Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-28T13:11:31.320Z Has data issue: false hasContentIssue false

1 - The Mirror System Hypothesis on the linkage of action and languages

Published online by Cambridge University Press:  01 September 2009

Michael A. Arbib
Affiliation:
Computer Science Department, Neuroscience Program and USC Brain Project, University of Southern California, Los Angeles, CA 90089, USA
Michael A. Arbib
Affiliation:
University of Southern California
Get access

Summary

Introduction

Our progress towards an understanding of how the human brain evolved to be ready for language starts with the mirror neurons for grasping in the brain of the macaque monkey. Area F5 of the macaque brain is part of premotor cortex, i.e., F5 is part of the area of cerebral cortex just in front of the primary motor cortex shown as F1 in Fig. 1.1 (left). Different parts of F5 contain neurons active during manual and orofacial actions. Crucially for us, an anatomically segregated subset of these neurons are mirror neurons. Each such mirror neuron is active not only when the monkey performs actions of a certain kind (e.g., a precision pinch or a power grasp) but also when the monkey observes a human or another monkey perform a more or less similar action. In humans, we cannot measure the activity of single neurons (save when needed for testing during neurosurgery) but we can gather comparatively crude data on the relative blood flow through (and thus, presumably, the neural activity of) a brain region when the human performs one task or another. We may then ask whether the human brain also contains a “mirror system for grasping” in the sense of a region active for both execution and observation of manual actions as compared to some baseline task like simply observing an object. Remarkably, such sites were found in frontal, parietal, and temporal cortex of the human brain.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adolphs, R., 1999. Social cognition and the human brain. Trends Cogn. Sci. 3: 469–479.CrossRefGoogle ScholarPubMed
Allison, T., Puce, A., and McCarthy, G., 2000. Social perception from visual cues: role of the STS region. Trends Cogn. Sci. 4: 267–278.CrossRefGoogle ScholarPubMed
Arbib, M. A., 1981. Perceptual structures and distributed motor control. In Brooks, V. B. (ed.) Handbook of Physiology, Section 2, The Nervous System, vol. 2, Motor Control, Part 1. Bethesda, MD: American Physiological Society, pp. 1449–1480.Google Scholar
Arbib, M. A., 1985. In Search of the Person: Philosophical Explorations of Cognitive Science. Amherst, MA: University of Massachusetts Press.Google Scholar
Arbib, M. A., 2001. Coevolution of human consciousness and language. Ann. NY Acad. Sci. 929: 195–220.CrossRefGoogle Scholar
Arbib, M. A., 2002. The mirror system, imitation, and the evolution of language. In Nehaniv, C. and Dautenhahn, K. (eds.) Imitation in Animals and Artefacts. Cambridge, MA: MIT Press, pp. 229–280.Google Scholar
Arbib, M. A., 2004. How far is language beyond our grasp? A response to Hurford. In Oller, D. K. and Griebel, U. (eds.) Evolution of Communication Systems: A Comparative Approach. Cambridge, MA: MIT Press, pp. 315–321.Google Scholar
Arbib, M. A., 2005a. From monkey-like action recognition to human language: an evolutionary framework for neurolinguistics. Behav. Brain Sci. 28: 105–167.CrossRefGoogle ScholarPubMed
Arbib, M. A., 2005b. Interweaving protosign and protospeech: further developments beyond the mirror. Interaction Studies: Soc. Behav. Commun. Biol. Artif. Systems 6: 145–171.Google Scholar
Arbib, M. A., 2006. A sentence is to speech as what is to action? Cortex. (In press.)
Arbib, M. A., and Rizzolatti, G., 1997. Neural expectations: a possible evolutionary path from manual skills to language. Commun. Cognit. 29: 393–423.Google Scholar
Arbib, M. A., Bischoff, A., Fagg, A. H., and Grafton, S. T., 1994. Synthetic PET: analyzing large-scale properties of neural networks. Hum. Brain Map. 2: 225–233.CrossRefGoogle Scholar
Arbib, M. A., Érdi, P. and Szentágothai, J. (1998) Neural Organization: Structure, Function, and Dynamics. Cambridge, MA: The MIT Press.Google Scholar
Arbib, M. A., Billard, A., Iacoboni, M., and Oztop, E., 2000. Synthetic brain imaging: grasping, mirror neurons and imitation. Neur. Networks 13: 975–997.CrossRefGoogle ScholarPubMed
Armstrong, D., Stokoe, W., and Wilcox, S., 1995. Gesture and the Nature of Language. Cambridge, UK:Cambridge University Press.CrossRefGoogle Scholar
Barrett, A. M., Foundas, A. L., and Heilman, K. M., 2005. Speech and gesture are mediated by independent systems. Behav. Brain Sci. 28: 125–126.CrossRefGoogle Scholar
Bickerton, D. 1995. Language and Human Behavior. Seattle, WA: University of Washington Press.Google Scholar
Bickerton, D. 2005. Beyond the mirror neuron: the smoke neuron?Behav. Brain Sci. 28: 126.CrossRefGoogle Scholar
Boesch, C., and Boesch, H., 1983. Optimization of nut-cracking with natural hammers by wild chimpanzees. Behavior 83: 265–286.CrossRefGoogle Scholar
Byrne, R. W., 2003. Imitation as behaviour parsing. Phil. Trans. Roy. Soc. London B 558: 529–536.CrossRefGoogle Scholar
Carey, D. P., Perrett, D. I., and Oram, M. W., 1997. Recognizing, understanding, and producing action. In Jeannerod, M. and Grafman, J. (eds.) Handbook of Neuropsychology: Action and Cognition, vol. 11. Amsterdam: Elsevier, pp. 111–130.Google Scholar
Cavada, C., and Goldman-Rakic, P. S., 1989. Posterior parietal cortex in rhesus macaque. II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J. Comp. Neurol. 287: 422–445.CrossRefGoogle ScholarPubMed
Cobas, A., and Arbib, M., 1992. Prey-catching and predator-avoidance in frog and toad: defining the schemas. J. Theor. Biol. 157: 271–304.CrossRefGoogle ScholarPubMed
Corballis, M., 2002. From Hand to Mouth: The Origins of Language. Princeton, NJ: Princeton University Press.Google Scholar
Corina, D. P., Poizner, H., Bellugi, U., et al. 1992. Dissociation between linguistic and nonlinguistic gestural systems: a case for compositionality. Brain Lang. 43: 414–447.CrossRefGoogle ScholarPubMed
Corina, D. P., Jose-Robertson, L. S., Guillemin, A., High, J., and Braun, A. R., 2003. Language lateralization in a bimanual language. J. Cogn. Neurosci. 15: 718–730.CrossRefGoogle Scholar
Coulmas, F., 2003. Writing Systems: An Introduction to Their Linguistic Analysis. Cambridge, UK: Cambridge University Press.Google Scholar
Croft, W., 2001. Radical Construction Grammar: Syntactic Theory in Typological Perspective. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Jorio, A., 2000. Gesture in Naples and Gesture in Classical Antiquity. Translation of La mimica degli antichi investigata nel gestire napoletano (Gestural expression of the ancients in the light of Neapolitan gesturing), with an introduction and notes by Adam Kendon. Bloomington, IN: Indiana University Press.Google Scholar
Dixon, R. M. W., 1997. The Rise and Fall of Languages. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Donald, M., 1994. Origin of the Modern Mind. Cambridge, MA: Harvard University Press.Google Scholar
Donald, M., 1999. Precursors for the evolution of protolanguages. In Corballis, M. C. and Lea, S. E. G. (eds.) Preconditions for the Evolution of Protolanguages.Oxford, UK: Oxford University Press, pp. 138–154.Google Scholar
Emmorey, K., 2002. Language, Cognition, and the Brain: Insights from Sign Language Research. Mahwah, NJ: Lawrence Erlbaum.
Fagg, A. H., and Arbib, M. A., 1998. Modeling parietal–premotor interactions in primate control of grasping. Neur. Networks 11: 1277–1303.CrossRefGoogle ScholarPubMed
Falk, D., 2004. Prelinguistic evolution in early hominins: whence motherese. Behav. Brain Sci. 27: 491–503; discussion 505–583.CrossRefGoogle ScholarPubMed
Farnell, B., 1995. Do You See What I Mean? Plains Indian Sign Talk and the Embodiment of Action. Austin, TX: University of Texas Press.Google Scholar
Fellous, J.-M., and Arbib, M. A. (eds.), 2005. Who Needs Emotions? The Brain Meets the Robot. New York: Oxford University Press.CrossRefGoogle Scholar
Ferrari, P. F., Gallese, V., Rizzolatti, G., and Fogassi, L., 2003. Mirror neurons responding to the observation of ingestive and communicative mouth actions in the monkey ventral premotor cortex. Eur. J. Neurosci. 17: 1703–1714.CrossRefGoogle ScholarPubMed
Fogassi, L., and Ferrari, P. F., 2004. Mirror neurons, gestures and language evolution. Interaction Studies: Soc. Behav. Commun. Biol. Artific. Systems 5: 345–363.Google Scholar
Fogassi, L., Gallese, V., Fadiga, L., and Rizzolatti, G., 1998. Neurons responding to the sight of goal directed hand/arm actions in the parietal area PF (7b) of the macaque monkey. Soc. Neurosci. Abstr. 24: 257.Google Scholar
Gallese, V., Fadiga, L., Fogassi, L., and Rizzolatti, G., 1996. Action recognition in the premotor cortex. Brain 119: 593–609.CrossRefGoogle ScholarPubMed
Gentilucci, M., 2003. Grasp observation influences speech production, Eur. J. Neurosci. 17: 179–184.CrossRefGoogle ScholarPubMed
Gentilucci, M., Santunione, P., Roy, A. C., and Stefanini, S., 2004a. Execution and observation of bringing a fruit to the mouth affect syllable pronunciation. Eur. J. Neurosci. 19: 190–202.CrossRefGoogle ScholarPubMed
Gentilucci, M., Stefanini, S., Roy, A. C., and Santunione, P., 2004b. Action observation and speech production: study on children and adults. Neuropsychologia 42: 1554–1567.CrossRefGoogle ScholarPubMed
Ghazanfar, A. A. (ed.), 2003. Primate Audition: Ethology and Neurobiology. Boca Raton, FL: CRC Press.Google Scholar
Ghazanfar, A. A., and Santos, L. R., 2004. Primate brains in the wild: the sensory bases for social interactions. Nature Rev. Neurosci. 5: 603–616.CrossRefGoogle ScholarPubMed
Gibson, J. J., 1979. The Ecological Approach to Visual Perception. Boston, MA: Houghton Mifflin.Google Scholar
Glover, S., and Dixon, P., 2002. Semantics affect the planning but not control of grasping. Exp. Brain Res. 146: 383–387.CrossRefGoogle Scholar
Glover, S., Rosenbaum, D. A., Graham, J., and Dixon, P., 2004. Grasping the meaning of words. Exp. Brain Res. 154: 103–108.CrossRefGoogle Scholar
Hauser, M. D., 1996. The Evolution of Communication. Cambridge, MA: MIT Press.Google Scholar
Hauser, M. D., Chomsky, N., and Fitch, W. T., 2002. The faculty of language: what is it, who has it, and how did it evolve?Science 298: 1569–1579.CrossRefGoogle ScholarPubMed
Hewes, G., 1973. Primate communication and the gestural origin of language. Curr. Anthropol. 14: 5–24.CrossRefGoogle Scholar
Hihara, S., Yamada, H., Iriki, A., and Okanoya, K., 2003. Spontaneous vocal differentiation of coo-calls for tools and food in Japanese monkeys. Neurosci. Res. 45: 383–389.CrossRefGoogle ScholarPubMed
Horwitz, B., Amunts, K., Bhattacharyya, R., et al., 2003. Activation of Broca's area during the production of spoken and signed language: a combined cytoarchitectonic mapping and PET analysis. Neuropsychologia 41: 1868–1876.CrossRefGoogle ScholarPubMed
Hunt, G. R., and Gray, R. D., 2003. Diversification and cumulative evolution in New Caledonian crow tool manufacture. Proc. Roy. Soc. London B 270: 867–874.CrossRefGoogle ScholarPubMed
Hurford, J. R., 2004. Language beyond our grasp: what mirror neurons can, and cannot, do for language evolution. In Oller, D. KimbroughOller and Griebel, U. (eds.) Evolution of Communication Systems: A Comparative Approach. Cambridge, MA: MIT Press, pp. 297–313.Google Scholar
Iacoboni, M., 2004. Understanding others: imitation, language, empathy. In Hurley, S. and Chater, N. (eds.) Perspectives on Imitation: From Cognitive Neuroscience to Social Science, vol. 1, Mechanisms of Imitation and Imitation in Animals. Cambridge, MA: MIT Press, pp. 77–99.Google Scholar
Iverson, J. M., and Goldin-Meadow, S. (eds.), 1998. The Nature and Function of Gesture in Children's Communication.New York: Jossey-Bass.
Jeannerod, M., 2005. How do we decipher others' minds? In Fellous, J.-M. and Arbib, M. A. (eds.) Who Needs Emotions? The Brain Meets the Robot. New York: Oxford University Press, pp. 147–169.CrossRefGoogle Scholar
Jürgens, U., 1997. Primate communication: signaling, vocalization. In Encyclopedia of Neuroscience, 2 edn. Amsterdam: Elsevier, pp. 1694–1697.Google Scholar
Jürgens, U. 2002. Neural pathways underlying vocal control. Neurosci. Biobehav. Rev. 26: 235–258.CrossRefGoogle ScholarPubMed
Kendon, A., 1988. Sign Languages of Aboriginal Australia: Cultural, Semiotic, and Communicative Perspectives. Cambridge, UK: Cambridge University Press.Google Scholar
Kimura, D., 1993. Neuromotor Mechanisms in Human Communication. Oxford, UK: Clarendon Press.CrossRefGoogle Scholar
Kirby, S., 2000. Syntax without natural selection: how compositionality emerges from vocabulary in a population of learners. In Knight, C., Studdert-Kennedy, M. and Hurford, J. R. (eds.) The Evolutionary Emergence of Language. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Kohler, E., Keysers, C., Umiltà, M. A., et al., 2002. Hearing sounds, understanding actions: action representation in mirror neurons. Science 297: 846–848.CrossRefGoogle ScholarPubMed
Lashley, K. S., 1951. The problem of serial order in behavior. In Jeffress, L. (ed.) Cerebral Mechanisms in Behavior: The Hixon Symposium. New York: John Wiley, pp. 112–136.Google Scholar
Lieberman, P., 2000. Human Language and my Reptilian Brain: The Subcortical Bases of Speech, Syntax, and Thought. Cambridge, MA: Harvard University Press.Google Scholar
MacNeilage, P. F., 1998. The frame/content theory of evolution of speech production. Behav. Brain Sci. 21: 499–546.CrossRefGoogle ScholarPubMed
MacNeilage, P. F. and Davis, B. L., 2005. The frame/content theory of evolution of speech: comparison with a gestural origins theory. Interaction Studies: Soc. Behav. Commun. Biol. Artif. Systems 6: 173–199.Google Scholar
Matelli, M., Camarda, R., Glickstein, M., and Rizzolatti, G., 1986. Afferent and efferent projections of the inferior area 6 in the macaque. J. Comp. Neurol. 251: 281–298.CrossRefGoogle ScholarPubMed
McNeill, , D., , 1992. Hand and Mind: What Gestures Reveal about Thought. Chicago, IL: University of Chicago Press.Google Scholar
Miller, G. A., Galanter, E., and Pribram, K. H., 1960. Plans and the Structure of Behavior. New York: Henry Holt.CrossRefGoogle Scholar
Myowa-Yamakoshi, M., and Matsuzawa, T., 1999. Factors influencing imitation of manipulatory actions in chimpanzees (P. troglodytes). J. Comp. Psychol. 113: 128–136.CrossRefGoogle Scholar
Oztop, E., and Arbib, M. A., 2002. Schema design and implementation of the grasp-related mirror neuron system. Biol. Cybernet. 87: 116–140.CrossRefGoogle ScholarPubMed
Perrett, D. I., Mistlin, A. J., Harries, M. H., and Chitty, A. J., 1990. Understanding the visual appearance and consequence of hand actions. In Goodale, M. A. (ed.) Vision and Action: The Control of Grasping. Norwood, NJ: Ablex, pp. 163–180.Google Scholar
Pizzuto, E., Capobianco, M., and Devescovi, A., 2004. Gestural–vocal deixis and representational skills in early language development. Interaction Studies: Soc. Behav Commun. Biol. Artif. Systems 6: 223–252.Google Scholar
Rizzolatti, G., and Arbib, M. A., 1998. Language within our grasp. Trends Neurosci. 21: 188–194.CrossRefGoogle ScholarPubMed
Rizzolatti, G., and Luppino, G., 2001. The cortical motor system. Neuron 31: 889–901.CrossRefGoogle ScholarPubMed
Rizzolatti, G., and Luppino, G. 2003. Grasping movements: visuomotor transformations. In Arbib, M. A. (ed.) The Handbook of Brain Theory and Neural Networks, 2nd edn. Cambridge, MA: MIT Press, pp. 501–504.Google Scholar
Rizzolatti, G., Camarda, R., Fogassi, L., et al., (1998) Functional organization of inferior area 6 in the macaque monkey. II. Area F5 and the control of distal movements. Exp. Brain Res. 71: 491–507.CrossRefGoogle Scholar
Rizzolatti, G., Fadiga, L., Gallese, V., and Fogassi, L., 1996. Premotor cortex and the recognition of motor actions. Cogn. Brain Res. 3: 131–141.CrossRefGoogle ScholarPubMed
Rizzolatti, R., Fogassi, L., and Gallese, V., 2001. Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Rev. Neurosci. 2: 661–670.CrossRefGoogle Scholar
Seltzer, B., and Pandya, D. N., 1989. Frontal lobe connections of the superior temporal sulcus in the rhesus macaque. J. Comp. Neurol. 281: 97–113.CrossRefGoogle Scholar
Seyfarth, R. M., 2005. Continuities in vocal communication argue against a gestural origin of language. Behav. Brain Sci. 28: 144–145.CrossRefGoogle Scholar
Stokoe, W. C., 2001. Language in Hand: Why Sign Came before Speech. Washington, D. C.: Gallaudet University Press.Google Scholar
Studdert-Kennedy, M., 2000. Evolutionary implications of the particulate principle: imitation and the dissociation of phonetic form from semantic function. In Knight, C., Studdert-Kennedy, M. and Hurford, J. R. (eds.) The Evolutionary Emergence of Language. Cambridge, UK: Cambridge University Press, pp. 161–176.CrossRefGoogle Scholar
Tagamets, M. A., and Horwitz, B., 1998. Integrating electrophysiological and anatomical data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cereb. Cortex 8: 310–320.CrossRefGoogle ScholarPubMed
Tomasello, M., 1999. The human adaptation for culture. Annu. Rev. Anthropol. 28: 509–529.CrossRefGoogle Scholar
Tomasello, M., and Call, J., 1997. Primate Cognition. Oxford, UK: Oxford University Press.Google Scholar
Turvey, M., Shaw, R., Reed, E., and Mace, W., 1981. Ecological laws of perceiving and acting. Cognition 9: 237–304.CrossRefGoogle ScholarPubMed
Umiltà, M. A., Kohler, E., Gallese, V., et al., 2001. I know what you are doing: a neurophysiological study. Neuron 31: 155–165.CrossRefGoogle ScholarPubMed
Visalberghi, E., and Fragaszy, D., 2002. “Do monkeys ape?” Ten years after. In C. Nehaniv and K. Dautenhahn (eds.) Imitation in Animals and Artifacts. Cambridge, MA: MIT Press, pp. 471–499.Google Scholar
Wray, A., 1998. Protolanguage as a holistic system for social interaction. Lang. Commun. 18: 47–67.CrossRefGoogle Scholar
Wray, A. 2000. Holistic utterances in protolanguage: the link from primates to humans. In Knight, C., Studdert-Kennedy, M. and Hurford, J. R. (eds.) The Evolutionary Emergence of Language. Cambridge, UK: Cambridge University Press, pp. 285–302.CrossRefGoogle Scholar
Wray, A. 2002. Formulaic Language and the Lexicon. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Wray, A. 2005. The explanatory advantages of the holistic protolanguage model: the case of linguistic irregularity. Behav. Brain Sci. 28: 147–148.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×