Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-28T17:20:22.805Z Has data issue: false hasContentIssue false

Chapter 5 - Meristems of the shoot and their role in plant growth and development

Published online by Cambridge University Press:  05 June 2012

Charles B. Beck
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Perspective

Among the unusually interesting and unique aspects of plants is their indeterminate mode of growth. This results from the presence of apical meristems by which new cells and tissues are added to the plant body during every period of growth. As a consequence plants have the potential to increase in size at regular intervals throughout their lives. This accounts for the large size of some plants such as the redwoods of California as well as many hardwood tree species of temperate and tropical forests.

A meristem is a localized region of tissue which, by cell division, adds new cells to a plant or plant part. In the shoots of vascular plants the activity of meristems results in an increase in length and/or diameter, and following cell growth and differentiation, formation of the various mature tissue regions of the axes as well as the formation of organs such as leaves, cone scales, sporophylls, stipules, flower parts, etc. Some meristems are self-perpetuating and thus, can be considered to be “permanent” meristems. Most apical meristems and the vascular cambium are meristems of this type and, as a result of their activity, provide vascular plants with their mode of indeterminate growth. Others, such as the meristems that contribute to the formation of the petiole and blade of leaves, flower parts, and the various other lateral appendages of non-seed plants, cease functioning when these organs, characterized by determinate growth, reach their genetically predetermined size and form.

Type
Chapter
Information
An Introduction to Plant Structure and Development
Plant Anatomy for the Twenty-First Century
, pp. 81 - 104
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbe, E. C., Phinney, B. O., and Baer, D. F.. 1951. The growth of shoot apex in maize: internal features. Am. J. Bot. 38: 744–751CrossRefGoogle Scholar
Aloni, R., Schwalm, K., Langhans, M., and Ullrich, C. I.. 2003. Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis. Planta 216: 841–853Google ScholarPubMed
Anderhag, P., Hepler, P. K., and Lazzaro, M. D.. 2000. Microtubules and microfilaments are both responsible for pollen tube elongation in the conifer Picea abies (Norway spruce). Protoplasma 214: 141–157CrossRefGoogle Scholar
Baluska, F., Wojtaszek, P., Volkmann, D. and Barlow, P.. 2003. The architecture of polarized cell growth: the unique status of elongating plant cells. BioEssays 25: 569–576CrossRefGoogle ScholarPubMed
Baskin, T. I. 2001. On the alignment of cellulose microfibrils by cortical microtubules: a review and a model. Protoplasma 215: 150–171CrossRefGoogle ScholarPubMed
Baskin, T. I., Beemster, G. T. S., Judy-March, J. E., and Marga, F.. 2004. Disorganization of cortical microtubules stimulates tangential expansion and reduces the uniformity of cellulose microfibril alignment among cells in the root of Arabidopsis. Plant Physiol. 135: 2279–2290CrossRefGoogle ScholarPubMed
Berleth, T. and Sachs, T.. 2001. Plant morphogenesis: long-distance coordination and local patterning. Curr. Opin. Plant Biol. 4: 57–62CrossRefGoogle ScholarPubMed
Benková, E., Michniewicz, M., Sauer, M.et al. 2003. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115: 591–602CrossRefGoogle ScholarPubMed
Bierhorst, D. W. 1971. Morphology of Vascular Plants. New York: MacmillanGoogle Scholar
Bierhorst, D. W. 1977. On the stem apex, leaf initiation and early leaf ontogeny in filicalean ferns. Am. J. Bot. 64: 125–152CrossRefGoogle Scholar
Buvat, R. 1952. Structure, évolution et fonctionnement du méristème apical de quelques dicotylédones. Ann. Sci. Nat., Bot. Sér. ⅱ 13: 199–300Google Scholar
Buvat, R. 1955. Le méristème apical de la tige. Ann. Biol. 31: 595–656Google Scholar
Cho, H. T. and Cosgrove, D. J.. 2000. Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 97: 9783–9788CrossRefGoogle ScholarPubMed
Clark, S. E. 2001. Meristems: start your signaling. Curr. Opin. Plant Biol. 4: 28–32CrossRefGoogle ScholarPubMed
Cosgrove, D. J. 1993. Wall extensibility: its nature, measurement and relationship to plant cell growth. New Phytol. 124: 1–23CrossRefGoogle ScholarPubMed
Cosgrove, D. J. 1999. Enzymes and other agents that enhance cell wall extensibility. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 391–417CrossRefGoogle ScholarPubMed
Cosgrove, D. J. 2000. Loosening of plant cell walls by expansins. Nature 407: 321–326CrossRefGoogle ScholarPubMed
Dengler, N. G. and Kang, J.. 2001. Vascular patterning and leaf shape. Curr. Opin. Plant Biol. 4: 50–56CrossRefGoogle ScholarPubMed
Devadas, C. and Beck, C. B.. 1971. Development and morphology of stelar components in the stems of some members of the Leguminosae and Rosaceae. Am. J. Bot. 58: 432–446CrossRefGoogle Scholar
Eckardt, T. 1941. Kritische Untersuchungen Über das primäre Dickenwachstum bei Monokotylen, mit Ausblick auf dessen Verhältnis zur sekundären Verdickung. Bot. Archiv 42: 289–334Google Scholar
Edelmann, H. G. and Kutschera, U.. 1993. Tissue pressure and cell-wall metabolism in auxin-mediated growth of sunflower hypocotyls. J. Plant Physiol. 142: 467–473CrossRefGoogle Scholar
Ehlers, K. and Kollmann, R.. 2001. Primary and secondary plasmodesmata: structure, origin, and functioning. Protoplasma 216: 1–30CrossRefGoogle ScholarPubMed
Emons, A. M. C. and Kieft, H.. 1994. Winding threads around plant cells. Protoplasma 180: 59–69CrossRefGoogle Scholar
Evans, P. S. 1965. Intercalary growth in the aerial shoot of Eleocharis acuta R. Br. Prodr. I. Structure of the growing zone. Ann. Bot. 29: 205–217CrossRefGoogle Scholar
Fleming, A. J., Caderas, D., Wehrli, E., McQuenn-Mason, S., and Kuhlemeir, C.. 1999. Analysis of expansin-induced morphogenesis on the apical meristem of tomato. Planta 208: 166–174CrossRefGoogle Scholar
Geldner, N., Friml, J., Stierhof, Y. D., Jürgens, G., and Palme, K.. 2001. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413: 425–428CrossRefGoogle ScholarPubMed
Gifford, E. M. Jr. 1950. The structure and development of the shoot apex in certain woody Ranales. Am. J. Bot. 37: 595–611CrossRefGoogle Scholar
Green, P. B. 1984. Shifts in plant cell axiality: histogenic influences on cellulose orientation in the succulent Graptopetalum. Devel. Biol. 103: 18–27CrossRefGoogle Scholar
Hébant-Mauri, R. 1993. Cauline meristems in leptosporangiate ferns: structure, lateral appendages, and branching. Can. J. Bot. 71: 1612–1624CrossRefGoogle Scholar
Hohl, M. and Schopfer, P.. 1992. Growth at reduced turgor: irreversible and reversible cell-wall extension of maize coleoptiles and its implications for the theory of cell growth. Planta 187: 209–217CrossRefGoogle ScholarPubMed
Jesuthasan, S. and Green, P. B.. 1989. On the mechanism of decussate phyllotaxis: biophysical studies on the tunica layer of Vinca major. Am. J. Bot. 76: 1152–1166CrossRefGoogle Scholar
Jones, N., Ougham, H., and Thomas, H.. 1997. Markers and mapping: we are all geneticists now. New Phytol. 137: 165–177CrossRefGoogle Scholar
Jung, G. and Wernicke, W.. 1990. Cell shaping and microtubules in developing mesophyll of wheat (Triticum aestivum L.). Protoplasma 153: 141–148CrossRefGoogle Scholar
Kaplan, D. R. 2001. Fundamental concepts of leaf morphology and morphogenesis: a contribution to the interpretation of molecular genetic mutants. Int. J. Plant Sci. 162: 465–474CrossRefGoogle Scholar
Kutschera, U. 1992. The role of the epidermis in the control of elongation growth in stems and coleoptiles. Bot. Acta 105: 227–242CrossRefGoogle Scholar
Larson, P. R. 1983. Primary vascularization and the siting of primordia. In Milthorpe, D. J. E., ed., The Growth and Functioning of Leaves. Cambridge, UK: Cambridge University Press, pp. 25–51Google Scholar
Lyndon, R. F. 1994. Control of organogenesis at the shoot apex. New Phytol. 128: 1–18CrossRefGoogle Scholar
Lyndon, R. F. 1998. The Shoot Apical Meristem, Its Growth and Development. Cambridge, UK: Cambridge University PressGoogle Scholar
Ma, Y. and Steeves, T. A.. 1994. Vascular differentiation in the shoot apex of Matteuccia struthiopteris. Ann. Bot. 74: 573–585CrossRefGoogle Scholar
Ma, Y. and Steeves, T. A. 1995a. Characterization of stelar initiation in shoot apices of ferns. Ann. Bot. 75: 105–117CrossRefGoogle Scholar
Ma, Y. and Steeves, T. A. 1995b. Effects of developing leaves on stelar pattern development in the shoot apex of Matteuccia struthiopteris. Ann. Bot. 75: 593–603CrossRefGoogle Scholar
Masuda, Y. 1990. Auxin-induced cell elongation and cell wall changes. Bot. Mag. Tokyo 103: 345–370CrossRefGoogle Scholar
McAlpin, B. W. and White, R. A.. 1974. Shoot organization in the Filicales: the promeristem. Am. J. Bot. 61: 562–579CrossRefGoogle Scholar
Miller, D. D., Lancelle, S. A., and Hepler, P. K.. 1996. Actin microfilaments do not form a dense meshwork in Lilium longiflorum pollen tube tips. Protoplasma 195: 123–132CrossRefGoogle Scholar
Morrison, J. C., Greve, L. C., and Richmond, P. A.. 1993. Cell wall synthesis during growth and maturation of Nitella internodal cells. Planta 189: 321–328CrossRefGoogle ScholarPubMed
Muday, G. K. and DeLong, A.. 2001. Polar auxin transport: controlling where and how much. Trends Plant Sci. 6: 535–542CrossRefGoogle ScholarPubMed
Nelson, T. and Dengler, N. G.. 1997. Leaf vascular pattern formation. Plant Cell 9: 1121–1135CrossRefGoogle ScholarPubMed
Panteris, E., Apostolakos, P., and Galatis, B.. 1993. Microtubule organization, mesophyll cell morphogenesis, and intercellular space formation in Adiantum capillus veneris leaflets. Protoplasma 172: 97–110CrossRefGoogle Scholar
Paolillo, D. J. Jr. 1995. The net orientation of wall microfibrils in the outer periclinal epidermal walls of seedling leaves of wheat. Ann. Bot. 76: 589–596CrossRefGoogle Scholar
Plantefol, L. 1947. Hélices foliaires, point végétatif et stèle chez les dicotylédonées: la notion d'anneau initial. Rev. Gén. Bot. 54: 49–80Google Scholar
Popham, R. A. and Chan, A. P.. 1950. Zonation in the vegetative stem tip of Chrysanthemum morifolium Bailey. Am. J. Bot. 37: 476–484CrossRefGoogle Scholar
Pyke, K. 1994. Arabidopsis: its use in genetic and molecular analysis of plant morphogenesis. New Phytol. 128: 19–37CrossRefGoogle Scholar
Ray, P. M., Green, P. B., and Cleland, R. E.. 1972. Role of turgor in plant cell growth. Nature 239: 163–164CrossRefGoogle Scholar
Sachs, T. 1969. Polarity and induction of organized vascular tissues. Ann. Bot. 33: 263–275CrossRefGoogle Scholar
Sachs, T. 1984. Axiality and polarity in vascular plants. In Barlow, P. B. and Carr, D. J., Positional Controls in Plant Development. Cambridge, UK: Cambridge University Press, pp. 193–224Google Scholar
Sauter, M., Seagull, R. W., and Kende, H.. 1993. Internodal elongation and orientation of cellulose microfibrils and microtubules in deepwater rice. Planta 190: 354–362CrossRefGoogle Scholar
Schiefelbein, J. W. 2000. Constructing a plant cell: the genetic control of root hair development. Plant Physiol. 124: 1525–1531CrossRefGoogle ScholarPubMed
Seagull, R. W. 1986. Changes in microtubule orientation and wall microfibril orientation during in vitro cotton fiber development: an immunofluorescent study. Can. J. Bot. 64: 1373–1381CrossRefGoogle Scholar
Seagull, R. W. 1989. The plant cytoskeleton. CRC Crit. Rev. Plant. Sci. 8: 131–167CrossRefGoogle Scholar
Snow, M. and Snow, R.. 1947. On the determination of leaves. New Phytol. 46: 5–19CrossRefGoogle Scholar
Steeves, T. A. and Sussex, I. M.. 1989. Patterns in Plant Development, 2nd edn. Cambridge, UK: Cambridge University PressCrossRefGoogle Scholar
Steinmann, T., Geldner, N., Grebe, M.et al. 1999. Coordinated polar localization of auxin efflux crier PIN1 by GNOM ARF GEF. Science 286: 316–318CrossRefGoogle Scholar
Sussex, I. M. and Steeves, T. A.. 1967. Apical initials and the concept of promeristem. Phytomorphology 17: 387–391Google Scholar
Thimann, K. V. and Biradivolu, R.. 1994. Actin and the elongation of plant cells. II. The role of divalent ions. Protoplasma 183: 5–9CrossRefGoogle Scholar
Thimann, K. V., Resse, K., and Nachmias, V. T.. 1992. Actin and the elongation of plant cells. Protoplasma 171: 153–166CrossRefGoogle Scholar
Verbeke, J. A. 1992. Developmental principles of cell and tissue differentiation: cell–cell communication and induction. Int. J. Plant Sci. 153: S86–S89CrossRefGoogle Scholar
Vidali, L., McKenna, S. T., and Hepler, P. K. 2001. Actin polymerization is essential for pollen tube growth. Mol. Biol. Cell 12: 2534–2545CrossRefGoogle ScholarPubMed
Wang, H., Lockwood, S. K., Hoeltzel, M. F., and Schiefelbein, J. W.. 1997. The ROOT HAIR DEFECTIVE3 gene encodes an evolutionarily conserved protein with GTP-binding motifs and is required for regulated cell enlargement in Arabidopsis. Genes Devel. 11: 799–811CrossRefGoogle ScholarPubMed
Wernicke, W., Gunther, P., and Jung, G.. 1993. Microtubules and cell shaping in the mesophyll of Nigella damascena L. Protoplasma 173: 8–12CrossRefGoogle Scholar
Wojtaszek, P. 2000. Genes and plant cell walls: a difficult relationship. Biol. Rev. 75: 437–475CrossRefGoogle ScholarPubMed
Wolters-Arts, A. M. C., Amstel, T., and Derksen, J.. 1993. Tracing cellulose microfibril orientation in inner primary cell walls. Protoplasma 175: 102–111CrossRefGoogle Scholar
Camefort, H. 1956. Étude de la structure du point végétatif et des variations phyllotaxiques chez quelques gymnospermes. Ann. Sci. Nat., Bot. Sér. II. 17: 1–185Google Scholar
Esau, K. 1977. Anatomy of Seed Plants, 2nd edn. New York: John Wiley and SonsGoogle Scholar
Foster, A. S. 1938. Structure and growth of the shoot apex of Ginkgo biloba. Bull. Torrey Bot. Club 65: 531–556CrossRefGoogle Scholar
Foster, A. S. 1939. Problems of structure, growth and evolution in the shoot apex of seed plants. Bot. Rev. 5: 454–470CrossRefGoogle Scholar
Gifford, E. M. Jr. and Corson, G. E. Jr. 1971. The shoot apex in seed plants. Bot. Rev. 37: 143–229CrossRefGoogle Scholar
Kaufman, P. B., Cassel, S. J., and Adams, P. A.. 1965. On nature of intercalary growth and cellular differentiation in internodes of Avena sativa. Am. J. Bot. 126: 1–13Google Scholar
Muday, G. K. and Murphy, A. S.. 2002. An emerging model of auxin transport regulation. Plant Cell 14: 293–299CrossRefGoogle ScholarPubMed
Popham, R. A. 1951. Principal types of vegetative shoot apex organization in vascular plants. Ohio J. Sci. 51: 241–270Google Scholar
Rinne, P. L. H. and Schoot, C.. 1998. Symplasmic fields in the tunica of the shoot apical meristem coordinate morphogenetic events. Development 125: 1477–1485Google ScholarPubMed
Romberger, J. A., Hejnowicz, Z., and Hill, J. F.. 1993. Plant Structure: Function and Development. Berlin: Springer-VerlagCrossRefGoogle Scholar
Schmidt, A. 1924. Histologische Studien an phanerogamen Vegetationspunkten. Bot. Arch. 8: 345–404Google Scholar
Sussex, I. M. 1955. Morphogenesis in Solanum tuberosum L: apical structure and developmental pattern of the juvenile shoot. Phytomorphology 5: 253–273Google Scholar
Wardlaw, C. W. 1957. The reactivity of the apical meristem as ascertained by cytological and other techniques. New Phytol. 56: 221–229CrossRefGoogle Scholar
Williams, R. F. 1975. The Shoot Apex and Leaf Growth: A Study in Quantitative Biology. London: Cambridge University PressCrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×