. R. M., Allen, R. B., Jones, A. K. G., Kendall, T., Penkman, K. E. H., Demarchi, B., O’connor, T., and Collins, M. J. 2013. ZooMS: Making eggshell visible in the archaeological record. Journal of Archaeological Science 40(4):17971804.Google Scholar
Stewart, J. R. M., Allen, R. B., Jones, A. K. G., Kendall, T., Penkman, K. E. H., Demarchi, B., O’Connor, T., and Collins, M. J. 2014. Walking on eggshells: A study of egg use in Anglo-Scandinavian York based on eggshell identification using ZooMS. International Journal of Osteoarchaeology 24(3):247255.Google Scholar
Sykes, N., 2014. Beastly Questions: Animal Answers to Archaeological Issues. London: Bloomsbury Academic.Google Scholar
Terwilliger, T. C. and Clarke, S. 1981. Methylation of membrane proteins in human erythrocytes. Identification and characterization of polypeptides methylated in lysed cells. The Journal of Biological Chemistry 256(6):30673076.Google Scholar
Tokarski, C., Martin, E., Rolando, C., and Cren-Olive, C. 2006. Identification of proteins in renaissance paintings by proteomics. Analytical Chemistry 78(5):14941502.Google Scholar
Towe, K. M. 1972. Collagen-like structures in Ordovician graptolite periderm. Nature 237:443445.Google Scholar
Tran, T. N. N., Aboudharam, G., Gardeisen, A., Davoust, B., Bocquet-Appel, J. P., Flaudrops, C., Belghazi, M., Raoult, D., and Drancourt, M. 2011. Classification of ancient mammal individuals using dental pulp MALDI-TOF MS peptide profiling. PLoS One 6(2):e17319.Google Scholar
Tuross, N., Barnes, I., and Potts, R. 1996. Protein identification of blood residues on experimental stone tools. Journal of Archaeological Science 23(2):289296.Google Scholar
Toniolo, L., D’amato, A., Saccenti, R., Gulotta, D., and Righetti, P. G. 2012. The Silk Road, Marco Polo, a Bible and its proteome: A detective story. Journal of Proteomics 75(11):33653373.Google Scholar
Vaiglova, P., Bogaard, A., Collins, M., Cavanagh, W., Mee, C., Renard, J., Lamb, A., Gardeisen, A., and Fraser, R. 2014. An integrated stable isotope study of plants and animals from Kouphovouno, southern Greece: A new look at Neolithic farming. Journal of Archaeological Science 42:201215.Google Scholar
Vanden Berghe, I. 2012. Towards an early warning system for oxidative degradation of protein fibres in historical tapestries by means of calibrated amino acid analysis. Journal of Archaeological Science 39(5):13491359.Google Scholar
Van Der Sluis, L. G., Hollund, H. I., Buckley, M., De Louw, P. G. B., Rijsdijk, K. F., and Kars, H. 2014. Combining histology, stable isotope analysis and ZooMS collagen fingerprinting to investigate the taphonomic history and dietary behaviour of extinct giant tortoises from the Mare aux Songes deposit on Mauritius. Palaeogeography, Palaeoclimatology, Palaeoecology 416:8091.Google Scholar
van Der Werf, I. D., Calvano, C. D., Palmisano, F., and Sabbatini, L. 2012. A simple protocol for Matrix Assisted Laser Desorption Ionization-time of flight-mass spectrometry (MALDI-TOF-MS) analysis of lipids and proteins in single microsamples of paintings. Analytica Chimica Acta 718:110.Google Scholar
van Doorn, N. L. 2014. Zooarchaeology by Mass Spectrometry (ZooMS). In: Encyclopedia of Global Archaeology, pp. 79988000. New York: Springer.Google Scholar
van Doorn, N. L., Wilson, J., Hollund, H., Soressi, M., and Collins, M. J. 2012. Site-specific deamidation of glutamine: A new marker of bone collagen deterioration. Rapid Communications in Mass Spectrometry 26:23192327.Google Scholar
von Holstein, I. C. C., Ashby, S. P., van Doorn, N. L., Sachs, S. M., Buckley, M., Meiri, M., Barnes, I., Brundle, A., and Collins, M. J. 2014. Searching for Scandinavians in pre-Viking Scotland: Molecular fingerprinting of Early Medieval combs. Journal of Archaeological Science 41:16.Google Scholar
Wadsworth, C. and Buckley, M. 2014. Proteome degradation in fossils: Investigating the longevity of protein survival in ancient bone. Rapid Communications in Mass Spectrometry 28(6):605615.Google Scholar
Wang, S.-Y., Cappellini, E., and Zhang, H.-Y. 2012. Why collagens best survived in fossils? Clues from amino acid thermal stability. Biochemical and Biophysical Research Communications 422(1):57.Google Scholar
Warinner, C., Hendy, J., Speller, C., Cappellini, E., Fischer, R., Trachsel, C., Arneborg, J., Lynnerup, N., Craig, O. E., Swallow, D. M., Fotakis, A., Christensen, R. J., Olsen, J. V., Liebert, A., Montalva, N., Fiddyment, S., Charlton, S., Mackie, M., Canci, A., Bouwman, A., Ruhli, F., Gilbert, M. T. P., and Collins, M. J. 2014a. Direct evidence of milk consumption from ancient human dental calculus. Scientific Reports 4:7104.Google Scholar
Warinner, C., Rodrigues, J. F. M., Vyas, R., Trachsel, C., Shved, N., Grossmann, J., Radini, A., Hancock, Y., Tito, R. Y., Fiddyment, S., Speller, C., Hendy, J., Charlton, S., Luder, H. U., Salazar-Garcia, D. C., Eppler, E., Seiler, R., Hansen, L. H., Castruita, J. a. S., Barkow-Oesterreicher, S., Teoh, K. Y., Kelstrup, C. D., Olsen, J. V., Nanni, P., Kawai, T., Willerslev, E., Von Mering, C., Lewis, C. M., Collins, M. J., Gilbert, M. T. P., Ruhli, F., and Cappellini, E. 2014b. Pathogens and host immunity in the ancient human oral cavity. Nature Genetics 46(4):336344.Google Scholar
Welker, F., Collins, M. J., Thomas, J. A., Wadsley, M., Brace, S., Cappellini, E., Turvey, S. T., Reguero, M., Gelfo, J. N., Kramarz, A., Burger, J., Thomas-Oates, J., Ashford, D. A., Ashton, P. D., Rowsell, K., Porter, D. M., Kessler, B., Fischer, R., Baessmann, C., Kaspar, S., Olsen, J. V., Kiley, P., Elliott, J. A., Kelstrup, C. D., Mullin, V., Hofreiter, M., Willerslev, E., Hublin, J. J., Orlando, L., Barnes, I., and Macphee, R. D. E. 2015a. Ancient proteins resolve the evolutionary history of Darwin’s South American ungulates. Nature 522(7554):8184.Google Scholar
Welker, F., Soressi, M., Rendu, W., Hublin, J. J., and Collins, M. 2015b. Using ZooMS to identify fragmentary bone from the Late Middle/Early Upper Palaeolithic sequence of Les Cottés, France. Journal of Archaeological Science 54:279286.Google Scholar
Whiteaker, J. R., Zhao, L., Zhang, H. Y., Feng, L. C., Piening, B. D., Anderson, L., and Paulovich, A. G. 2007. Antibody-based enrichment of peptides on magnetic beads for mass-spectrometry-based quantification of serum biomarkers. Analytical Biochemistry 362(1):4454.Google Scholar
Wilson, A. S., Brown, E. L., Villa, C., Lynnerup, N., Healey, A., Ceruti, M. C., Reinhard, J., Previgliano, C. H., Araoz, F. A., Diez, J. G., and Taylor, T. 2013. Archaeological, radiological, and biological evidence offer insight into Inca child sacrifice. Proceedings of the National Academy of Sciences of the United States of America 110(33):1332213327.Google Scholar
Wilson, J., van Doorn, N. L., and Collins, M. J. 2012. Assessing the extent of bone degradation using glutamine deamidation in collagen. Analytical Chemistry 84(21):90419048.Google Scholar
Yamashita, M. and Fenn, J. B. 1984. Electrospray ion source. Another variation on the free-jet theme. The Journal of Physical Chemistry 88(20):44514459.Google Scholar
Yan, H. T., An, J. J., Zhou, T., Xia, Y., and Rong, B. 2014. Identification of proteinaceous binding media for the polychrome terracotta army of Emperor Qin Shihuang by MALDI-TOF-MS. Chinese Science Bulletin = Kexue tongbao 59(21):25742581.Google Scholar
Yang, Y. M., Shevchenko, A., Knaust, A., Abuduresule, I., Li, W. Y., Hu, X. J., Wang, C. S., and Shevchenko, A. 2014. Proteomics evidence for kefir dairy in Early Bronze Age China. Journal of Archaeological Science 45:178186.Google Scholar
Zhu, Z. Y., Chen, H. F., Li, L., Gong, D. C., Gao, X., Yang, J. C., Zhao, X. C., and Ji, K. Z. 2014. Biomass spectrometry identification of the fibre material in the pall imprint excavated from Grave M1, Peng-state Cemetery, Shanxi, China. Archaeometry 56(4):681688.Google Scholar

References

Aichholz, R. and Lorbeer, E. 2000. Investigation of combwax of honeybees with high-temperature gas chromatography and high–temperature gas chromatography-chemical ionization mass spectrometry II. High-temperature gas chromatography-chemical ionization mass spectrometry. Journal of Chromatography A 883:7588.Google Scholar
Aillaud, S. 2001. Field and laboratory studies of diagenetic reactions affecting lipid residues absorbed in unglazed archaeological pottery vessels. Doctoral thesis, University of Bristol, UK.Google Scholar
Allentoft, M. E., Sikora, M., Sjögren, K.-G., Rasmussen, S., Rasmussen, M., Stenderup, J., Damgaard, P. B., Schroeder, H., Ahlström, T., Vinner, L., Malaspinas, A.-S., Margaryan, A., Higham, T., Chivall, D., Lynnerup, N., Harvig, L., Baron, J., Della Casa, P., Dąbrowski, P., Duffy, P. R., Ebel, A. V., Epimakhov, A., Frei, K., Furmanek, M., Gralak, T., Gromov, A., Gronkiewicz, S., Grupe, G., Hajdu, T., Jarysz, R., Khartanovich, V., Khokhlov, A., Kiss, V., Kolář, J., Kriiska, A., Lasak, I., Longhi, C., McGlynn, G., Merkevicius, A., Merkyte, I., Metspalu, M., Mkrtchyan, R., Moiseyev, V., Paja, L., Pálfi, G., Pokutta, D., Pospieszny, L., Price, T. D. Saag, L., Sablin, M., Shishlina, N., Smrčka, V., Soenov, V. I., Szeverényi, V., Tóth, G., Trifanova, S. V., Varul, L., Vicze, M., Yepiskoposyan, L., Zhitenev, V., Orlando, L., Sicheritz-Pontén, T., Brunak, S., Nielsen, R., Kristiansen, K. and Willerslev, E. 2015. Population genomics of Bronze Age Eurasia. Nature 522:167172.Google Scholar
Asperger, A., Engewald, W. and Fabian, G. 1999. Analytical characterization of natural waxes employing pyrolysis-gas chromatography-mass spectrometry. Journal of Analytical and Applied Pyrolysis 50:103115.Google Scholar
Barnard, H., Shoemaker, L., Rider, M., Craig, O. E., Parr, R. E., Sutton, M. Q. and II Yohe, R. M. 2007. Introduction to the analysis of protein residues in archaeological ceramics. In: `Barnard, H. and `Eerkens, J. (eds.) Theory and Practice of Archaeological Residue Analysis. BAR International Series 1650, pp. 216231. Oxford: Archaeopress.Google Scholar
Barton, H. and Matthews, P. J. 2006. Taphonomy. In `Torrence, R. and `Barton, H. (eds.) Ancient Starch Research. California: Left Coast Press.Google Scholar
Beja-Pereira, A., Luikart, G., England, P. R., Bradley, D. G. Jann, O.C., Bertorelle, G., Chamberlain, A. T., Nunes, T. P., Metodiev, S., Ferrand, N. and Erhardt, G. 2003. Gene-culture coevolution between cattle milk protein genes and human lactase genes. Nature Genetics 35(4):311313.Google Scholar
Beverly, M. B., Kay, P. T. and Voorhees, K. J. 1995. Principal component analysis of the pyrolysis-mass spectra from African, Africanized hybrid, and European beeswax. Journal of Analytical and Applied Pyrolysis 34:251263.Google Scholar
Boyd, M., Surette, C. and Nicholson, B. A. 2006. Archaeobotanical evidence of prehistoric maize (Zea mays) consumption at the northern edge of the Great Plains. Journal of Archaeological Science 33(8):11291140.Google Scholar
Boyd, M., Varney, T., Surette, C. and Surrette, J. 2008. Reassessing the northern limit of maize consumption in North America: Stable isotope, plant microfossil, and trace element content of carbonised food residue. Journal of Archaeological Science 35:25452556.Google Scholar
Buckley, S. A., Stott, A. W. and Evershed, R. P. 1999. Studies of organic residues from ancient Egyptian mummies using high temperature gas chromatography mass spectrometry and sequential thermal desorption gas chromatography mass spectrometry and pyrolysis gas chromatography mass spectrometry. Analyst 124(4):443452.Google Scholar
Buckley, S., Usai, D., Jakob, T., Radini, A. and Hardy, K. 2014. Dental calculus reveals unique insights into food items, cooking and plant processing in prehistoric Central Sudan. PLoS One 9 :e100808.Google Scholar
Buonasera, T. 2007. Investigating the presence of ancient absorbed organic residues in ground stone using GC-MS and other analytical techniques: A residue study of several prehistoric milling tools from central California. Journal of Archaeological Science 34:12791390.Google Scholar
Cattaneo, C., Gelsthorpe, K., Phillips, P. and Sokol, R. J. 1993. Blood residues on stone tools — indoor and outdoor experiments. World Archaeology 25(1):2943.Google Scholar
Cavalieri, D., McGovern, P. E., Hartl, D. L., Mortimer, R. and Polsinelli, M. 2003. Evidence for S-cerevisiae fermentation in ancient wine. Journal of Molecular Evolution 57:S226S232.Google Scholar
Chandler Ezell, K., Pearsall, D. M. and Zeidler, J. A. 2006. Root and tuber phytoliths and starch grains document manioc (Manihot esculenta) arrowroot (Maranta arundinacea) and ilerén (Calathea sp.) at the real Alto site Ecuador. Economic Botany 60(2):103120.Google Scholar
Charters, S., Evershed, R. P., Blinkhorn, P. W. and Denham, V. 1995. Evidence for the mixing of fats and waxes in archaeological ceramics. Archaeometry 37(1):113127.Google Scholar
Charters, S., Evershed, R. P., Goad, L. J., Heron, C. and Blinkhorn, P. 1993a. Identification of an adhesive used to repair a Roman jar. Archaeometry 35(1):91101.Google Scholar
Charters, S., Evershed, R. P., Goad, L. J., Leyden, A., Blinkhorn, P. W. and Denhem, V. 1993b. Quantification and distribution of lipid in archaeological ceramics: Implications for sampling potsherds for organic residue analysis and the classification of vessel use. Archaeometry 35(2):211223.Google Scholar
Charters, S., Evershed, R. P., Quye, A., Blinkhorn, P. W. and Reeves, V. 1997. Simulation experiments for determining the use of ancient pottery vessels: The behaviour of epicuticular leaf wax during boiling of leafy vegetable. Journal of Archaeological Science 24:17.Google Scholar
Collins, M. J., Nielsen-Marsh, C. M., Hiller, J., Smith, C. I., Roberts, J. P., Prigodich, R. V., Wess, T. J., Csapò, J., Millard, A. R. and Turner-Walker, G. 2002. The survival of organic matter in bone: A review. Archaeometry 44:383394.Google Scholar
Collins, M. J., Westbroek, P., Muyzer, G. and deLeeuw, J. W. 1992. Experimental evidence for condensation reactions between sugars and proteins in carbonate skeletons. Geochimica et Cosmochimica Acta 56:15391544.Google Scholar
Colombini, M. P., Giachi, G., Iozzo, M. and Ribechini, E. 2009. An Etruscan ointment from Chiusi (Tuscany, Italy): Its chemical characterisation. Journal of Archaeological Science 36:14881495.Google Scholar
Colombini, M. P. and Modugno, F. 2009. Organic Mass Spectrometry in Art and Archaeology. Chichester: Wiley.Google Scholar
Colonese, A. C., Hendy, J., Lucquin, A., Speller, C. F., Collins, M. J., Carrer, F., Gubler, R., Kühn, M., Fischer, R., Craig, O. E., 2017. New criteria for the molecular identification of cereal grains associated with archaeological artefacts. Scientific Reports 7:6633.Google Scholar
Copley, M. S., Berstan, R., Dudd, S. N., Docherty, G., Mukherjee, A. J., Straker, V., Payne, S. and Evershed, R. P. 2003. Direct chemical evidence for widespread dairying in prehistoric Britain. Proceedings of the National Academy of Sciences of the United States of America 100(4):15241529.Google Scholar
Copley, M. S., Hansel, F. A., Sadr, K. and Evershed, R. P. 2004. Organic residue evidence for the processing of marine animal products in pottery vessels from the pre-colonial archaeological site of Kasteelberg D east, South Africa. South African Journal of Science 100:279283.Google Scholar
Correa-Ascencio, M. and Evershed, R. P. 2014. High throughput screening of organic residues in archaeological potsherds using direct acidified methanol extraction. Analytical Methods 6:13301340.Google Scholar
Craig, O. E. and Collins, M. J. 2000. An improved method for the immunological detection of mineral bound protein using hydrofluoric acid and direct capture. Journal of Immunological Methods 236(1–2):8997.Google Scholar
Craig, O. E. and Collins, M. J. 2002. The removal of protein from mineral surfaces: Implications for residue analysis of archaeological materials. Journal of Archaeological Science 29(10):10771082.Google Scholar
Craig, O. E., Chapman, J., Figler, A., Patay, P., Taylor, G. and Collins, M. J. 2003. ‘Milk jugs’ and other myths of the Copper Age of Central Europe. European Journal of Archaeology 6(3):251265.Google Scholar
Craig, O. E., Chapman, J., Heron, C., Willis, L. H., Bartosiewicz, L., Taylor, G., Whittle, A. and Collins, M. 2005. Did the first farmers of central and eastern Europe produce dairy foods? Antiquity 79(306):882894.Google Scholar
Craig, O. E., Forster, M., Anderson, S. H., Koch, E., Crombé, P., Miller, N. J., Stern, B., Bailey, G. N. and Heron, C. P. 2007. Molecular and isotopic demonstration of the processing of aquatic products in Northern European prehistoric pottery. Archaeometry 49(1):135152.Google Scholar
Craig, O. E, Mulville, J., Pearson, M. P., Sokol, R., Gelsthorpe, K., Stacey, R. and Collins, M. 2000. Archaeology – Detecting milk proteins in ancient pots. Nature 408(6810):312312.Google Scholar
Craig, O. E., Saul, H., Lucquin, A., Nishida, Y., Tache, K., Clarke, L., Thompson, A., Altoft, D. T., Uchiyama, J., Ajimoto, M., Gibbs, K., Isaksson, S., Heron, C. P. and Jordan, P. 2013. Earliest evidence for the use of pottery. Nature 496:351354.Google Scholar
Craig, O. E., Shillito, L.-M., Alberella, U., Chan, B., Cleal, R., Ixer, R., Jay, M., Marshall, P., Wright, E. and Parker Pearson, M. 2015. Feeding Stonehenge: Cuisine and consumption at the Late Neolithic site of Durrington Walls. Antiquity 89(347):114.Google Scholar
Craig, O. E., Steele, V. J., Fischer, A., Hartz, S., Andersen, S. H., Donohoe, P., Glykou, A., Saul, H., Jones, D. M., Koch, E. and Heron, C. P. 2011. Ancient lipids reveal continuity in culinary practices across the transition to agriculture in Northern Europe. Proceedings of the National Academy of Sciences of the United States of America 108:1791017915.Google Scholar
Cramp, L. and Evershed, R. P. 2014. Reconstructing aquatic resource exploitation in human Prehistory using lipid biomarkers and stable isotopes. In: `Turekian, H. D. H. K. (ed.) Treatise on Geochemistry, 2nd ed., pp. 319339. Oxford: Elsevier.Google Scholar
Cramp, L., Jones, J., Sheridan, A., Smyth, J., Whelton, H., Mulville, J., Sharples, N. and Evershed, R. P. 2014. Immediate replacement of fishing with dairying by the earliest farmers of the Northeast Atlantic archipelagos. Proceedings of the Royal Society. Biological Sciences 281:20132372.Google Scholar
Crowther, A. 2005. Starch residues on undecorated Lapita pottery from Anir, New Ireland. Archaeology in Oceania 40:6266.Google Scholar
deMan, J. M. 1999. Principles in Food Chemistry (3rd edn). Maryland: Aspen Publishers Inc.Google Scholar
Dudd, S. N. and Evershed, R. P. 1998. Direct demonstration of milk as an element of archaeological economies. Science 282(5393):14781481.Google Scholar
Dudd, S. N. and Evershed, R. P. 1999. Unusual triterpenoid fatty acyl ester components of archaeological birch bark tars. Tetrahedron Letters 40:359362.Google Scholar
Dudd, S. N., Regert, M. and Evershed, R. P. 1998. Assessing microbial lipid contributions during laboratory degradations of fats and oils and pure triacylglycerols absorbed in ceramic potsherds. Organic Geochemistry 29: 13451354.Google Scholar
Dunne, J., Evershed, R. P., Salque, M., Cramp, L., Bruni, S., Ryan, K., Biagetti, S. and Di Lernia, S. 2012. First dairying in green Saharan Africa in the fifth millennium BC. Nature 486:390394.Google Scholar
Dunne, J., Mercuri, A. M., Evershed, R. P., Bruni, S., di Lernia, S., 2016. Earliest direct evidence of plant processing in prehistoric Saharan pottery. Nature Plants 3:16194.Google Scholar
Evershed, R. P. 1992. Gas chromatography of lipids. In: `Hamilton, R. J. and `Hamilton, S. (eds.) Lipid Analysis: A Practical Approach, pp. 113151. Oxford: Oxford University Press.Google Scholar
Evershed, R. P. 2008a. Organic residue analysis in archaeology: The archaeological biomarker revolution. Archaeometry 50:895924.Google Scholar
Evershed, R. P. 2008b. Experimental approaches to the interpretation of absorbed organic residues in archaeological ceramics. World Archaeology 40(1):2647.Google Scholar
Evershed, R. P., Arnot, K. I., Collister, J., Eglinton, G. and Charters, S. 1994. Application of isotope ratio monitoring gas chromatography-mass spectrometry to the analysis of organic residues of archaeological origin. Analyst 119:909914.Google Scholar
Evershed, R. P., Berstan, R., Grew, F., Copley, M. S., Charmant, A. J. H., Barham, E., Mottram, H. R. and Brown, G. 2004. Formulation of a Roman cosmetic. Nature 432:3536.Google Scholar
Evershed, R. P., Copley, M. S., Dickson, L. and Hansel, F. A. 2008b. Experimental evidence for the processing of marine animal products and other commodities containing polyunsaturated fatty acids in pottery vessels. Archaeometry 50(1):101113.Google Scholar
Evershed, R. P., Dudd, S. N., Charters, S., Mottram, H. A., Stott, A. W., Raven, A. van Bergen, P. F. and Bland, H. A. 1999. Lipids as carriers of anthropogenic signals from prehistory. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 354:1931.Google Scholar
Evershed, R. P., Dudd, S., Lockheart, M. J. and Jim, S. 2001. Lipids in archaeology. In: `Brothwell, D. R. and `Pollard, A. M. (eds.) Handbook of Archaeological Sciences, pp. 331349. Chichester: Wiley.Google Scholar
Evershed, R. P., Heron, C. and Goad, L. J. 1990. Analysis of organic residues of archaeological origin by high temperature gas chromatography and gas chromatography/mass spectrometry. Analyst 115:13391342.Google Scholar
Evershed, R. P., Heron, C. and Goad, L. J. 1991. Epicuticular wax components preserved in potsherds as chemical indicators of leafy vegetables in ancient diets. Antiquity 65:540544.Google Scholar
Evershed, R. P., Payne, S., Sherratt, A. G., Copley, M. S., Coolidge, J., Urem-Kotsu, D., Kotsakis, K., Ozdogan, M., Ozdogan, A. E., Nieuwenhuyse, O., Akkermans, P., Bailey, D., Andeescu, R. R., Campbell, S., Farid, S., Hodder, I., Yalman, N., Ozbasaran, M., Bicakci, E., Garfinkel, Y., Levy, T. and Burton, M. M. 2008a. Earliest date for milk use in the Near East and southeastern Europe linked to cattle herding. Nature 455(7212):528531.Google Scholar
Evershed, R. P. and Tuross, N. 1996. Proteinaceous material from potsherds and associated soils. Journal of Archaeological Science 23(3):429436.Google Scholar
Gott, B., Barton, H., Samuel, D. and Torrence, R. 2006. Biology of starch. In: `Torrence, R. and `Barton, H. (eds.) Ancient Starch Research, pp. 3546. California: Left Coast Press.Google Scholar
Gregg, M. W., Banning, E. B., Gibbs, K. and Slater, G. F. 2009. Subsistence practices and pottery use in Neolithic Jordan: Molecular and isotopic evidence. Journal of Archaeological Science 36:937946.Google Scholar
Guasch-Jané, M.R., Andres-Lacueva, C., Jauregui, O. and Lamuela-Raventos, R. M. 2006. The origin of the ancient Egyptian drink Shedeh revealed using LC/MS/MS. Journal of Archaeological Science 33(1):98101.Google Scholar
Guasch-Jané, M. R., Ibern-Gomez, M., Andres-Lacueva, C., Jauregui, O. and Lamuela-Raventos, R. M. 2004. Liquid chromatography with mass spectrometry in tandem mode applied for the identification of wine markers in residues from ancient Egyptian vessels. Analytical Chemistry 76(6):16721677.Google Scholar
Hansel, F. A., Copley, M. S., Madureira, L. A. S. and Evershed, R. P. 2004. Thermally produced ω-(-o-alkylphenyl) alkanoic acids provide evidence for the processing of marine products in archaeological pottery vessels. Tetrahedron Letters 45:29993002.Google Scholar
Hansel, F. A. and Everhsed, R. P. 2009. Formation of dihydroxy acids from Z-monounsaturated alkenoic acids and their use as biomarkers for the processing of marine commodities in archaeological pottery vessels. Tetrahedron Letters 50:55625564.Google Scholar
Hansson, M. C. and Foley, B. P. 2008. Ancient DNA fragments inside Classical Greek amphoras reveal cargo of 2400-year-old shipwreck. Journal of Archaeological Science 35:11691176.Google Scholar
Hardy, K., Blakeney, T., Copeland, L., Kirkham, J., Wrangham, R. and Collins, M. 2009. Starch grains, dental calculus and new perspectives on ancient diet. Journal of Archaeological Science 36(2):248255.Google Scholar
Hardy, K., Buckley, S., Collins, M. J., Estallrich, A., Brothwell, D., Copeland, L., García-Tabernero, A., García-Vargas, S., Rasilla, M., Lalueza-Fox, C., Huguet, R., Bastir, M., Santamaría, D., Madella, M., Wilson, J., Cortés, Á. and Rosas, A. 2012. Neanderthal medics? Evidence for food, cooking, and medicinal plants entrapped in dental calculus. Naturwissenschaften 99:617626.Google Scholar
Hardy, K., Radini, A., Buckley, S., Sarig, R., Copeland, S., Gopher, A. and Barkai, R. 2015. Dental calculus reveals potential respiratory irritants and ingestion of essential plant-based nutrients at Lower Palaeolithic Qesem Cave Israel. Quaternary International 398:129135.Google Scholar
Hardy, B. L. Raff, R. A. and Raman, V. 1997. Recovery of mammalian DNA from Middle Paleolithic stone tools. Journal of Archaeological Science 24(7):601611.Google Scholar
Heaton, K., Solazzo, C., Collins, M. J., Thomas-Oates, J. and Bergstrom, E. T. 2009. Towards the application of desorption electrospray ionisation mass spectrometry (DESI-MS) to the analysis of ancient proteins from artefacts. Journal of Archaeological Science 36(10):21452154.Google Scholar
Helmer, D. and Vigne, J.-D. 2007. Was milk a ‘secondary product’ in the Old World Neolithisation process? Its role in the domestication of cattle, sheep and goats. Anthropozoologica 42(2):940.Google Scholar
Hendy, J., van Doorn, N. and Collins, M. in press. Proteomics. In: `Richards, M. P. and `Britton, K. (eds.) Archaeological Science. Cambridge: Cambridge University Press.Google Scholar
Heron, C., Andersen, S., Fischer, A., Glykou, A., Hartz, S., Saul, H., Steele, V. and Craig, O. 2013. Illuminating the Late Mesolithic: Residue analysis of ‘blubber’ lamps from Northern Europe. Antiquity 87:178188.Google Scholar
Heron, C., Shoda, S., Breu Barcons, A., Czebreszuk, J., Eley, Y., Gorton, M., Kirleis, W., Kneisel, J., Lucquin, A., Müller, J., Nishida, Y., Son, J.-H., Craig, O. E. 2016. First molecular and isotopic evidence of millet processing in prehistoric pottery vessels. Scientific Reports 6:38767.Google Scholar
Hogberg, A., Puseman, K. and Yost, C. 2009. Integration of use-wear with protein residue analysis – a study of tool use and function in the south Scandinavian Early Neolithic. Journal of Archaeological Science 36(8):17251737.Google Scholar
Hurst, W. J., Tarka, S. M., Powis, T. G., Valdez, F. and Hester, T. R. 2002. Archaeology: Cacao usage by the earliest Maya civilization. Nature 418(6895):289290.Google Scholar
Itan, Y., Powell, A., Beaumont, M. A., Burger, J. and Thomas, M. G. 2009. The origins of lactase persistence in Europe. PLoS Computational Biology 5(8):e1000491.Google Scholar
Jones, J., Higham, T. F. G., Oldfield, R., O’Connor, T. and Buckley, S. A. 2014. Evidence for prehistoric origins of Egyptian mummification in Late Neolithic burials. PLoS One 9:113.Google Scholar
Karg, S. 2008. På Karrets Bund. SKALK 4:32.Google Scholar
Kealhofer, L., Torrence, R. and Fullager, R. 1999. Integrating phytoliths within use-wear/residue studies of stone tools. Journal of Archaeological Science 26:527547.Google Scholar
Leach, J. D. 1998. A brief comment on the immunological identification of plant residues on prehistoric stone tools and ceramics: Results of a blind test. Journal of Archaeological Science 25:171175.Google Scholar
Lidén, K., Eriksson, G., Nordqvist, B., Götherström, A. and Bendixen, A. 2004. The wet and the wild followed by the dry and the tame – or did they occur at the same time? Diet in Mesolithic-Neolithic southern Sweden. Antiquity 78:2333.Google Scholar
Loog, L. and Larson, G. in press. Ancient DNA. In: `Richards, M. P. and `Britton, K. (eds.) Archaeological Science. Cambridge: Cambridge University Press.Google Scholar
Loy, T. H. 1983. Prehistoric blood residues: Detection on tool surfaces and identification of species of origin. Science 220(4603):12691271.Google Scholar
Loy, T. H. 1993. The artifact as site – an example of the biomolecular analysis of organic residues on Prehistoric tools. World Archaeology 25(1):4463.Google Scholar
Loy, T. H. and Dixon, J. E. 1998. Blood residues on fluted points from Eastern Beringia. American Antiquity 63:2146.Google Scholar
Loy, T. H. and Hardy, B. L. 1992. Blood residue analysis of 90,000-year-old stone tools from Tabun Cave, Israel. Antiquity 66(250):2435.Google Scholar
Lusteck, R. K. and Thompson, R. G. 2007. Residues of maize in North American pottery: What phytoliths can add to the story of maize. In: `Barnard, H. and `Eerkens, J. W. (eds.) Theory and Practice of Archaeological Residue Analysis. BAR International Series 1650, pp. 816. Oxford: Archaeopress.Google Scholar
Malainey, M. E., Przybylski, R. and Sherriff, B. L. 1999. Identifying the former contents of late precontact period pottery vessels from western Canada using gas chromatography. Journal of Archaeological Science 26(4):425438.Google Scholar
McGovern, P. E., Luley, B. P., Rovira, N., Mirzoian, A., Callahan, M. P., Smith, K. E., Hall, G. R., Davidson, T. and Henkin, J. M. 2013. Beginning of viniculture in France. Proceedings of the National Academy of Sciences 110(25):1014710152.Google Scholar
McGovern, P. E., Zhang, J. H., Tang, J. G., Zhang, Z. Q., Hall, G. R., Moreau, R. A., Nunez, A., Butrym, E. D., Richards, M. P., Wang, C. S., Cheng, G. S., Zhao, Z. J. and Wang, C. S. 2004. Fermented beverages of pre- and proto-historic China. Proceedings of the National Academy of Sciences of the United States of America 101:1759317598.Google Scholar
Meier-Augenstein, W. 2002. Stable isotope analysis of fatty acids by gas chromatography-isotope ratio mass spectrometry. Analytica Chimica Acta 465(1–2):6379.Google Scholar
Milner, N., Craig, O. E., Bailey, G. N. and Andersen, S. H. 2006. A response to Richards and Schulting. Antiquity 80:456458.Google Scholar
Milner, N., Craig, O. E., Bailey, G. N., Pedersen, K. and Andersen, S. H. 2004. Something fishy in the Neolithic? A re-evaluation of stable isotope analysis of Mesolithic and Neolithic coastal populations. Antiquity 78:922.Google Scholar
Mirabaud, S., Rolando, C. and Regert, M. 2007. Molecular criteria for discriminating adipose fat and milk from different species by NanoESI MS and MS/MS of their triacylglycerols: Application to archaeological remains. Analytical Chemistry 79:61826192.Google Scholar
Morgan, E. D., Edwards, C. and Pepper, S. A. 1992. Analysis of the fatty debris from the wreck of a Basque whaling ship at Red Bay, Labrador. Archaeometry 34(1):129133.Google Scholar
Morgan, E. D., Titus, L., Small, R. J. and Edwards, C. 1983. The composition of fatty materials from a Thule Eskimo site on Herschel Island. Arctic 36(4):356360.Google Scholar
Morgan, E. D., Titus, L., Small, R. J. and Edwards, C. 1984. Gas chromatographic analysis of fatty material from a Thule Midden. Archaeometry 26(1):4348.Google Scholar
Morton, J. D. and Schwarcz, H. P. 2004. Palaeodietary implications from stable isotopic analysis of residues on prehistoric Ontario ceramics. Journal of Archaeological Science 31:503517.Google Scholar
Newman, M. E., Ceri, H. and Kooyman, B. 1996. The use of immunological techniques in the analysis of archaeological materials: A response to Eisele; with report studies at Head-Smashed-In Buffalo Jump. Antiquity 70:677682.Google Scholar
Newman, M., and Julig, P. 1989. The identification of protein residues on lithic artefacts from a stratified boreal forest site. Canadian Journal of Archaeology 13:119132.Google Scholar
Nicholson, R. A. 1998. Fishing for facts: A preliminary view of the fish remains from Old Scatness Broch. In: `Nicholson, R. A. and `Dockrill, S. J. (eds.) Old Scatness Broch, Shetland: Retrospect and Prospect, pp. 97110. Bradford: Department of Archaeological Sciences.Google Scholar
Nolin, L. Kramer, J. K. G. and Newman, M. 1994. Detection of animal residues in humus samples from a prehistoric site in the Lower Mackenzie River Valley, Northwest Territories. Journal of Archaeological Science 21:403412.Google Scholar
Nursten, H. E. 2005. The Maillard Reaction: Chemistry, Biochemistry, and Implications. London: Royal Society of Chemistry.Google Scholar
Olsson, M. and Isaksson, S. 2008. Molecular and isotopic traces of cooking and consumption of fish at an Early Medieval manor site in eastern middle Sweden. Journal of Archaeological Science 35:773780.Google Scholar
Oudemans, T. F. M. and Boon, J. J. 1991. Molecular archaeology: Analysis of charred (food) remains from prehistoric pottery by pyrolysis-gas chromatography/mass spectrometry. Journal of Analytical and Applied Pyrolysis 20:197227.Google Scholar
Oudemans, T. F. M., Boon, J. J. and Botto, R. E. 2007a. FTIR and solid-state C-13 CP/MAS NMR spectroscopy of charred and non-charred solid organic residues preserved in Roman Iron Age vessels from the Netherlands. Archaeometry 49:571594.Google Scholar
Oudemans, T. F. M., Eijkel, G. B. and Boon, J. J. 2007b. Identifying biomolecular origins of solid organic residues preserved in Iron Age Pottery using DTMS and MVA. Journal of Archaeological Science 34:173193.Google Scholar
Outram, A. K., Stear, N. A., Bendrey, R., Olsen, S., Kasparov, A., Zaibert, V., Thorpe, N. and Evershed, R. P. 2009. The earliest horse harnessing and milking. Science 323(5919):13321335.Google Scholar
Patrick, M., de Koning, A. J. and Smith, A. B. 1985. Gas liquid chromatographic analysis of fatty acids in food resides from ceramics found in the Southwestern Cape, South Africa. Archaeometry 27(2):231236.Google Scholar
Piperno, D. 2006. Phytoliths. A Comprehensive Guide for Archaeologists and Paleoecologists. Lanham: Alta Mira Press.Google Scholar
Pollard, A. M., Batt, C., Stern, B. and Young, S. M. M. 2007. Analytical Chemistry in Archaeology. Cambridge: Cambridge University Press.Google Scholar
Pollard, A. M. and Heron, C. 2008. Archaeological Chemistry, 2nd ed. Cambridge: Royal Society of Chemistry.Google Scholar
Raven, A. M., van Bergen, P. F., Stott, A. W., Dudd, S. N. and Evershed, R. P. 1997. Formation of long-chain ketones in archaeological pottery vessels by pyrolysis of acyl lipids. Journal of Analytical and Applied Pyrolysis 40–41:267285.Google Scholar
Reber, E. A. and Evershed, R. P. 2004. Identification of maize in absorbed organic residues: A cautionary tale. Journal of Archaeological Science 31:399410.Google Scholar
Regert, M. 2007. Elucidating pottery function using a multi-step analytical methodology combining infrared spectroscopy, chromatographic procedures and mass spectrometry. In: `Barnard, H. and `Eerkens, J. W. (eds.) Theory and Practice of Archaeological Residue Analysis. BAR International Series 1650, pp. 6176. Oxford: Archaeopress.Google Scholar
Regert, M. 2011. Analytical strategies for discriminating archaeological fatty substances from animal origin. Mass Spectrometry Reviews 30:177220.Google Scholar
Regert, M., Bland, H. A., Dudd, S. N., van Bergen, P. F. and Evershed, R. P. 1998. Free and bound fatty acid oxidation products in archaeological ceramic vessels. Proceedings of the Royal Society of London B 265:20272032.Google Scholar
Regert, M., Garnier, N., Decavallas, O., Cern-Olivé, C. and Ronaldo, C. 2003. Structural characterization of lipid constituents from natural substances preserved in archaeological environments. Measurement Science and Technology 14:16201630.Google Scholar
Reynard, L. M. Hedges, R. E. M. and Henderson, G. M. 2008. Stable calcium isotope ratios (delta Ca-44/42) in bones and teeth for the detection of dairying by ancient humans. Geochimica et Cosmochimica Acta 72(12):A790A790.Google Scholar
Ribechini, E., Modugno, F., Baraldi, C., Baraldi, P. and Colombini, M. P. 2008a. An integrated analytical approach for characterizing an organic residue from an archaeological glass bottle recovered in Pompeii (Naples, Italy). Talanta 74:555561.Google Scholar
Ribechini, E., Modugno, F., Colombini, M.P. and Evershed, R. P. 2008b. Gas chromatographic and mass spectrometric investigations of organic residues from Roman glass uguentaria. Journal of Chromatography A 1183:158169.Google Scholar
Richards, M. P., Price, T. D. and Koch, E. 2003. Mesolithic and Neolithic subsistence in Denmark: New stable isotope data. Current Anthropology 44:288295.Google Scholar
Salque, M., Bogucki, P. I., Pyzel, P. I., Sobkowiak-Tabaka, I., Grygiel, R., Szmyt, M. and Evershed, R. P. 2013. Earliest evidence for cheese making in the sixth millennium BC in northern Europe. Nature 493:522525.Google Scholar
Saul, H., Madella, M., Fischer, A., Glykou, A., Hartz, S. and Craig, O. E. 2013. Phytoliths in pottery reveal the use of spice in European prehistoric cuisine. PLoS One 8:e70583, 15.Google Scholar
Saul, H., Wilson, J., Heron, C., Glykou, A., Hartz, S. and Craig, O. E. 2012. A systematic approach to the recovery and identification of starches from carbonised deposits on ceramic vessels. Journal of Archaeological Science 39:34833492.Google Scholar
Schulting, R. and Richards, M. 2002. Finding the coastal Mesolithic in southwest Britain: AMS dates and stable isotope results on human remains from Caldey Island, south Wales. Antiquity 76(294):10111025.Google Scholar
Shanks, O. C., Bonnichsen, R., Vella, A. T. and Ream, W. 2001. Recovery of protein and DNA trapped in stone tool microcracks. Journal of Archaeological Science 28(9):965972.Google Scholar
Shanks, O. C., Hodges, L., Tilley, L., Kornfeld, M., Larson, M. L. and Ream, W. 2005. DNA from ancient stone tools and bones excavated at Bugas-Holding, Wyoming. Journal of Archaeological Science 32(1):2738.Google Scholar
Shanks, O. C., Kornfeld, M. and Hawk, D. D. 1999. Protein analysis of Bugas-Holding tools: New trends in immunological studies. Journal of Archaeological Science 26(9):11831191.Google Scholar
Shanks, O. C., Kornfeld, M. and Ream, W. 2004. DNA and protein recovery from washed experimental stone tools. Archaeometry 46:663672.Google Scholar
Solazzo, C., Fitzhugh, W. W., Rolando, C. and Tokarski, C. 2008. Identification of protein remains in archaeological potsherds by proteomics. Analytical Chemistry 80(12):45904597.Google Scholar
Stern, B., Heron, C. C., Tellefsen, T. and Serpico, M. 2008. New investigations into the Uluburun resin cargo. Journal of Archaeological Science 35:21882203.Google Scholar
Taché, K. and Craig, O. E. 2015. Cooperative harvesting of aquatic resources and the beginning of pottery production in north-eastern North America. Antiquity 89:177190.Google Scholar
Tuross, N., Barnes, I. and Potts, R. 1996. Protein identification of blood residues on experimental stone tools. Journal of Archaeological Science 23(2):289296.Google Scholar
Warinner, C., Hendy, J., Speller, C., Cappellini, E., Fischer, R., Trachsel, C., Arneborg, J., Lynnerup, N., Craig, O. E., Swallow, D. M., Fotakis, A., Christensen, R. J., Olsen, J. V., Liebert, A., Montalva, N., Fiddyment, S., Charlton, S., Mackie, M., Canci, A., Bouwman, A., Rühli, F., Gilbert, M. T. P. and Collins, M. J. 2014. Direct evidence of milk consumption from ancient human dental calculus. Scientific Reports 4:7104.Google Scholar
Willerslev, E., Hansen, A. J., Binladen, J., Brand, T. B., Gilbert, M. T. P., Shapiro, B., Bunce, M., Wiuf, C., Gilichinsky, D. A. and Cooper, A. 2003. Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300(5620):791795.Google Scholar
Zarrillo, S., Pearsall, D. M., Raymond, J. S., Tisdale, M. A. and Quon, D. J. 2008. Directly dated starch residues document early formative maize (Zea mays L.) in tropical Ecuador. Proceedings of the National Academy of Sciences 105(13):50065011.Google Scholar

References

Åberg, G. 1995. The use of natural strontium isotopes as tracers in environmental studies. Water, Air and Soil Pollution 79:309322.Google Scholar
Åberg, G., Jacks, G., Wickman, T. and Hamilton, P. J. 1990. Strontium isotopes in trees as an indicator for calcium availability. Catena 17:111.Google Scholar
Ayliffe, L. K., Lister, A. M. and Chivas, A. R. 1992. The preservation of glacial-interglacial climatic signatures in the oxygen isotopes of elephant skeletal phosphate. Palaeogeography, Palaeoclimatology, Palaeoecology 99:179191.Google Scholar
Balasse, M., Ambrose, S. H., Smith, A. B. and Price, T. D. 2002. The seasonal mobility model for prehistoric herders in the South-western Cape of South Africa assessed by isotopic analysis of sheep tooth enamel. Journal of Archaeological Science 29:917932.Google Scholar
Bataille, C. P., von Holstein, I. C. C., Laffoon, J. E., Willmes, M., Liu, X. -M. and Davies, G. R., 2018. A bioavailable strontium isoscape for Western Europe: A machine learning approach. PLoS ONE 13:e0197386.Google Scholar
Beikman, H. M. 1980. Geologic Map of Alaska, 1:2 500 000. US Geological Survey.Google Scholar
Bentley, R. A. 2006. Strontium isotopes from the earth to the archaeological skeleton: A review. Journal of Archaeological Method and Theory 13:135187.Google Scholar
Bentley, R. A. 2013. Mobility and the diversity of Early Neolithic lives: Isotopic evidence from skeletons. Journal of Anthropological Archaeology 32:303312.Google Scholar
Bentley, R. A. and Knipper, C. 2005. Transhumance at the early Neolithic settlement at Vaihingen (Germany). Antiquity 79 (December. Online Project Gallery).Google Scholar
Bentley, R. A., Pietrusewsky, M., Douglas, M. T. and Atkinson, T. C. 2005. Matrilocality during the prehistoric transition to agriculture in Thailand? Antiquity 79:865881.Google Scholar
Bentley, R. A., Price, T. D. and Stephen, E. 2004. Determining the ‘local’ 87Sr/86Sr range for archaeological skeletons: A case study from Neolithic Europe. Journal of Archaeological Science 31:365375.Google Scholar
Bernard, A., Daux, V., Lécuyer, C., Brugal, J.-P., Genty, D., Wainer, K., Gardien, V., Fourel, F. and Jaubert, J. 2009. Pleistocene seasonal temperature variations recorded in the δ18O of Bison priscus teeth. Earth and Planetary Science Letters 283:133143.Google Scholar
Blum, J. D., Taliaferro, E. H., Weisse, M. T. and Holmes, R. T. 2000. Changes in Sr/Ca, Ba/Ca and 87Sr/86Sr ratios between trophic levels in two forest ecosystems in the northeastern U.S.A. Biogeochemistry 49:87101.Google Scholar
Brettell, R., Montgomery, J. and Evans, J. 2012. Brewing and stewing: The effect of culturally mediated behaviour on the oxygen isotope composition of ingested fluids and the implications for human provenance studies. Journal of Analytical Atomic Spectrometry 27:778785.Google Scholar
Britton, K. 2010. Multi-isotope analysis and the reconstruction of prey species palaeomigrations and palaeoecology. Doctoral thesis, Durham University.Google Scholar
Britton, K. 2018. Prey species movements and migrations in ecocultural landscapes: Reconstructing late Pleistocene herbivore seasonal spatial behaviours. In: `Pilaar-Birch, S. (ed.) Multi-Species Archaeology, pp. 347367. London: Routledge.Google Scholar
Britton, K., Fuller, B. T., Tutken, T., Mays, S. and Richards, M. P. 2015. Oxygen isotope analysis of human bone phosphate evidences weaning age in archaeological populations. American Journal of Physical Anthropology 157:226241.Google Scholar
Britton, K., Grimes, V., Dau, J. and Richards, M. P. 2009. Reconstructing faunal migrations using intra-tooth sampling and strontium and oxygen isotope analyses: A case study of modern caribou (Rangifer tarandus granti). Journal of Archaeological Science 36:11631172.Google Scholar
Britton, K., Grimes, V., Niven, L., Steele, T., McPherron, S., Soressi, M., Kelly, T. E., Jaubert, J., Hublin, J.-J. and Richards, M. P. 2011. Strontium isotope evidence for migration in late Pleistocene Rangifer: Implications for Neanderthal hunting strategies at the Middle Palaeolithic site of Jonzac, France. Journal of Human Evolution 61:176185.Google Scholar
Brown, W. A. B. and Chapman, N. G. 1991a. Age assessment of fallow deer (Dama dama): From a scoring scheme based on radiographs of developing permanent molariform teeth. Journal of Zoology, London 224:367379.Google Scholar
Brown, W. A. B. and Chapman, N. G. 1991b. The dentition of red deer (Cervus elaphus): A scoring scheme to assess age from wear of the permanent molariform teeth. Journal of Zoology, London 224:519536.Google Scholar
Bryant, J. D. and Froelich, P. N. 1995. A model of oxygen isotope fractionation in body water of large mammals. Geochimica et Cosmochimica Acta 59:45234537.Google Scholar
Bryant, J. D., Froelich, P. N., Showers, W. J. and Genna, B. J. 1996a. Biologic and climatic signals in the oxygen isotopic composition of Eocene-Oligocene equid enamel phosphate. Palaeogeography, Palaeoclimatology, Palaeoecology 126:7589.Google Scholar
Bryant, J. D., Koch, P. L., Froelich, P. N., Showers, W. J. and Genna, B. J. 1996b. Oxygen isotope partioning between phosphate and carbonate in mammalian apatite. Geochimica et Cosmochimica Acta 60:51455148.Google Scholar
Bryant, J. D., Luz, B. and Froelich, P. N. 1994. Oxygen isotopic composition of fossil horse tooth phosphate as a record of continental paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 107:303316.Google Scholar
Budd, P., Millard, A., Chenery, C., Lucy, S. and Roberts, C. 2004. Investigating population movement by stable isotope analysis: A report from Britain. Antiquity 78:127141.Google Scholar
Burton, J. H., Price, T. D. and Middleton, W. D. 1999. Correlation of bone Ba/Ca and Sr/Ca due to biological purification of calcium. Journal of Archaeological Science 26:609616.Google Scholar
Capo, R. C., Stewert, B. W. and Chadwick, O. A. 1998. Strontium isotopes as tracers of ecosystem processes: Theory and methods. Geoderma 82:197225.Google Scholar
Chadwick, O. A., Derry, L. A., Vitousek, P. M., Huebert, B. J. and Hedin, L. O. 1999. Changing sources of nutrients during four million years of ecosystem development. Nature 397:491497.Google Scholar
Chenery, C., Muldner, G., Evans, J., Eckardt, H. and Lewis, M. 2010. Strontium and stable isotope evidence for diet and mobility in Roman Gloucester, UK. Journal of Archaeological Science 37:150163.Google Scholar
Clark, I. and Fritz, P. 1997. Environmental Isotopes in Hydrogeology. New York: Lewis Publishers.Google Scholar
Copeland, S. R., Sponheimer, M., le Roux, P. J., Grimes, V., Lee-Thorp, J. A., de Ruiter, D. J. and Richards, M. P. 2008. Strontium isotope ratios (87Sr/86Sr) of tooth enamel: Comparison of solution and laser ablation multicollector inductively coupled plasma mass spectrometry methods. Rapid Communications in Mass Spectrometry 22:31873194.Google Scholar
Coplen, T. B. 1995. New manuscript guidelines for the reporting of stable hydrogen, carbon, and oxygen isotope-ratio data. Geothermics 24:707712.Google Scholar
Crowson, R. A., Showers, W. J., Wright, E. K. and Hoering, T. C. 1991. Preparation of phosphate samples for oxygen isotope analysis. Analytical Chemistry 63:23972400.Google Scholar
Cuntz, M., Ciais, P. and Hoffmann, G. 2002. Modelling the continental effect of oxygen isotopes over Eurasia. Tellus B 54:895911.Google Scholar
Dansgaard, W. 1964. Stable isotopes in precipitation. Tellus 16:436468.Google Scholar
Dau, J. 2003. Units 21D, 22A, 22B, 23, 24, 26A. In: `Healy, C. (ed.) Caribou survey-inventory management report, July 1 2000–June 30 2002. Juneau: Alaska Department of Fish and Game.Google Scholar
Daux, V., Lécuyer, C., Héran, M.-A., Amiot, R., Simon, L., Fourel, F., Martineau, F., Lynnerup, N., Reychler, H. and Escarguel, G. 2008. Oxygen isotope fractionation between human phosphate and water revisited. Journal of Human Evolution 55:11381147.Google Scholar
Dettman, D. L., Kohn, M. J., Quade, J., Ryerson, F. J., Ojha, T. P. and Hamindullah, S. 2001. Seasonal stable isotope evidence for a strong Asian monsoon throughout the past 10.7 m.y. Geology 29:3134.Google Scholar
Dijkstra, F. A. and Smits, M. M. 2002. Tree species effects on calcium cycling: The role of calcium uptake in deep soils. Ecosystems 5:385398.Google Scholar
Ericson, J. E. 1985. Strontium isotope characterization in the study of Prehistoric human ecology. Journal of Human Evolution 14:503514.Google Scholar
Evans, J. A., Montgomery, J., Wildman, G. and Boulton, N. 2010. Spatial variations in biosphere 87Sr/86Sr in Britain. Journal of the Geological Society 167:14.Google Scholar
Evans, J. A., Stoodley, N. and Chenery, C. 2006. A strontium and oxygen isotope assessment of a possible fourth-century immigrant population in a Hampshire cemetery, southern England. Journal of Archaeological Science 33:265272.Google Scholar
Evans, J. A., Tatham, S., Chenery, S. R. and Chenery, C. A. 2007. Anglo-Saxon animal husbandry techniques revealed though isotope and chemical variations in cattle teeth. Applied Geochemistry 22:19942005.Google Scholar
Ezzo, J. A., Johnson, C. M. and Price, T. D. 1997. Analytical perspective on prehistoric migration: A case study from east-central Arizona. Journal of Archaeological Science 24:447466.Google Scholar
Fabre, M., Lécuyer, C., Brugal, J. P., Amiot, R., Fourel, F. and Martineau, F. 2011. Late Pleistocene climatic change in the French Jura (Gigny) recorded in the delta O-18 of phosphate from ungulate tooth enamel. Quaternary Research 75:605613.Google Scholar
Faure, G. 1986. Principles of Isotope Geology. New York: Wiley.Google Scholar
Fricke, H. C., Clyde, W. C., O’Neil, J. R. and Gingerich, P. D. 1998. Evidence for rapid climate change in North America during the latest Paleocene thermal maximum: Oxygen isotope compositions of biogenetic phosphate from Bighorn Basin (Wyoming). Earth and Planetary Science Letters 160:193208.Google Scholar
Garvie-Lok, S. J., Varney, T. and Katzenberg, M. A. 2004. Preparation of bone carbonate for stable isotope analysis: The effects of treatment time and acid concentration. Journal of Archaeological Science 31:763776.Google Scholar
Gat, J. R. 1980. The isotopes of hydrogen and oxygen in precipitation. In: `Fritz, P. and `Fontes, J.-C. (eds.) Handbook of Environmental Isotope Geochemistry, Vol. 1: The Terrestrial Environment, pp. 2142. Amsterdam: Elsevier.Google Scholar
Gosz, J. R. and Moore, D. I. 1989. Strontium isotope studies of atmospheric inputs to forested watersheds in New Mexico. Biogeochemistry 8:115134.Google Scholar
Graustein, W. C. and Armstrong, R. 1983. The use of 87Sr/86Sr ratios to measure atmospheric transport into forested watersheds. Science 219:289292.Google Scholar
Green, G. P., Bestland, E. A. and Walker, G. S. 2004. Distinguishing sources of base cations in irrigated and natural soils: Evidence from strontium isotopes. Biogeochemistry 68:199225.Google Scholar
Hartman, G. and Richards, M. 2014. Mapping and defining sources of variability in bioavailable strontium isotope ratios in the Eastern Mediterranean. Geochimica et Cosmochimica Acta 126:250264.Google Scholar
Hoppe, K. A., Amundson, R., Vavra, M., McClaran, M. P. and Anderson, D. L. 2004. Isotopic analysis of tooth enamel carbonate from modern North American feral horses: Implications for palaeoenvironmental reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology 203:299311.Google Scholar
Hoppe, K. A., Koch, P. L., Carlson, R. W. and Webb, D. S. 1999. Tracking mammoths and mastodons: Reconstruction of migratory behaviour using strontium isotope ratios. Geology 27:439442.Google Scholar
Hoppe, K. A., Koch, P. L. and Furutani, T. T. 2003. Assessing the preservation of biogenic strontium in fossil bones and tooth enamel. International Journal of Osteoarchaeology 13:2028.Google Scholar
Horstwood, M. S. A., Evans, J. and Montgomery, J. 2008. Determination of Sr isotopes in calcium phosphates using laser ablation inductively coupled plasma mass spectrometry and their application to archaeological tooth enamel. Geochimica et Cosmochimica Acta 72:56595674.Google Scholar
Iacumin, P., Bocherens, H., Mariotti, A. and Longinelli, A. 1996. Oxygen isotope analyses of co-existing carbonate and phosphate in biogenic apatite: A way to monitor diagenetic alteration of bone phosphate? Earth and Planetary Science Letters 142:16.Google Scholar
Iyengar, W. E., Kollmer, W. E. and Bowen, H. J. M. 1978. The Elemental Composition of Human Tissues and Body Fluids. New York: Verlag Chemie.Google Scholar
Jaubert, J., Hublin, J.-J., McPherron, S. P., Soressi, M., Bordes, J.-G., Claud, E., Cochard, D., Delagnes, A., Mallye, J.-B., Michel, A., Niclot, M., Niven, L., Park, S.-J., Rendu, W., Richards, M., Richter, D., Roussel, M., Steele, T. E., Texier, J.-P. and Thiébaut, C. 2008. Paléolithique moyen récent et Paléolithique supérieur ancien a Jonzac (Charente-Maritime): premiers résultats des campagnes 2004-2006. In: `Jaubert, J., `Bordes, J.-G. and `Ortega, I. (eds.) Les Sociétés du Paléolithique dans un Grand Sud-ouest de la France: nouveaux gisements, nouveaux résultats, nouvelles méthods. Paris: Mémoire de la Société Préhistorique Française.Google Scholar
Johnson, C. M., Lipman, P. W. and Czamanske, G. K. 1990. H, O, Sr, Nd, and Pb isotope geochemistry of the Latir volcanic field and cogenetic intrusions, New Mexico, and the relations between evolution of a continental magmatic center and modifications of the lithosphere. Contributions to Mineralogy and Petrology 104:99124.Google Scholar
Kelly, T. E. 2007. Strontium isotope tracing in animal teeth at the Neanderthal site of Les Pradelles, Charente, France. B.Sc. Thesis, The Australian National University.Google Scholar
Kennedy, M. J., Chadwick, O. A., Vitousek, P. M., Derry, L. A. and Hendricks, D. M. 1998. Changing sources of base cations during ecosystem developement, Hawaiian Islands. Geology 26:10151018.Google Scholar
Kirsanow, K., Makarewicz, C. and Tuross, N. 2008. Stable oxygen (δ18O) and hydrogen (δD) isotopes in ovicaprid dentinal collagen record seasonal variation. Journal of Archaeological Science 35:31593167.Google Scholar
Knudson, K. J., Price, T. D., Buikstra, J. E. and Blom, D. E. 2004. The use of strontium isotope analysis to investigate Tiwanaku migration and mortuary ritual in Bolivia and Peru. Archaeometry 46:518.Google Scholar
Koch, P. L., Halliday, A. N., Walter, L. M., Stearley, R. F., Huston, T. J. and Smith, G. R. 1992. Sr isotopic composition of hydroxyapatite from recent and fossil salmon: The record of lifetime migration and diagenesis. Earth and Planetary Science Letters 108 :277287.Google Scholar
Koch, P. L., Tuross, N. and Fogel, M. L. 1997. The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite. Journal of Archaeological Science 24:417429.Google Scholar
Kohn, M. J. 1996. Predicting animal δ18O: Accounting for diet and physiological adaptation. Geochimica et Cosmochimica Acta 60:48114829.Google Scholar
Kohn, M. J. and Cerling, T. E. 2002. Stable isotope compositions of biological apatite. In: `Kohn, M. J., `Rakovan, J. F. and `Hughes, J. M. (eds.) Phosphates: Geochemical, Geobiological, and Materials Importance, pp. 455488. Washington, DC: Mineralogical Society of America.Google Scholar
Kohn, M. J., Schoeninger, M. J. and Barker, W. W. 1999. Altered states: Effects of diagenesis on fossil tooth chemistry. Geochimica et Cosmochimica Acta 63:27372747.Google Scholar
Kohn, M. J., Schoeninger, M. J. and Valley, J. W. 1996. Herbivore tooth oxygen isotope compositions: Effects of diet and physiology. Geochimica et Cosmochimica Acta 60:38893896.Google Scholar
Kolodny, Y., Luz, B. and Navon, O. 1983. Oxygen isotope variations in phosphate of biogenic apatites. 1. Fish bone apatite – rechecking the rules of the game. Earth and Planetary Science Letters 64:398404.Google Scholar
Laffoon, J. E., Plomp, E., Davies, G. R., Hoogland, M. L. P. and Hofman, C. L. 2013. The movement and exchange of dogs in the Prehistoric Caribbean: An isotopic investigation. International Journal of Osteoarchaeology 25:454465.Google Scholar
Lamb, A. L., Evans, J. E., Buckley, R. and Appleby, J. 2014. Multi-isotope analysis demonstrates significant lifestyle changes in King Richard III. Journal of Archaeologial Science 50:559565.Google Scholar
Leach, S., Lewis, M., Chenery, C., Müldner, G. and Eckardt, H. 2009. Migration and diversity in Roman Britain: A multidisciplinary approach to the identification of immigrants in Roman York, England. American Journal of Physical Anthropology 140:546561.Google Scholar
Lee-Thorp, J. A. 2008. On isotopes and old bones. Archaeometry 50:925950.Google Scholar
Longinelli, A. 1965. Oxygen isotopic composition of orthophosphate from shells of living marine organisms. Nature 207:716719.Google Scholar
Longinelli, A. 1966. Ratios of Oxygen-18: Oxygen-16 in phosphate and carbonate from living and fossil marine organisms. Nature 211:923927.Google Scholar
Longinelli, A. 1984. Oxygen isotopes in mammal bone phosphate: A new tool for paleohydrological and paleoclimatological research? Geochimica et Cosmochimica Acta 48:385390.Google Scholar
Longinelli, A. and Nuti, S. 1968. Oxygen-isotope ratios in phosphate from fossil marine organisms. Science 160:879882.Google Scholar
Longinelli, A. and Nuti, S. 1973. Oxygen isotope measurements of phosphate from fish teeth and bones. Earth and Planetary Science Letters 20:337340.Google Scholar
Luz, B., Kolodny, Y. and Horowitz, M. 1984. Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water. Geochimica et Cosmochimica Acta 48:16891693.Google Scholar
Martin, C., Bentaleb, I., Kaandorp, R., Iacumin, P. and Chatri, K. 2008. Intra-tooth study of modern rhinoceros enamel delta O-18: Is the difference between phosphate and carbonate delta O-18 a sound diagenetic test? Palaeogeography, Palaeoclimatology, Palaeoecology 266:183187.Google Scholar
Montgomery, J. 2002. Lead and strontium isotope compositions of human dental tissues as an indicator of ancient exposure and population dynamics: The application of isotope source-tracing methods to identify migrants among British archaeological burials and a consideration of ante-mortem uptake, tissue stability and post-mortem diagenesis. Doctoral thesis, University of Bradford.Google Scholar
Montgomery, J., Evans, J. and Cooper, R. E. 2007. Resolving archaeological populations with Sr-isotope mixing models. Applied Geochemistry 22:15021514.Google Scholar
Montgomery, J., Evans, J. A. and Neighbour, T. 2003. Sr isotope evidence for population movement within the Hebridean Norse community of NW Scotland. Journal of the Geological Society 160:649653.Google Scholar
Montgomery, J., Evans, J., Powlesland, D. and Roberts, C. A. 2005. Continuity or colonization in Anglo-Saxon England? Isotope evidence for mobility, subsistence practice and status at West Heslerton. American Journal of Physical Anthroplogy 126:123138.Google Scholar
Morgan, J. E., Richards, S. P. G. and Morgan, A. J. 2001. Stable strontium accumulation by earthworms: A paradigm for radiostrontium interactions with its cationic analogue, calcium. Environmental Toxicology and Chemistry 20:12361243.Google Scholar
Müldner, G., Montgomery, J., Cook, G., Ellam, R., Gledhill, A. and Lowe, C. 2009. Isotopes and individuals: Diet and mobility among the medieval Bishops of Whithorn. Antiquity 83:11191133.Google Scholar
Nelson, D. E., DeNiro, M. J., Schoeninger, M. J., DePaolo, D. J. and Hare, P. E. 1986. Effects of diagenesis on strontium, carbon, nitrogen, and oxygen concentration and isotopic composition of bone. Geochimica et Cosmochimica Acta 50:19411949.Google Scholar
Németh, T., Kiss, Z., Kismányoky, T. and Lehoczky, E. 2006. Effect of long-term fertilization on the strontium content of soil. Communications in Soil Science and Plant Analysis 37:27512758.Google Scholar
Nielsen-Marsh, C. M., Gernaey, A., Turner-Walker, G., Hedges, R. E. M., Pike, A. and Collins, M. 2000. The chemical degradation of bone. In: `Cox, M. and `Mays, S. (eds.) Human Osteology in Archaeology and Forensic Science, pp. 439454. London: GMM.Google Scholar
Nielsen-Marsh, C. M. and Hedges, R. E. M. 2000a. Patterns of diagenesis in bone II: Effects of acetic acid treatment and removal of diagenetic CO3. Journal of Archaeological Science 27:11511159.Google Scholar
Nielsen-Marsh, C. M. and Hedges, R. E. M. 2000b. Patterns of diagenesis in bone I: The effects of site environments. Journal of Archaeological Science 27:11391150.Google Scholar
Nowell, G. M. and Horstwood, M. S. A. 2009. Comments on Richards et al. Journal of Archaeological Science 35, 2008 ‘Strontium isotope evidence of Neanderthal mobility at the site of Lakonis, Greece using laser-ablation PIMMS’. Journal of Archaeological Science 36:13341341.Google Scholar
Pederzani, S. and Britton, K., 2019. Oxygen isotopes in bioarchaeology: Principles and applications, challenges and opportunities. Earth-Science Reviews 188, 77107.Google Scholar
Pellegrini, M., Donahue, R. E., Chenery, C., Evans, J., Lee-Thorp, J., Montgomery, J. and Mussi, M. 2008. Faunal migration in late-glacial central Italy: Implications for human resource exploitation. Rapid Communications in Mass Spectrometry 22:17141726.Google Scholar
Podlesak, D. W., Torregrossa, A.-M., Ehleringer, J. R., Dearing, M. D., Passey, B. H. and Cerling, T. E. 2008. Turnover of oxygen and hydrogen isotopes in the body water, CO2, hair, and enamel of a small mammal. Geochimica et Cosmochimica Acta 72:1935.Google Scholar
Price, T. D., Blitz, J., Burton, J. H. and Ezzo, J. A. 1992. Diagenesis in prehistoric bone: Problems and solutions. Journal of Archaeological Science 19:513529.Google Scholar
Price, T. D., Burton, J. H. and Bentley, R. A. 2002. The characterization of biological available strontium isotope ratios for the study of prehistoric migration. Archaeometry 44:117135.Google Scholar
Price, T. D., Meiggs, D., Weber, M.-J. and Pike-Tay, A. 2017. The migration of Late Pleistocene reindeer: Isotopic evidence from northern Europe. Archaeological and Anthropological Sciences 9:371394.Google Scholar
Reitsema, L. J. 2013. Beyond diet reconstruction: Stable isotope applications to human physiology, health, and nutrition. American Journal of Human Biology 25:445456.Google Scholar
Richards, M. P., Harvati, K., Grimes, V., Smith, C., Smith, T., Hublin, J. J., Karkanas, P. and Panagopoulou, E. 2008a. Strontium isotope evidence of Neanderthal mobility at the site of Lakonis, Greece using laser-ablation PIMMS. Journal of Archaeological Science 35:12511256.Google Scholar
Richards, M. P., Taylor, G., Steele, T., McPherron, S. P., Soressi, M., Jaubert, J., Orschiedt, J., Mallye, J. B., Rendu, W. and Hublin, J. J. 2008b. Isotopic dietary analysis of a Neanderthal and associated fauna from the site of Jonzac (Charente-Maritime), France. Journal of Human Evolution 55:179185.Google Scholar
Royer, A., Daux, V., Fourel, F. and Lécuyer, C. 2017. Carbon, nitrogen and oxygen isotope fractionation during food cooking: Implications for the interpretation of the fossil human record. American Journal of Physical Anthropology 163:759771.Google Scholar
Schoeller, D. A. 1999. Isotope fractionation: Why aren’t we what we eat? Journal of Archaeological Science 26:667673.Google Scholar
Schweissing, M. M. and Grupe, G. 2003. Stable strontium isotopes in human teeth and bone: A key to migration events of the late Roman period in Bavaria. Journal of Archaeological Science 30:13731383.Google Scholar
Sharp, Z. D., Atudorei, V. and Furrer, H. 2000. The effect of diagenesis on oxygen isotope ratios of biogenic phosphate. American Journal of Science 300:222237.Google Scholar
Sharp, Z. D. and Cerling, T. E. 1998. Fossil isotope records of seasonal climate and ecology: Straight from the horse’s mouth. Geology 26:219222.Google Scholar
Sillen, A., Hall, G., Richardson, S. and Armstrong, R. 1998. 87Sr/86Sr ratios in modern and fossil food-webs of the Sterkfontein Valley: Implications for early hominid habitat preference. Geochimica et Cosmochimica Acta 62:24632478.Google Scholar
Simonetti, A., Buzon, M. R. and Creaser, R. A. 2007. In-situ elemental and Sr isotope investigation of human tooth enamel by laser ablation-(MC)-ICP-MS: Successes and pitfalls. Archaeometry 50:371385.Google Scholar
Steadman, L. T., Brudevold, F. and Smith, F. A. 1958. Distribution of strontium in teeth from different geographic areas. Journal of the American Dental Association 57:340344.Google Scholar
Steele, J. D. and Pushkar, P. 1973. Strontium isotope geochemistry of the Scioto River basin and the 87Sr/86Sr ratios of the underlying lithologies. The Ohio Journal of Science 73:331338.Google Scholar
Terakado, Y., Shimizu, H. and Masuda, A. 1988. Nd and Sr isotopic variations in acidic rocks formed under a peculiar tectonic environment in Miocene Southwest Japan. Contributions to Mineralogy and Petrology 99:110.Google Scholar
Thornton, E. K. 2011. Reconstructing ancient Maya animal trade through strontium isotope (87Sr/86Sr) analysis. Journal of Archaeological Science 38:32543263.Google Scholar
Trickett, M. A., Budd, P., Montgomery, J. and Evans, J. 2003. An assessment of solubility profiling as a decontamination procedure for the 87Sr/86Sr analysis of archaeological human skeletal tissue. Applied Geochemistry 18:653658.Google Scholar
Tuross, N., Behrensmeyer, A. K. and Eanes, E. D. 1989. Strontium increases and crystalinity changes in taphonomic and archaeological bone. Journal of Archaeological Science 16:661672.Google Scholar
Urey, H. C., Lowenstam, H. A., Epstein, S. and McKinney, C. R. 1951. Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and the southeastern United States. Bulletin of the Geological Society of America 62:399416.Google Scholar
Vitousek, P. M., Kennedy, M. J., Derry, L. A. and Chadwick, O. A. 1999. Weathering versus atmospheric sources of strontium in ecosystems on young volcanic soils. Oecologia 121:255259.Google Scholar
Willmes, M., McMorrow, L., Kinsley, L., Armstrong, R., Aubert, M., Eggins, S., Falguères, C., Maureille, B., Moffat, I. and Grün, R. 2014. The IRHUM (Isotopic Reconstruction of Human Migration) database – bioavailable strontium isotope ratios for geochemical fingerprinting in France. Earth System Science Data 6:117122.Google Scholar
Wright, L. E. and Schwarcz, H. P. 1998. Stable carbon and oxygen isotopes in human tooth enamel: Identifying breastfeeding and weaning in prehistory. American Journal of Physical Anthropology 106:118.Google Scholar
Wu, J. P., Veitch, A., Checkley, S., Dobson, H. and Kutz, S. J., 2012. Linear enamel hypoplasia in caribou (Rangifer tarandus groenlandicus): A potential tool to assess population health. Wildlife Society Bulletin 36:554560.Google Scholar
Xin, G. and Hanson, G. N. 1994. Strontium isotope study of the Peconic river watershed, Long Island, New York. MSc thesis, State University of New York at Stony Brook.Google Scholar
Yurtsever, Y. 1975. Worldwide survey of stable isotopes in precipitation. Report Section Isotope Hydrology. Vienna: IAEA.Google Scholar

References

Ambrose, S. H. 1990. Preparation and characterization of bone and tooth collagen for stable carbon and nitrogen isotope analysis. Journal of Archaeological Science 17:431451.Google Scholar
Ambrose, S. H. and Norr, L. 1993. Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In: `Lambert, J. and `Grupe, G. (eds.) Prehistoric Human Bone: Archaeology at the Molecular Level, pp. 137. New York: Springer-Verlag.Google Scholar
Balasse, M., Mainland, I. and Richards, M. P. 2009. Stable isotope evidence for seasonal consumption of marine seaweed by modern and archaeological sheep in the Orkney archipelago (Scotland). Environmental Archaeology 14:114.Google Scholar
Beaumont, J., Montgomery, J., Buckberry, J. and Jay, M. 2015. Infant mortality and isotopic complexity: New approaches to stress, maternal health, and weaning. American Journal of Physical Anthropology 157:441457.Google Scholar
Bocherens, H. 2009. Neanderthal dietary habits: Review of the isotopic evidence. In: `Hublin, J.-J. and `Richards, M. P. (eds.) The Evolution of Hominin Diets, pp. 241250. Springer Netherlands.Google Scholar
Bonsall, C., Lennon, R., McSweeney, K., Stewart, C., Harkness, D., Boronean, V., Bartosiewicz, L., Payton, R. and Chapman, J. 1997. Mesolithic and early neolithic in the iron gates: A paiaeodietary perspective. Journal of European Archaeology 5 :5092.Google Scholar
Britton, K. 2017. A stable relationship: Isotopes and bioarchaeology are in it for the long haul. Antiquity 91(358):853864.Google Scholar
Britton, K., Muldner, G. and Bell, M. 2008. Stable isotope evidence for salt-marsh grazing in the Bronze Age Severn Estuary, UK: Implications for palaeodietary analysis at coastal sites. Journal of Archaeological Science 35:21112118.Google Scholar
Brown, T. A., Nelson, D. E, Vogel, J. S. and Southon, J. R. 1988. Improved collagen extraction by modified Longin method. Radiocarbon 30:171177.Google Scholar
Chisholm, B. S., Nelson, D. E. and Schwarcz, H. P. 1982. Stable carbon ratios as a measure of marine versus terrestrial protein in ancient diets. Science 216:11311132.Google Scholar
Collins, M. J. and Galley, P. 1998. Towards an optimal method of archaeological collagen extraction: The influence of pH and grinding. Ancient Biomolecules 2:209222.Google Scholar
Coplen, T. B. 1994. Reporting of stable hydrogen, carbon and oxygen isotopic abundances. Pure and Applied Chemistry 66:273276.Google Scholar
DeNiro, M. J. 1985. Post-mortem preservation and alteration of in vivo bone collagen isotope ratios in relation to paleodietary reconstruction. Nature 317:806809.Google Scholar
DeNiro, M. and Epstein, S. 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42:495506.Google Scholar
DeNiro, M. and Epstein, S. 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta 45:341351.Google Scholar
Drucker, D., Bocherens, H. and Billiou, D. 2003. Evidence of shifting environmental conditions in Southwestern France from 33,000 to 15,000 years ago derived from carbon-13 and nitrogen-15 natural abundances in collagen of large herbivores. Earth and Planetary Science Letters 216:163173.Google Scholar
Evershed, R., Bull, I., Corr, L., Crossman, Z., van Dongen, B., Evans, J., Jim, S., Mottram, H., Mukherjee, A. and Pancost, R. 2007. Compound‐specific stable isotope analysis in ecology and paleoecology. In: `Michener, R. and `Lajtha, K. (eds.) Stable Isotopes in Ecology and Environmental Science, 2nd ed., pp. 480540. Chichester: Wiley.Google Scholar
Fry, B. 1991. Stable isotope diagrams of freshwater food webs. Ecology 72:22932297.Google Scholar
Hedges, R. E. M., Clement, J. G., Thomas, D. L. and O’Connell, T. C. 2007. Collagen turnover in the adult femoral mid-shaft: Modeled from anthropogenic radiocarbon tracer measurements. American Journal of Physical Anthropology 133:808816.Google Scholar
Hedges, R. E. M. and Reynard, L. 2007 Nitrogen isotopes and the trophic level of humans in archaeology. Journal of Archaeological Science 34:12401251.Google Scholar
Hoefs, J. 2008. Stable Isotope Geochemistry. Springer Science and Business Media.Google Scholar
Hu, Y., Wang, S., Luan, F., Wang, C. and Richards, M. P. 2008. Stable isotope analysis of humans from Xiaojingshan site: Implications for understanding the origin of millet agriculture in China. Journal of Archaeological Science 35:29602965.Google Scholar
Jaouen, K., Szpak, P. and Richards, M. P. 2016. Zinc isotope ratios as indicators of diet and trophic level in arctic marine mammals. PLoS One 11:e0152299.Google Scholar
Katzenberg, M. A. and Lovell, N. C. 1999. Stable isotope variation in pathological bone. International Journal of Osteoarchaeology 9(5):316324.Google Scholar
Kellner, C. M. and Schoeninger, M. J. 2007. A simple carbon isotope model for reconstructing prehistoric human diet. American Journal of Physical Anthropology 133:11121127.Google Scholar
Koch, P. L. 2007. Isotopic study of the biology of modern and fossil vertebrates. Stable Isotopes in Ecology and Environmental Science 2 :99154.Google Scholar
Lee-Thorp, J. A. 2008. On isotopes and old bones. Archaeometry 50:925950.Google Scholar
Longin, R. 1971. New method of collagen extraction for radiocarbon dating. Nature 230:241242.Google Scholar
Lubell, D., Jackes, M., Schwarcz, H., Knyf, M. and Meiklejohn, C. 1994. The Mesolithic-Neolithic transition in Portugal: Isotopic and dental evidence of diet. Journal of Archaeological Science 21(2):201216.Google Scholar
Macarewicz, C. and Sealy, J. 2015. Dietary reconstruction, mobility, and the analysis of ancient skeletal tissues: Expanding the prospects of stable isotope research in archaeology. Journal of Archaeological Science 56:146158.Google Scholar
Marshall, J. D., Brooks, J. R. and Lajtha, K. 2007. Sources of variation in the stable isotopic composition of plants. Stable Isotopes in Ecology and Environmental Science 2:2260.Google Scholar
Michener, R. H., Kaufman, L., Michener, R. and Lajtha, K. 2007. Stable isotope ratios as tracers in marine food webs: An update. Stable Isotopes in Ecology and Environmental Science 2:238282.Google Scholar
Nehlich, O. 2015. The application of sulphur isotope analyses in archaeological research: A review. Earth-Science Reviews 142:117.Google Scholar
O’Leary, M. 1981. Carbon isotopic fractionation in plants. Phytochemistry 20:553567.Google Scholar
Owens, N. 1987. Natural variations in 15N in the marine environment. Advances in Marine Biology 24:389451.Google Scholar
Pechenkina, E. A., Ambrose, S. H., Xiaolin, M. and Benfer, R. A. 2005. Reconstructing northern Chinese Neolithic subsistence practices by isotopic analysis. Journal of Archaeological Science 32:11761189.Google Scholar
Preston, T. and Owens, N. J. 1983. Interfacing an automatic elemental analyser with an isotope ratio mass sepectrometer: The potential for fully automated total nitrogen and nitrogen-15 analysis. Analyst 108:971977.Google Scholar
Reynard, L. M. and Hedges, R. E. M. 2008. Stable hydrogen isotopes of bone collagen in palaeodietary and palaeoenvironmental reconstruction. Journal of Archaeological Science 35:19341942.Google Scholar
Reynard, L. M., Pearson, J. A., Henderson, G. M. and Hedges, R. E. M. 2013. Calcium isotopes in juvenile milk-consumers. Archaeometry 55: 946957.Google Scholar
Richards, M. P. and Hedges, R. E. M. 1999. Stable isotope evidence for similarities in the types of marine foods used by late Mesolithic humans at sites along the Atlantic coast of Europe. Journal of Archaeological Science 26:717722.Google Scholar
Richards, M. P. and Hedges, R. E. M. 2003. Variations in bone collagen delta C-13 and delta N-15 values of fauna from Northwest Europe over the last 40 000 years. Palaeogeography Palaeoclimatology Palaeoecology 193:261267.Google Scholar
Richards, M. P., Mays, S. and Fuller, B. T. 2002. Stable carbon and nitrogen isotope values of bone and teeth reflect weaning age at the Medieval Wharram Percy site, Yorkshire, UK. American Journal of Physical Anthropology 119:205210.Google Scholar
Richards, M. P. and Montgomery, J. 2012. Isotope analysis and paleopathology: A short review and future developments. In: Buikstra, J. and Roberts, C. (eds.) The Global History of Paleopathology: Pioneers and Prospects, pp. 718731. New York, NY, Oxford University Press.Google Scholar
Richards, M. P., Schulting, R. J. and Hedges, R. E. 2003. Archaeology: Sharp shift in diet at onset of Neolithic. Nature 425:366.Google Scholar
Richards, M. P. and Trinkaus, E. 2009. Isotopic evidence for the diets of European Neanderthals and early modern humans. Proceedings of the National Academy of Sciences 106:1603416039.Google Scholar
Schoeninger, M. J. 2009. Stable isotope evidence for the adoption of maize agriculture. Current Anthropology 50:633640.Google Scholar
Schoeninger, M. and DeNiro, M. 1984. Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochimica et Cosmochimica Acta 48:625639.Google Scholar
Schoeninger, M., DeNiro, M. and Tauber, H. 1983. Stable nitrogen isotope ratios of bone collagen reflect marine and terrestrial components of prehistoric human diet. Science 220:13811383.Google Scholar
Schurr, M. R. 1998. Using stable nitrogen‐isotopes to study weaning behavior in past populations. World Archaeology 30(2):327342.Google Scholar
Simkiss, K. W. and Wilbur, K. M. 1989. Biomineralization: Cell Biology and Mineral Deposition. San Diego: Academic Press.Google Scholar
Stenhouse, M. J. and Baxter, M. S. 1976. The uptake of bomb 14C in humans. In: `Berger, R. and `Suess, H. E. (eds.) Radiocarbon Dating, pp. 324341. Berkeley: University of California Press.Google Scholar
Szpak, P. 2014. Complexities of nitrogen isotope biogeochemistry in plant-soil systems: Implications for the study of ancient agricultural and animal management practices. Frontiers in Plant Science 5:288.Google Scholar
Tauber, H. 1981. 13C evidence for dietary habits of prehistoric man in Denmark. Nature 292:332333.Google Scholar
Thompson, A. H., Richards, M. P., Shortland, A. and Zakrzewski, S. R. 2005. Isotopic palaeodiet studies of ancient Egyptian fauna and humans. Journal of Archaeological Science 32:451463.Google Scholar
Tuross, N., Fogel, M. L. and Hare, P. E. 1988. Variability in the preservation of the isotopic composition of collagen from fossil bone. Geochimica et Cosmochimica Acta 52:929935.Google Scholar
Van Klinken, G. J. 1999. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. Journal of Archaeological Science 26:687695.Google Scholar
Van Klinken, G. J., Richards, M. P. and Hedges, R. E. M. 2000. An overview of causes for stable isotopic variations in past European human populations: Environmental, ecophysiological, and cultural effects. In: `Ambrose, S. and `Katzenberg, A. (eds.) Biogeochemical Approaches to Palaeodietary Analysis, pp. 3963. New York: Kluwer Academic/Plenum publishers.Google Scholar
van der Merwe, N. J. and Medina, E. 1991. The canopy effect, carbon isotope ratios, and foodwebs in Amazonia. Journal of Archaeological Science 18:249259.Google Scholar
van der Merwe, N. J. and Vogel, J. C. 1978. 13C Content of human collagen as a measure of prehistoric diet in Woodland North America. Nature 276:815816.Google Scholar
Vogel, J. C. and van der Merwe, N. J. 1977. Isotopic evidence for early maize cultivation in New York State. American Antiquity 42:238242.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×