Skip to main content Accessibility help
×
Home
Abstract Recursion and Intrinsic Complexity
  • Cited by 2
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

This book presents and applies a framework for studying the complexity of algorithms. It is aimed at logicians, computer scientists, mathematicians and philosophers interested in the theory of computation and its foundations, and it is written at a level suitable for non-specialists. Part I provides an accessible introduction to abstract recursion theory and its connection with computability and complexity. This part is suitable for use as a textbook for an advanced undergraduate or graduate course: all the necessary elementary facts from logic, recursion theory, arithmetic and algebra are included. Part II develops and applies an extension of the homomorphism method due jointly to the author and Lou van den Dries for deriving lower complexity bounds for problems in number theory and algebra which (provably or plausibly) restrict all elementary algorithms from specified primitives. The book includes over 250 problems, from simple checks of the reader's understanding, to current open problems.

Reviews

'… the author presents basic methods, approaches and results of the theory of abstract (first-order) recursion and its relevance to the foundations of the theory of algorithms and computational complexity …'

Marat M. Arslanov Source: Mathematical Reviews Clippings

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.