Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-20T01:10:30.786Z Has data issue: false hasContentIssue false

2 - Physiology

Published online by Cambridge University Press:  21 October 2009

Thomas Allen Crozier
Affiliation:
Georg-August-Universität, Göttingen, Germany
Get access

Summary

The physiological consequences of laparoscopic–endoscopic surgery are primarily due to the effects of increased intra-abdominal pressure (IAP) and the systemic absorption of the insufflated gas. The magnitude of these changes is modulated by the position of the patient and the choice of insufflation gas.

Operations in the peritoneum, uterus or bladder require active expansion of the pre-existing cavity by the application of exogenous pressure. This is usually unnecessary for thoracoscopy, where the self-retracting tendency of the lungs is exploited and reinflation of the lungs is prevented by a selective ventilation, such as with a double-lumen endotracheal tube. In operations on organs surrounded by connective tissue, such as in the retroperitoneum (nephrectomy, adrenalectomy, lymphadenectomy), the groin (hernia repair), or in the mediastinum, an artificial cavity must be created with insufflated gas or with the aid of a dilation balloon. The specific effects of these measures will occur in addition to the already ongoing changes resulting from anaesthesia and surgery.

Circulation

During laparoscopic surgery, the circulation undergoes typical changes of cardiac output (CO), blood pressure, venous pressure and cardiac filling pressures that are the result of the complex interactions between anaesthesia, patient position, pressure changes in the body cavities and neuroendocrine reactions. Depending on the circumstances, the effects of these factors can either reinforce each other or they can cancel each other out.

Increased IAP and the patient's position (supine, head-down Trendelenburg, or head-up reverse Trendelenburg) are – given constant arterial carbon dioxide (CO2) tension – the main determinants governing circulatory changes during laparoscopy.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Physiology
  • Thomas Allen Crozier, Georg-August-Universität, Göttingen, Germany
  • Book: Anaesthesia for Minimally Invasive Surgery
  • Online publication: 21 October 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511526848.004
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Physiology
  • Thomas Allen Crozier, Georg-August-Universität, Göttingen, Germany
  • Book: Anaesthesia for Minimally Invasive Surgery
  • Online publication: 21 October 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511526848.004
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Physiology
  • Thomas Allen Crozier, Georg-August-Universität, Göttingen, Germany
  • Book: Anaesthesia for Minimally Invasive Surgery
  • Online publication: 21 October 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511526848.004
Available formats
×