Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T14:05:26.261Z Has data issue: false hasContentIssue false

5 - Neural homologies and the grounding of neurolinguistics

Published online by Cambridge University Press:  01 September 2009

Michael A. Arbib
Affiliation:
University of Southern California, Los Angeles
Mihail Bota
Affiliation:
University of Southern California, Los Angeles
Michael A. Arbib
Affiliation:
University of Southern California
Get access

Summary

Introduction

Homologies and language evolution

We are interested here in homologous brain structures in the human and the macaque, those which may be characterized as descended from the same structure of the brain of the common ancestor. However, quite different paths of evolution, responsive to the need of different organisms for similar functions, may yield organs with similar functions yet divergent evolutionary histories – these are called homoplasic, rather than homologous. Arbib and Bota (2003) forward the view that homology is not usefully treated as an all-or-none concept except at the grossest level, such as identifying visual cortex across mammalian species. Even if genetic analysis were to establish that two brain regions were homologous in that they were related to a common ancestral form it would still be important to have access to a measure of similarity to constrain too facile an assumption that homology guarantees similarity across all criteria.

Indeed, from the perspective of computational and comparative neuroscience, declared homologies may be the start, rather than the end, of our search for similarities that will guide our understanding of brain mechanisms across diverse species. When two species have diverged significantly from their common ancestors, a single organ x in ancestor A might differentiate into two organs y and y′ in modern species B and three organs z, z′, and z″ in modern species C. For example, a region involved in hand movements in monkey might be homologous to regions involved in both hand movements and speech in humans.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aboitiz, F., and García, V. R., 1997. The evolutionary origin of the language areas in the human brain: a neuroanatomical perspective. Brain Res. Rev. 25: 381–396.CrossRefGoogle ScholarPubMed
Aboitiz, F., García, R., Brunetti, E., and Bosman, C., 2005. The origin of Broca's area and its connections from an ancestral working memory network. In Grodzinsky, Y. and Amunts, K. (eds.) Broca's RegionOxford, UK: Oxford University Press.Google Scholar
Amaral, D. G., Price, J. L., Pitkänen, A., and Carmichael, S. T., 1992. Anatomical organization of the primate amygdaloid complex. In Aggleton, J. P. (ed.) The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction. New York: Wiley-Liss, pp. 1–66.Google Scholar
Amunts, K., Schleicher, A., Burgel, U., et al., 1999. Broca's region revisited: cytoarchitecture and intersubject variability. J. Comp. Neurol. 412: 319–341.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Arbib, M. A., 1981. Perceptual structures and distributed motor control. In Brooks, V. B. (ed.) Handbook of Physiology, Section 2, The Nervous System, vol. 2, Motor Control, Part 1. Bethesda, MD: American Physiological Society, pp. 1449–1480.Google Scholar
Arbib, M. A.,2001. The Mirror System Hypothesis for the language-ready brain. In Cangelosi, A. and Parisi, D. (eds.) Computational Approaches to the Evolution of Language and Communication. London: Springer-Verlag, pp. 229–254.Google Scholar
Arbib, M. A.,2002. The mirror system, imitation, and the evolution of language. In Nehaniv, C. and Dautenhahn, K. (eds.) Imitation in Animals and Artefacts. Cambridge, MA: MIT Press, pp. 229–280.Google Scholar
Arbib, M. A. 2005. From monkey-like action recognition to human language: an evolutionary framework for neurolinguistics. Behavi. Brain Sci. 28: 145–167.CrossRefGoogle ScholarPubMed
Arbib, M. A.2006. A sentence is to speech as what is to action? Cortex. (In press.)
Arbib, M. A., and Bota, M., 2003. Language evolution: neural homologies and neuroinformatics. Neur. Networks 16: 1237–1260.CrossRefGoogle ScholarPubMed
Arbib, M. A., and Bota, M. 2004. Response to Deacon: evolving mirror systems – homologies and the nature of neuroinformatics. Trends Cogn. Sci. 8: 290–291.CrossRefGoogle Scholar
Arbib, M., and Rizzolatti, G., 1997. Neural expectations: a possible evolutionary path from manual skills to language. Commun. Cogn. 29: 393–424.Google Scholar
Baddeley, A. D., 2003. Working memory: looking back and looking forward. Nature Rev. Neurosci. 4: 829–839.CrossRefGoogle ScholarPubMed
Baddeley, A. D., and Hitch, G. J., 1974. Working memory. In Bower, G. A. (ed.) The Psychology of Learning and Motivation. New York: Academic Press, pp. 47–89.Google Scholar
Barbas, H., and Olmos, J., 1990. Projections from the amygdala to basoventral and mediodorsal prefrontal regions in the rhesus monkey. J. Comp. Neurol. 300: 549–571.CrossRefGoogle ScholarPubMed
Barbas, H., Ghashghaei, H., Dombrowski, S. M., and Rempel-Clower, N. L., 1999. Medial prefrontal cortices are unified by common connections with superior temporal cortices and distinguished by input from memory-related areas in the rhesus monkey. J. Comp. Neurol. 410: 343–367.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Barrett, A. M., Foundas, A. L., and Heilman, K. M., 2005. Speech and gesture are mediated by independent systems. Behav. Brain Sci. 28: 125–126.CrossRefGoogle Scholar
Berger, B., Trottier, S., Verney, C., Gaspar, P., and Alvarez, C., 1988. Regional and laminar distribution of the dopamine and serotonin innervation in the macaque cerebral cortex: a radioautographic study. J. Comp. Neurol. 273: 99–119.CrossRefGoogle ScholarPubMed
Binkofski, F., Buccino, G., Posse, S., et al., 1999. A fronto-parietal circuit for object manipulation in man: evidence from an fMRI study. Eur. J. Neurosci. 11: 3276–3286.CrossRefGoogle ScholarPubMed
Bischoff-Grethe, A., Spoelstra, J., and Arbib, M. A., 2001. Brain models on the web and the need for summary data. In Arbib, M. A. and Grethe, J. (eds.) Computing the Brain: A Guide to Neuroinformatics. San Diego, CA: Academic Press, pp. 287–296.
Bischoff-Grethe, A., Crowley, M. G., and Arbib, M. A., 2003. Movement inhibition and next sensory state predictions in the basal ganglia. In Graybiel, A. M., Delong, M. R., and Kitai, S. T. (eds.) The Basal Ganglia, vol. 6. New York: Kluwer Academic, pp. 267–277.Google Scholar
Bota, M., and Arbib, M. A., 2004. Integrating databases and expert systems for the analysis of brain structures: connections, similarities, and homologies. Neuroinformatics 2: 19–58.CrossRefGoogle ScholarPubMed
Bota, M., Dong, H. W., and Swanson, L. W., 2003. From gene networks to brain networks. Nature Neurosci. 6: 795–799.CrossRefGoogle ScholarPubMed
Bridgeman, B., 1999. Separate representations of visual space for perception and visually guided behavior. In Aschersleben, G., Bachmann, T., and Müsseler, J. (eds.) Cognitive Contributions to the Perception of Spatial and Temporal Events. Amsterdam: Elsevier Science, pp. 3–13.Google Scholar
Bridgeman, B., Peery, S., and Anand, S., 1997. Interaction of cognitive and sensorimotor maps of visual space. Percept. Psychophys. 59: 456–469.CrossRefGoogle ScholarPubMed
Buccino, G., Binkofski, F., Fink, G. R., et al., 2001. Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur. J. Neurosci. 13: 400–404.Google Scholar
Byrne, R. W., 2003. Imitation as behaviour parsing. Phil. Trans. Roy. Soc. Lond. B 358: 529–536.CrossRefGoogle ScholarPubMed
Cadoret, G., Bouchard, M., and Petrides, M., 2000. Orofacial representation in the rostral bank of the inferior ramus of the arcuate sulcus of the monkey. Soc. Neurosci. Abstr. 26: 680 abstr. no. 253.13.Google Scholar
Carmichael, S. T., and Price, J. L., 1994. Connectional networks within the orbital and prefrontal cortex of macaque monkeys. J. Comp. Neurol. 371: 179–207.3.0.CO;2-#>CrossRefGoogle Scholar
Cavada, C., and Goldman-Rakic, P. S., 1989. Posterior parietal cortex in rhesus macaque. II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J. Comp. Neurol. 287: 422–445.CrossRefGoogle ScholarPubMed
Cheney, D. L., and Seyfarth, R. M., 1990. How Monkeys See the World: Inside the Mind of Another Species. Chicago, IL: University of Chicago Press.Google Scholar
Code, C., 1998. Models, theories and heuristics in apraxia of speech. Clin. Linguist. Phonet. 12: 47–65.CrossRefGoogle Scholar
Damasio, A. R., and Tranel, D., 1993. Nouns and verbs are retrieved with differently distributed neural systems. Proc. Natl. Acad. Sci. USA 90: 4957–4960.CrossRefGoogle ScholarPubMed
Deacon, T. W., 1992. Cortical connections of the inferior arcuate sulcus cortex in the macaque brain. Brain Res. 573: 8–26.CrossRefGoogle ScholarPubMed
Deacon, T. W. 2004. Monkey homologues of language areas: computing the ambiguities. Trends Cogn. Sci. 8: 288–290.CrossRefGoogle ScholarPubMed
DeRenzi, E., Pieczuro, A., and Vignolo, L. A., 1966. Oral apraxia and aphasia. Cortex 2: 50–73.CrossRefGoogle Scholar
Dum, R. P., and Strick, P. L., 1996. Spinal cord termination of the medial wall motor areas in macaque monkeys. J. Neurosci. 16: 6513–6525.CrossRefGoogle ScholarPubMed
Fagg, A. H., and Arbib, M. A., 1998. Modeling parietal–premotor interactions in primate control of grasping. Neur. Networks 11: 1277–1303.CrossRefGoogle ScholarPubMed
Ferrari, P. F., Gallese, V., Rizzolatti, G., and Fogassi, L., 2003. Mirror neurons responding to the observation of ingestive and communicative mouth actions in the monkey ventral premotor cortex. Eur. J. Neurosci. 17: 1703–1714.CrossRefGoogle ScholarPubMed
Fuster, J. M., 1995. Memory in the Cerebral Cortex. Cambridge, MA: MIT Press.Google Scholar
Galaburda, A. M., and Pandya, D. N., 1983. The intrinsic architectonic and connectional organization of the superior temporal region of the rhesus monkey. J. Comp. Neurol. 221: 169–184.CrossRefGoogle ScholarPubMed
Galaburda, A. M., and Sanides, F., 1980. Cytoarchitectonic organization of the human auditory cortex. J. Comp. Neurol. 190: 597–610.CrossRefGoogle ScholarPubMed
Gehring, W. J., and Knight, R. T., 2000. Prefrontal–cingulate interactions in action monitoring, Nature Neurosci. 3: 516–520.CrossRefGoogle ScholarPubMed
Geschwind, N., 1964. The development of the brain and the evolution of language. Monogr Ser. Lang. Ling. 1: 155–169.Google Scholar
Goldman-Rakic, P. S., 1987. Circuitry of the prefrontal cortex and the region of behavior by representational knowledge. In Blum, F. and Mountcastle, V. (eds.) Handbook of Physiology, Section 1, The Nervous System, vol. 5, Higher Functions of the Brian, Part 1. Bethesda, MD: American Physiological Society, pp. 373–417.Google Scholar
Goldman-Rakic, P. S. 1995. Architecture of the prefrontal cortex and the central executive. Ann. N. Y. Acad. Sci. 769: 71–83.CrossRefGoogle ScholarPubMed
Goodale, M. A., and Milner, A. D., 1992. Separate visual pathways for perception and action. Trends Neurosci. 15: 20–25.CrossRefGoogle ScholarPubMed
Hackett, T. A., Stepniewska, I., and Kaas, J. H., 1998. Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys. J. Comp. Neurol. 394: 375–395.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Jeannerod, M., Decety, J., and Michel, F., 1994. Impairment of grasping movements following a bilateral posterior parietal lesion. Neuropsychologia 32: 369–380.CrossRefGoogle ScholarPubMed
Jeannerod, M., Arbib, A., Rizzolatti, G., and Sakata, H., 1995. Grasping objects: the cortical mechanisms of visuomotor transformation. Trends Neurosci. 18: 314–320.CrossRefGoogle ScholarPubMed
Jürgens, U., 1997. Primate communication: signaling, vocalization. In Encyclopedia of Neuroscience, 2nd edn. Amsterdam: Elsevier.
Jürgens, U., 2002. Neural pathways underlying vocal control. Neurosci. Biobehav. Rev. 26: 235–258.CrossRefGoogle ScholarPubMed
Jürgens, U., and Cramon, D., 1982. On the role of the anterior cingulate cortex in phonation: a case report. Brain. 15: 234–248.Google ScholarPubMed
Kaas, J., 1993. Evolution of multiple areas and modules within the cortex. Persp. Devel. Neurobiol. 1: 101–107.Google Scholar
Kohler, E., Keysers, C., Umiltá, M. A., et al., 2002. Hearing sounds, understanding actions: action representation in mirror neurons. Science 297: 846–848.CrossRefGoogle ScholarPubMed
Kirzinger, A., and Jürgens, U., 1982. Cortical lesion effects and vocalization in the squirrel monkey. Brain Res. 233: 299–315.CrossRefGoogle ScholarPubMed
Lewis, J. W., and Essen, D. C., 2000. Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque. J. Comp. Neurol. 428: 112–137.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Lieberman, P., 2000. Human Language and my Reptilian Brain: The Subcortical Bases of Speech, Syntax, and Thought. Cambridge, MA:Harvard University Press.Google Scholar
Luppino, G., and Rizzolatti, G., 2000. The organization of the frontal motor cortex. News Physiol. Sci. 15: 219–224.Google ScholarPubMed
Luppino, G., and Rizzolatti, G., 2001. The cortical motor system. Neuron 31: 889–901.Google Scholar
Luppino, G., Murata, A., Govoni, P., and Matelli, M., 1999. Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 and F4). Exp. Brain Res. 128: 181–187.CrossRefGoogle Scholar
Marquardt, T. P., and Sussman, H., 1984. The elusive lesion: apraxia of speech link in Broca's aphasia. In Rosenbek, J. C., McNeil, M. R., and Aronson, A. E. (eds.) Apraxia of Speech: Physiology, Acoustics, Linguistics, Management. San Diego, CA: College-Hill Press, pp. 99–112.Google Scholar
Matelli, M., Luppino, G., and Rizzolatti, G., 1985. Patterns of cytochrome oxidase activity in the frontal agranular cortex of the macaque. Behav. Brain Res. 18: 125–137CrossRefGoogle ScholarPubMed
Matelli, M., Camarda, R., Glickstein, M., and Rizzolatti, G., 1986. Afferent and efferent projections of the inferior area 6 in the macaque. J. Comp. Neurol. 251: 281–298.CrossRefGoogle ScholarPubMed
Matelli, M., Luppino, G., and Rizzolatti, G., 1991. Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey. J. Comp. Neurol. 311: 445–462.CrossRefGoogle ScholarPubMed
McCarthy, R., and Warrington, E. K., 1985. Category specificity in an agrammatic patient: the relative impairment of verb retrieval and comprehension. Neuropsychologia 23: 709–727.CrossRefGoogle Scholar
Miceli, G., Silveri, M. C., Villa, G., and Caramazza, A., 1984. On the basis for the agrammatic's difficulty in producing main verbs. Cortex 20: 207–220.CrossRefGoogle ScholarPubMed
Morecraft, R. J., and Hoesen, G. W., 1992. Cingulate input to the primary and supplementary motor cortices in the rhesus monkey: evidence for somatotopy in areas 24c and 23c. J. Comp. Neurol. 322: 471–489.CrossRefGoogle ScholarPubMed
Morecraft, R. J., and Hoesen, G. W. 1998. Convergence of limbic input to the cingulated motor cortex in the rhesus monkey. Brain Res. Bull. 45: 209–232.CrossRefGoogle Scholar
Neininger, B., and Pulvermüller, F., 2003. Word-category specific deficits after lesions in the right hemisphere. Neuropsychologia 41: 53–70.CrossRefGoogle ScholarPubMed
Ongür, D., An, X., and Price, J. L., 1998. Prefrontal cortical projections to the hypothalamus in macaque monkeys. J. Comp. Neurol. 401: 489–505.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Oztop, E., and Arbib, M. A., 2002. Scheme design and implementation of the group-related mirror system. Biol. Cybernet. 87: 116–140.CrossRefGoogle Scholar
Oztop, E., Bradley, N. S., and Arbib, M. A., 2004. Infant grasp learning: a computational model. Exp. Brain Res. 158: 480–503.CrossRefGoogle ScholarPubMed
Pandya, D. N., and Yeterian, E. H., 1996. Comparison of prefrontal architecture and connections. Phil. Trans. Roy. Soc. London. B 351: 1423–1432.CrossRefGoogle Scholar
Paus, T., 2001. Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nature Rev. Neurosci. 2: 417–424.CrossRefGoogle ScholarPubMed
Paus, T., Petrides, M., Evans, A. C., and Meyer, E., 1993. Role of the human anterior cingulate cortex in the control of oculomotor, manual and speech responses: a positron emission tomography study. J. Neurophysiol. 70: 453–469.CrossRefGoogle ScholarPubMed
Petrides, M., and Pandya, D. N., 1984. Projections to the frontal cortex from the posterior parietal region in the rhesus macaque. J. Comp. Neurol. 228 : 105–116.CrossRefGoogle Scholar
Petrides, M., and Pandya, D. N.1994. Comparative architectonic analysis of the human and macaque frontal cortex. In Boller, F. and Graham, J. (eds.) Handbook of Neuropsychology, vol. 9. New York: Elsevier, pp. 17–58.Google Scholar
Petrides, M., and Pandya, D. N. 2002. Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the macaque. Eur. J. Neurosci. 16: 291–310.CrossRefGoogle ScholarPubMed
Preuss, T. M., and Goldman-Rakic, P. S., 1991. Myelo- and cytoarchitecture of the granular frontal cortex and surrounding regions in the strepsirhine primate Galago and the anthropoid primate Macaca. J. Comp. Neurol. 310: 429–474.CrossRefGoogle ScholarPubMed
Rainer, G., Asaad, W. F., and Miller, E. K., 1998. Memory fields of neurons in the primate prefrontal cortex. Proc. Natl Acad. Sci. USA 95: 15008–15013.CrossRefGoogle ScholarPubMed
Rauschecker, J. P., 1998. Cortical processing of complex sounds. Curr. Opin. Neurobiol. 8: 516–521.CrossRefGoogle ScholarPubMed
Rauschecker, J. P. 2005. Vocal gestures and auditory objects. Brain Behav. Sci. 28: 143.CrossRefGoogle Scholar
Rauschecker, J. P., and Tian, B., 2000. Mechanisms and streams of “what” and “where” in auditory cortex. Proc. Natl Acad. Sci. USA 97: 11800–11806.CrossRefGoogle Scholar
Rizzolatti, G., and Arbib, M. A., 1998. Language within our grasp. Trends Neurosci. 21: 188–194.CrossRefGoogle ScholarPubMed
Rizzolatti, G., and Luppino, G., 2001. The cortical motor system. Neuron 31: 889–901.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Luppino, G., and Matelli, M., 1996. The classic supplementary motor area is formed by two independent areas. Adv. Neurol. 70: 45–56.Google ScholarPubMed
Rizzolatti, G., Fogassi, L., and Gallese, V., 2002. Motor and cognitive functions of the ventral premotor cortex. Curr. Opin. Neurobiol. 12: 149–154.CrossRefGoogle ScholarPubMed
Rolls, E. T., and Arbib, M. A., 2003. Visual scene perception: neurophysiology principles. In Arbib, M. A. (ed.) The Handbook of Brain Theory and Neural Networks, 2nd edn. Cambridge, MA: MIT Press, pp. 1210–1215.Google Scholar
Romanski, L. M., and Goldman-Rakic, P. S., 2002. An auditory domain in primate prefrontal cortex. Nature Neurosci. 5: 15–16.CrossRefGoogle ScholarPubMed
Romanski, L. M., Bates, J. F., and Goldman-Rakic, P. S., 1999a. Auditory belt and parabelt projections to the prefrontal cortex in the vhesus monkey. J. Comp. Neurol. 403: 141–157.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Romanski, L. M., Tian, B., Fritz, J., et al., 1999b. Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nature Neurosci. 12: 1131–1136.CrossRefGoogle Scholar
Romanski, L. M., Averbeck, B. B., and Diltz, M., 2004. Neural representation of vocalizations in the primate ventrolateral prefrontal cortex. J. Neurophysiol. 93: 743–747.Google ScholarPubMed
Rubens, A. B., 1975. Aphasia with infarction in the territory of the anterior cerebral artery. Cortex 11: 239–250.CrossRefGoogle ScholarPubMed
Seltzer, B., and Pandya, D. N., 1986. Posterior parietal projections to the intraparietal sulcus of the rhesus monkey. Exp. Brain Res. 62: 459–469.CrossRefGoogle ScholarPubMed
Seltzer, B., and Pandya, D. N. 1988. Frontal lobe connections of the superior temporal sulcus in the rhesus monkey. J. Comp. Neurol. 281: 97–113.CrossRefGoogle Scholar
Seltzer, B., and Pandya, D. N. 1989. Frontal lobe connections of the superior temporal sulcus in the rhesus macaque. J. Comp. Neurol. 281: 97–113.CrossRefGoogle Scholar
Semendeferi, K., Lu, A., Schenker, N., and Damasio, H., 2002. Humans and great apes share a large frontal cortex. Nature Neurosci. 5: 272–276.CrossRefGoogle Scholar
Simonyan, K., and Jürgens, U., 2005. Afferent cortical connections of the motor cortical larynx area in the rhesus monkey. Neuroscience 130: 133–149.CrossRefGoogle ScholarPubMed
Striedter, G. F., 2004. Principles of Brain Evolution. Sunderland, MA: Sinauer Associates.Google Scholar
Sutton, D., Trachy, R. E., and Lindeman, R. C., 1985. Discriminative phonation in macaques: effects of anterior mesial cortex damage. Exp. Brain Res. 59: 410–413.CrossRefGoogle ScholarPubMed
Tanji, J., 2002. Sequential organization of multiple movements: involvement of cortical motor areas. Annu. Rev. Neurosci. 24: 631–651.CrossRefGoogle Scholar
Umiltà, M. A., Kohler, E., Gallese, V., et al., 2001. I know what you are doing: a neurophysiological study. Neuron 31: 155–165.CrossRefGoogle ScholarPubMed
Ungerleider, L. G., and Mishkin, M., 1982. Two cortical visual systems. In Ingle, D. J., Goodale, M. A., and Mansfield, R. J. W. (eds.) Analysis of Visual Behavior. Cambridge, MA: MIT Press, pp. 549–586.Google Scholar
Visalberghi, E., and Fragaszy, D., 2002. “Do monkeys ape?” Ten years after. In Nehaniv, C. and Dautenhahn, K. (eds.) Imitation in Animals and ArtifactsCambridge, MA: MIT Press, pp. 471–499.Google Scholar
Vogt, B. A., and Pandya, D. N., 1987. Cingulate cortex of the rhesus monkey. II. Cortical afferents. J. Comp. Neurol. 262: 256–270.CrossRefGoogle ScholarPubMed
Vogt, B. A., Pandya, D. N., and Rosene, D. L., 1987. Cingulate cortex of the rhesus monkey. I. Cytoarchitecture and thalamic afferents. J. Comp. Neurol. 262: 271–289.CrossRefGoogle ScholarPubMed
Vogt, B. A., Hof, P. R., and Vogt, L. J., 2004. Cingulate gyrus. In Paxinos, G. and Mai, J. K. (eds.) The Human Nervous System. New York: Academic Press, pp. 915–946.Google Scholar
von Bonin, G., 1949. Architecture of the precentral motor cortex and some adjacent areas. In Bucy, P. C. (ed.) The Precentral Cortex. Urbana, IL: University of Illinois Press, pp. 83–110.Google Scholar
Bonin, G., and Bailey, P., 1947. The Neocortex ofMacaca mulatta. Urbana, IL: University of Illinois Press.Google Scholar
Walker, A. E., 1940. A cytoarchitectural study of the prefrontal area of the macaque monkey. J. Comp. Neurol. 73: 59–86.CrossRefGoogle Scholar
West, R. A., and Larson, C. R., 1995. Neurons of the anterior mesial cortex related to faciovocal activity in the awake monkey. J. Neurophysiol. 74: 1856–1869.CrossRefGoogle ScholarPubMed
Williams, S. M., and Goldman-Rakic, P. S., 1998. Widespread origin of the primate mesofrontal dopamine system. Cereb. Cortex 8: 321–345.CrossRefGoogle ScholarPubMed
Wilkins, W. K., and Wakefield, J., 1995. Brain evolution and neurolinguistic preconditions. Behav. Brain Sci. 18: 161–181.CrossRefGoogle Scholar
Wilson, F. A. W., Ó Scalaide, S. P., and Goldman-Rakic, P. S., 1993. Dissociation of object and spatial processing domains in primate prefrontal cortex. Science 260: 1955–1958.CrossRefGoogle ScholarPubMed
Wise, R. J. S., 2003. Language systems in normal and aphasic human subjects: functional imaging studies and inferences from animal studies. Br. Med. Bull. 65: 95–119.CrossRefGoogle ScholarPubMed
Wise, R. J. S., Scott, S. K., Blank, S. C., et al., 2001. Separate neural subsystems within ‘Wernicke's area’. Brain 124: 83–95.CrossRefGoogle ScholarPubMed
Winter, P., Handley, P., Ploog, D., and Schott, D., 1973. Ontogeny of squirrel monkey calls under normal conditions and under acoustic isolation. Behaviour 47: 230–239.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×