We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
A summary is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
Hall, JE, Simon, TR, Lee, RD, Mercy, JA. Implications of direct protective factors for public health research and prevention strategies to reduce youth violence. Am. J. Prev. Med. 2012; 43(2 Suppl 1): S76–S83.CrossRefGoogle ScholarPubMed
2
Modi, MN, Palmer, S, Armstrong, A. The role of Violence Against Women Act in addressing intimate partner violence: a public health issue. J. Womens Health (Larchmt). 2014; 23(3): 253–259.CrossRefGoogle Scholar
3
Ramsay, SE, Bartley, A, Rodger, AJ. Determinants of assault-related violence in the community: potential for public health interventions in hospitals. Emerg. Med. J. 2014; 31: 986–989.CrossRefGoogle ScholarPubMed
4
Whitaker, S. Preventing violent conflict: a revised mandate for the public health professional?J. Public Health Policy. 2013; 34(1): 46–54.CrossRefGoogle ScholarPubMed
5
Bushman, BJ, Anderson, CA. Is it time to pull the plug on the hostile versus instrumental aggression dichotomy?Psychol. Rev. 2001; 108(1): 273–279.CrossRefGoogle Scholar
6
Baker, LA, Raine, A, Liu, J, Jacobson, KC. Differential genetic and environmental influences on reactive and proactive aggression in children. J. Abnorm. Child Psychol. 2008; 36(8): 1265–1278.CrossRefGoogle ScholarPubMed
7
Bezdjian, S, Tuvblad, C, Raine, A, Baker, LA. The genetic and environmental covariation among psychopathic personality traits, and reactive and proactive aggression in childhood. Child Dev. 2011; 82(4): 1267–1281.CrossRefGoogle ScholarPubMed
8
Cima, M, Raine, A, Meesters, C, Popma, A. Validation of the Dutch Reactive Proactive Questionnaire (RPQ): differential correlates of reactive and proactive aggression from childhood to adulthood. Aggress. Behav. 2013; 39(2): 99–113.CrossRefGoogle ScholarPubMed
9
Fossati, A, Raine, A, Borroni, S, et al.A cross-cultural study of the psychometric properties of the Reactive-Proactive Aggression Questionnaire among Italian nonclinical adolescents. Psychol. Assess. 2009; 21(1): 131–135.CrossRefGoogle ScholarPubMed
10
Fung, AL, Raine, A, Gao, Y. Cross-cultural generalizability of the Reactive-Proactive Aggression Questionnaire (RPQ). J. Pers. Assess. 2009; 91(5): 473–479.CrossRefGoogle Scholar
11
Raine, A, Dodge, K, Loeber, R, et al.The Reactive-Proactive Aggression Questionnaire: differential correlates of reactive and proactive aggression in adolescent boys. Aggress .Behav. 2006; 32(2): 159–171.CrossRefGoogle Scholar
12
Gardner, KJ, Archer, J, Jackson, S. Does maladaptive coping mediate the relationship between borderline personality traits and reactive and proactive aggression?Aggress. Behav. 2012; 38(5): 403–413.CrossRefGoogle ScholarPubMed
13
Lobbestael, J, Cima, M, Arntz, A. The relationship between adult reactive and proactive aggression, hostile interpretation bias, and antisocial personality disorder. J. Pers. Disord. 2013; 27(1): 53–66.CrossRefGoogle Scholar
14
Dodge, KA, Lochman, JE, Harnish, JD, Bates, JE, Pettit, GS. Reactive and proactive aggression in school children and psychiatrically impaired chronically assaultive youth. J. Abnorm. Psychol. 1997; 106(1): 37–51.CrossRefGoogle ScholarPubMed
15
Kolla, NJ, Malcolm, C, Attard, S, et al. Childhood maltreatment and aggressive behaviour in violent offenders with psychopathy. Can. J. Psychiatry. 2013; 58(8): 487–494.CrossRefGoogle ScholarPubMed
16
Arsenio, WF, Adams, E, Gold, J. Social information processing, moral reasoning, and emotion attributions: relations with adolescents’ reactive and proactive aggression. Child Dev. 2009; 80(6): 1739–1755.CrossRefGoogle ScholarPubMed
17
Crick, NR, Dodge, KA. Social information-processing mechanisms in reactive and proactive aggression. Child Dev. 1996; 67(3): 993–1002.CrossRefGoogle ScholarPubMed
18
Dodge, KA, Coie, JD. Social-information-processing factors in reactive and proactive aggression in children’s peer groups. J. Pers. Soc. Psychol. 1987; 53(6): 1146–1158.CrossRefGoogle ScholarPubMed
19
Hubbard, JA, Dodge, KA, Cillessen, AH, Coie, JD, Schwartz, D. The dyadic nature of social information processing in boys’ reactive and proactive aggression. J. Pers. Soc. Psychol. 2001; 80(2): 268–280.CrossRefGoogle ScholarPubMed
20
Smithmyer, CM, Hubbard, JA, Simons, RF. Proactive and reactive aggression in delinquent adolescents: relations to aggression outcome expectancies. J. Clin. Child Psychol. 2000; 29(1): 86–93.CrossRefGoogle ScholarPubMed
21
Walters, GD. Measuring proactive and reactive criminal thinking with the PICTS: correlations with outcome expectancies and hostile attribution biases. J. Interpers. Violence. 2007; 22(4): 371–385.CrossRefGoogle ScholarPubMed
22
Brugman, S, Lobbestael, J, Arntz, A, et al.Identifying cognitive predictors of reactive and proactive aggression. Aggress. Behav. 2014; 41: 51–64. DOI: 10.1002/AB.21573.CrossRefGoogle Scholar
23
Coccaro, EF, Kavoussi, RJ, Berman, ME, Lish, JD. Intermittent explosive disorder–revised: development, reliability, and validity of research criteria. Compr. Psychiatry. 1998; 39(6): 368–376.CrossRefGoogle Scholar
24
McCloskey, MS, Berman, ME, Noblett, KL, Coccaro, EF. Intermittent explosive disorder-integrated research diagnostic criteria: convergent and discriminant validity. J. Psychiatr. Res. 2006; 40(3): 231–242.CrossRefGoogle ScholarPubMed
25
Coccaro, EF. Intermittent explosive disorder: development of integrated research criteria for Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. Compr. Psychiatry. 2011; 52(2): 119–125.CrossRefGoogle Scholar
26
Coccaro, EF, Lee, R, Kavoussi, RJ. Aggression, suicidality, and intermittent explosive disorder: serotonergic correlates in personality disorder and healthy control subjects. Neuropsychopharmacology. 2010; 35(2): 435–444.CrossRefGoogle ScholarPubMed
27
Salzman, CD, Fusi, S. Emotion, cognition, and mental state representation in amygdala and prefrontal cortex. Annu. Rev. Neurosci. 2010; 33: 173–202.CrossRefGoogle ScholarPubMed
28
Fernando, AB, Murray, JE, Milton, AL. The amygdala: securing pleasure and avoiding pain. Front. Behav. Neurosci. 2013; 7: 190.CrossRefGoogle Scholar
29
Sah, P, Faber, ES, Lopez De, AM, Power, J. The amygdaloid complex: anatomy and physiology. Physiol. Rev. 2003; 83(3): 803–834.CrossRefGoogle Scholar
30
John, YJ, Bullock, D, Zikopoulos, B, Barbas, H. Anatomy and computational modeling of networks underlying cognitive-emotional interaction. Front. Hum. Neurosci. 2013; 7: 101.CrossRefGoogle Scholar
31
Lee, S, Kim, SJ, Kwon, OB, Lee, JH, Kim, JH. Inhibitory networks of the amygdala for emotional memory. Front. Neural. Circuits. 2013; 7: 129.CrossRefGoogle ScholarPubMed
32
Bzdok, D, Laird, AR, Zilles, K, Fox, PT, Eickhoff, SB. An investigation of the structural, connectional, and functional subspecialization in the human amygdala. Hum. Brain Mapp. 2013; 34(12): 3247–3266.CrossRefGoogle ScholarPubMed
33
Matthies, S, Rusch, N, Weber, M, et al.Small amygdala-high aggression? The role of the amygdala in modulating aggression in healthy subjects. World J. Biol. Psychiatry. 2012; 13(1): 75–81.CrossRefGoogle ScholarPubMed
34
Pardini, DA, Raine, A, Erickson, K, Loeber, R. Lower amygdala volume in men is associated with childhood aggression, early psychopathic traits, and future violence. Biol. Psychiatry. 2014; 75(1): 73–80.CrossRefGoogle ScholarPubMed
35
Gopal, A, Clark, E, Allgair, A, et al.Dorsal/ventral parcellation of the amygdala: relevance to impulsivity and aggression. Psychiatry Res. 2013; 211(1): 24–30.CrossRefGoogle ScholarPubMed
36
Bobes, MA, Ostrosky, F, Diaz, K, et al.Linkage of functional and structural anomalies in the left amygdala of reactive-aggressive men. Soc. Cogn. Affect. Neurosci. 2013; 8(8): 928–936.CrossRefGoogle ScholarPubMed
37
Dyck, M, Loughead, J, Kellermann, T, et al. Cognitive versus automatic mechanisms of mood induction differentially activate left and right amygdala. Neuroimage. 2011; 54(3): 2503–2513.CrossRefGoogle ScholarPubMed
38
New, AS, Hazlett, EA, Newmark, RE, et al.Laboratory induced aggression: a positron emission tomography study of aggressive individuals with borderline personality disorder. Biol. Psychiatry. 2009; 66(12): 1107–1114.CrossRefGoogle ScholarPubMed
39
Coccaro, EF, McCloskey, MS, Fitzgerald, DA, Phan, KL. Amygdala and orbitofrontal reactivity to social threat in individuals with impulsive aggression. Biol. Psychiatry. 2007; 62(2): 168–178.CrossRefGoogle ScholarPubMed
40
Lozier, LM, Cardinale, EM, Vanmeter, JW, Marsh, AA. Mediation of the relationship between callous-unemotional traits and proactive aggression by amygdala response to fear among children with conduct problems. JAMA Psychiatry. 2014; 71(6): 627–636.CrossRefGoogle ScholarPubMed
41
Walton, ME, Croxson, PL, Behrens, TE, Kennerley, SW, Rushworth, MF. Adaptive decision making and value in the anterior cingulate cortex. Neuroimage. 2007; 36(Suppl 2): T142–T154.CrossRefGoogle ScholarPubMed
42
Rudebeck, PH, Murray, EA. The orbitofrontal oracle: cortical mechanisms for the prediction and evaluation of specific behavioral outcomes. Neuron. 2014; 84(6): 1143–1156.CrossRefGoogle ScholarPubMed
43
Gansler, DA, McLaughlin, NC, Iguchi, L, et al.A multivariate approach to aggression and the orbital frontal cortex in psychiatric patients. Psychiatry Res. 2009; 171(3): 145–154.CrossRefGoogle Scholar
44
Antonucci, AS, Gansler, DA, Tan, S, et al. Orbitofrontal correlates of aggression and impulsivity in psychiatric patients. Psychiatry Res. 2006; 147(2–3): 213–220.CrossRefGoogle ScholarPubMed
45
Boes, AD, Tranel, D, Anderson, SW, Nopoulos, P. Right anterior cingulate: a neuroanatomical correlate of aggression and defiance in boys. Behav. Neurosci. 2008; 122(3): 677–684.CrossRefGoogle Scholar
46
Ducharme, S, Hudziak, JJ, Botteron, KN, et al.Right anterior cingulate cortical thickness and bilateral striatal volume correlate with child behavior checklist aggressive behavior scores in healthy children. Biol .Psychiatry. 2011; 70(3): 283–290.CrossRefGoogle ScholarPubMed
47
Soloff, PH, Meltzer, CC, Greer, PJ, Constantine, D, Kelly, TM. A fenfluramine-activated FDG-PET study of borderline personality disorder. Biol. Psychiatry. 2000; 47(6): 540–547.CrossRefGoogle ScholarPubMed
48
New, AS, Hazlett, EA, Buchsbaum, MS, et al.Blunted prefrontal cortical 18fluorodeoxyglucose positron emission tomography response to meta-chlorophenylpiperazine in impulsive aggression. Arch. Gen. Psychiatry. 2002; 59(7): 621–629.CrossRefGoogle ScholarPubMed
49
Ghashghaei, HT, Hilgetag, CC, Barbas, H. Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. Neuroimage. 2007; 34(3): 905–923.CrossRefGoogle ScholarPubMed
50
Timbie, C, Barbas, H. Specialized pathways from the primate amygdala to posterior orbitofrontal cortex. J. Neurosci. 2014; 34(24): 8106–8118.CrossRefGoogle ScholarPubMed
51
Ghashghaei, HT, Barbas, H. Pathways for emotion: interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience. 2002; 115(4): 1261–1279.CrossRefGoogle ScholarPubMed
52
Roy, AK, Shehzad, Z, Margulies, DS, et al.Functional connectivity of the human amygdala using resting state fMRI. Neuroimage. 2009; 45(2): 614–626.CrossRefGoogle ScholarPubMed
53
Hoptman, MJ, D’Angelo, D, Catalano, D, et al.Amygdalofrontal functional disconnectivity and aggression in schizophrenia. Schizophr. Bull. 2010; 36(5): 1020–1028.CrossRefGoogle Scholar
54
Fulwiler, CE, King, JA, Zhang, N. Amygdala-orbitofrontal restingstate functional connectivity is associated with trait anger. Neuroreport. 2012; 23(10): 606–610.CrossRefGoogle Scholar
55
Beyer, F, Munte, TF, Wiechert, J, Heldmann, M, Kramer, UM. Trait aggressiveness is not related to structural connectivity between orbitofrontal cortex and amygdala. PLoS One. 2014; 9(6): e101105.CrossRefGoogle Scholar
56
New, AS, Hazlett, EA, Buchsbaum, MS, et al.Amygdala-prefrontal disconnection in borderline personality disorder. Neuropsychopharmacology. 2007; 32(7): 1629–1640.CrossRefGoogle ScholarPubMed
57
Hornboll, B, Macoveanu, J, Rowe, J, et al.Acute serotonin 2A receptor blocking alters the processing of fearful faces in the orbitofrontal cortex and amygdala. J. Psychopharmacol. 2013; 27(10): 903–914.CrossRefGoogle ScholarPubMed
58
Rosell, DR, Thompson, JL, Slifstein, M, et al.Increased serotonin 2A receptor availability in the orbitofrontal cortex of physically aggressive personality disordered patients. Biol. Psychiatry. 2010; 67(12): 1154–1162.CrossRefGoogle Scholar
59
Passamonti, L, Crockett, MJ, Apergis-Schoute, AM, et al.Effects of acute tryptophan depletion on prefrontal-amygdala connectivity while viewing facial signals of aggression. Biol. Psychiatry. 2012; 71(1): 36–43.CrossRefGoogle ScholarPubMed
60
Pezawas, L, Meyer-Lindenberg, A, Drabant, EM, et al.5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nat. Neurosci. 2005; 8(6): 828–834.CrossRefGoogle Scholar
61
Heinz, A, Braus, DF, Smolka, MN, et al.Amygdala-prefrontal coupling depends on a genetic variation of the serotonin transporter. Nat. Neurosci. 2005; 8(1): 20–21.CrossRefGoogle ScholarPubMed
62
Haber, SN. The primate basal ganglia: parallel and integrative networks. J. Chem. Neuroanat. 2003; 26(4): 317–330.CrossRefGoogle ScholarPubMed
63
Crockett, MJ, Apergis-Schoute, A, Herrmann, B, et al.Serotonin modulates striatal responses to fairness and retaliation in humans. J. Neurosci. 2013; 33(8): 3505–3513.CrossRefGoogle ScholarPubMed
64
van de Giessen, E, Rosell, DR, Thompson, JL, et al.Serotonin transporter availability in impulsive aggressive personality disordered patients: a PET study with [(11)C]DASB. J. Psychiatr. Res. 2014; 58: 147–154.CrossRefGoogle Scholar
65
Malick, JB, Barnett, A. The role of serotonergic pathways in isolation-induced aggression in mice. Pharmacol. Biochem. Behav. 1976; 5(1): 55–61.CrossRefGoogle ScholarPubMed
Brown, GL, Ebert, MH, Goyer, PF, et al.Aggression, suicide, and serotonin: relationships to CSF amine metabolites. Am. J. Psychiatry. 1982; 139(6): 741–746.Google ScholarPubMed
68
Brown, CS, Kent, TA, Bryant, SG, et al.Blood platelet uptake of serotonin in episodic aggression. Psychiatry Res. 1989; 27(1): 5–12.CrossRefGoogle ScholarPubMed
69
Stoff, DM, Pollock, L, Vitiello, B, Behar, D, Bridger, WH. Reduction of (3H)-imipramine binding sites on platelets of conduct-disordered children. Neuropsychopharmacology. 1987; 1(1): 55–62.CrossRefGoogle Scholar
70
Coccaro, EF, Kavoussi, RJ, Hauger, RL. Physiological responses to d-fenfluramine and ipsapirone challenge correlate with indices of aggression in males with personality disorder. Int. Clin. Psychopharmacol. 1995; 10(3): 177–179.CrossRefGoogle Scholar
71
Coccaro, EF, Berman, ME, Kavoussi, RJ, Hauger, RL. Relationship of prolactin response to d-fenfluramine to behavioral and questionnaire assessments of aggression in personality-disordered men. Biol. Psychiatry. 1996; 40(3): 157–164.CrossRefGoogle ScholarPubMed
72
Coccaro, EF, Kavoussi, RJ, Cooper, TB, Hauger, RL. Central serotonin activity and aggression: inverse relationship with prolactin response to d-fenfluramine, but not CSF 5-HIAA concentration, in human subjects. Am. J. Psychiatry. 1997; 154(10): 1430–1435.Google Scholar
73
Coccaro, EF, Astill, JL, Herbert, JL, Schut, AG. Fluoxetine treatment of impulsive aggression in DSM-III-R personality disorder patients. J. Clin. Psychopharmacol. 1990; 10(5): 373–375.CrossRefGoogle Scholar
74
Coccaro, EF, Kavoussi, RJ. Fluoxetine and impulsive aggressive behavior in personality-disordered subjects. Arch. Gen. Psychiatry. 1997; 54(12): 1081–1088.CrossRefGoogle Scholar
75
Kruesi, MJ, Rapoport, JL, Hamburger, S, et al.Cerebrospinal fluid monoamine metabolites, aggression, and impulsivity in disruptive behavior disorders of children and adolescents. Arch. Gen. Psychiatry. 1990; 47(5): 419–426.CrossRefGoogle Scholar
76
Coccaro, EF, Lee, R. Cerebrospinal fluid 5-hydroxyindolacetic acid and homovanillic acid: reciprocal relationships with impulsive aggression in human subjects. J. Neural. Transm. 2010; 117(2): 241–248.CrossRefGoogle Scholar
77
Coccaro, EF, Kavoussi, RJ, Hauger, RL, Cooper, TB, Ferris, CF. Cerebrospinal fluid vasopressin levels: correlates with aggression and serotonin function in personality-disordered subjects. Arch. Gen. Psychiatry. 1998; 55(8): 708–714.CrossRefGoogle ScholarPubMed
78
Goveas, JS, Csernansky, JG, Coccaro, EF. Platelet serotonin content correlates inversely with life history of aggression in personality-disordered subjects. Psychiatry Res. 2004; 126(1): 23–32.CrossRefGoogle ScholarPubMed
Marseille, R, Lee, R, Coccaro, EF. Inter-relationship between different platelet measures of 5-HT and their relationship to aggression in human subjects. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2012; 36(2): 277–281.CrossRefGoogle ScholarPubMed
81
Modai, I, Gibel, A, Rauchverger, B, et al. Paroxetine binding in aggressive schizophrenic patients. Psychiatry Res. 2000; 94(1): 77–81.CrossRefGoogle ScholarPubMed
82
Sarne, Y, Mandel, J, Goncalves, MH, et al. Imipramine binding to blood platelets and aggressive behavior in offenders, schizophrenics and normal volunteers. Neuropsychobiology. 1995; 31(3): 120–124.CrossRefGoogle ScholarPubMed
83
Coccaro, EF, Kavoussi, RJ, Hauger, RL. Serotonin function and antiaggressive response to fluoxetine: a pilot study. Biol. Psychiatry. 1997; 42(7): 546–552.CrossRefGoogle ScholarPubMed
84
Carpenter, LL, Anderson, GM, Pelton, GH, et al.Tryptophan depletion during continuous CSF sampling in healthy human subjects. Neuropsychopharmacology. 1998; 19(1): 26–35.CrossRefGoogle Scholar
85
Moreno, FA, McGavin, C, Malan, TP, et al.Tryptophan depletion selectively reduces CSF 5-HT metabolites in healthy young men: results from single lumbar puncture sampling technique. Int. J. Neuropsychopharmacol. 2000; 3(4): 277–283.CrossRefGoogle ScholarPubMed
86
Williams, WA, Shoaf, SE, Hommer, D, Rawlings, R, Linnoila, M. Effects of acute tryptophan depletion on plasma and cerebrospinal fluid tryptophan and 5-hydroxyindoleacetic acid in normal volunteers. J. Neurochem. 1999; 72(4): 1641–1647.CrossRefGoogle ScholarPubMed
87
Bjork, JM, Dougherty, DM, Moeller, FG, Cherek, DR, Swann, AC. The effects of tryptophan depletion and loading on laboratory aggression in men: time course and a food-restricted control. Psychopharmacology (Berl). 1999; 142(1): 24–30.CrossRefGoogle Scholar
88
Bjork, JM, Dougherty, DM, Moeller, FG, Swann, AC. Differential behavioral effects of plasma tryptophan depletion and loading in aggressive and nonaggressive men. Neuropsychopharmacology. 2000; 22(4): 357–369.CrossRefGoogle ScholarPubMed
89
Kramer, UM, Riba, J, Richter, S, Munte, TF. An fMRI study on the role of serotonin in reactive aggression. PLoS One. 2011; 6(11): e27668.CrossRefGoogle Scholar
90
Kotting, WF, Bubenzer, S, Helmbold, K, et al. Effects of tryptophan depletion on reactive aggression and aggressive decision-making in young people with ADHD. Acta Psychiatr. Scand. 2013; 128(2): 114–123.CrossRefGoogle ScholarPubMed
91
Stadler, C, Zepf, FD, Demisch, L, et al. Influence of rapid tryptophan depletion on laboratory-provoked aggression in children with ADHD. Neuropsychobiology. 2007; 56(2–3): 104–110.CrossRefGoogle ScholarPubMed
92
Zimmermann, M, Grabemann, M, Mette, C, et al.The effects of acute tryptophan depletion on reactive aggression in adults with attention-deficit/hyperactivity disorder (ADHD) and healthy controls. PLoS One. 2012; 7(3): e32023.CrossRefGoogle ScholarPubMed
93
Fanning, JR, Berman, ME, Guillot, CR, Marsic, A, McCloskey, MS. Serotonin (5-HT) augmentation reduces provoked aggression associated with primary psychopathy traits. J. Pers. Disord. 2014; 28(3): 449–461.CrossRefGoogle ScholarPubMed
Rubia, K, Lee, F, Cleare, AJ, et al.Tryptophan depletion reduces right inferior prefrontal activation during response inhibition in fast, event-related fMRI. Psychopharmacology (Berl). 2005; 179(4): 791–803.CrossRefGoogle ScholarPubMed
96
Lee, RJ, Gill, A, Chen, B, McCloskey, M, Coccaro, EF. Modulation of central serotonin affects emotional information processing in impulsive aggressive personality disorder. J. Clin. Psychopharmacol. 2012; 32(3): 329–335.CrossRefGoogle ScholarPubMed
97
Grady, CL, Siebner, HR, Hornboll, B, et al. Acute pharmacologically induced shifts in serotonin availability abolish emotion-selective responses to negative face emotions in distinct brain networks. Eur. Neuropsychopharmacol. 2013; 23(5): 368–378.CrossRefGoogle ScholarPubMed
Osipova, DV, Kulikov, AV, Popova, NK. C1473G polymorphism in mouse tph2 gene is linked to tryptophan hydroxylase-2 activity in the brain, intermale aggression, and depressive-like behavior in the forced swim test. J. Neurosci. Res. 2009; 87(5): 1168–1174.CrossRefGoogle ScholarPubMed
100
Takahashi, A, Shiroishi, T, Koide, T. Genetic mapping of escalated aggression in wild-derived mouse strain MSM/Ms: association with serotonin-related genes. Front. Neurosci. 2014; 8: 156.CrossRefGoogle ScholarPubMed
101
Mosienko, V, Bert, B, Beis, D, et al.Exaggerated aggression and decreased anxiety in mice deficient in brain serotonin. Transl. Psychiatry. 2012; 2: e122.CrossRefGoogle ScholarPubMed
102
Chen, GL, Novak, MA, Meyer, JS, et al. The effect of rearing experience and TPH2 genotype on HPA axis function and aggression in rhesus monkeys: a retrospective analysis. Horm. Behav. 2010; 57(2): 184–191.CrossRefGoogle ScholarPubMed
103
Yang, J, Lee, MS, Lee, SH, et al.Association between tryptophan hydroxylase 2 polymorphism and anger-related personality traits among young Korean women. Neuropsychobiology. 2010; 62(3): 158–163.CrossRefGoogle Scholar
104
Yoon, HK, Lee, HJ, Kim, L, Lee, MS, Ham, BJ. Impact of tryptophan hydroxylase 2 G-703T polymorphism on anger-related personality traits and orbitofrontal cortex. Behav. Brain Res. 2012; 231(1): 105–110.CrossRefGoogle ScholarPubMed
105
Gutknecht, L, Jacob, C, Strobel, A, et al.Tryptophan hydroxylase-2 gene variation influences personality traits and disorders related to emotional dysregulation. Int. J. Neuropsychopharmacol. 2007; 10(3): 309–320.Google ScholarPubMed
106
Inoue, H, Yamasue, H, Tochigi, M, et al.Effect of tryptophan hydroxylase-2 gene variants on amygdalar and hippocampal volumes. Brain Res. 2010; 1331: 51–57.CrossRefGoogle ScholarPubMed
107
Perez-Rodriguez, MM, Weinstein, S, New, AS, et al.Tryptophan-hydroxylase 2 haplotype association with borderline personality disorder and aggression in a sample of patients with personality disorders and healthy controls. J. Psychiatr. Res. 2010; 44(15): 1075–1081.CrossRefGoogle Scholar
108
Brown, SM, Peet, E, Manuck, SB, et al.A regulatory variant of the human tryptophan hydroxylase-2 gene biases amygdala reactivity. Mol. Psychiatry. 2005; 10(9): 884–888.CrossRefGoogle Scholar
109
Booij, L, Turecki, G, Leyton, M, et al.Tryptophan hydroxylase(2) gene polymorphisms predict brain serotonin synthesis in the orbitofrontal cortex in humans. Mol. Psychiatry. 2012; 17(8): 809–817.CrossRefGoogle ScholarPubMed
110
Heiming, RS, Monning, A, Jansen, F, et al. To attack, or not to attack? The role of serotonin transporter genotype in the display of maternal aggression. Behav. Brain Res. 2013; 242: 135–141.CrossRefGoogle ScholarPubMed
111
Holmes, A, Murphy, DL, Crawley, JN. Reduced aggression in mice lacking the serotonin transporter. Psychopharmacology (Berl.). 2002; 161(2): 160–167.CrossRefGoogle ScholarPubMed
112
Yu, Q, Teixeira, CM, Mahadevia, D, et al.Dopamine and serotonin signaling during two sensitive developmental periods differentially impact adult aggressive and affective behaviors in mice. Mol. Psychiatry. 2014; 19(6): 688–698.CrossRefGoogle ScholarPubMed
113
Kiryanova, V, Dyck, RH. Increased aggression, improved spatial memory, and reduced anxiety-like behaviour in adult male mice exposed to fluoxetine early in life. Dev. Neurosci. 2014; 36(5): 396–408.CrossRefGoogle ScholarPubMed
114
Heils, A, Teufel, A, Petri, S, et al.Allelic variation of human serotonin transporter gene expression. J. Neurochem. 1996; 66(6): 2621–2624.CrossRefGoogle ScholarPubMed
115
May, ME, Lightfoot, DA, Srour, A, Kowalchuk, RK, Kennedy, CH. Association between serotonin transporter polymorphisms and problem behavior in adult males with intellectual disabilities. Brain Res. 2010; 1357: 97–103.CrossRefGoogle ScholarPubMed
116
Hallikainen, T, Saito, T, Lachman, HM, et al.Association between low activity serotonin transporter promoter genotype and early onset alcoholism with habitual impulsive violent behavior. Mol. Psychiatry. 1999; 4(4): 385–388.CrossRefGoogle ScholarPubMed
117
Haberstick, BC, Smolen, A, Hewitt, JK. Family-based association test of the 5HTTLPR and aggressive behavior in a general population sample of children. Biol. Psychiatry. 2006; 59(9): 836–843.CrossRefGoogle Scholar
118
Beitchman, JH, Baldassarra, L, Mik, H, et al.Serotonin transporter polymorphisms and persistent, pervasive childhood aggression. Am. J. Psychiatry. 2006; 163(6): 1103–1105.CrossRefGoogle ScholarPubMed
119
Verona, E, Joiner, TE, Johnson, F, Bender, TW. Gender specific gene-environment interactions on laboratory-assessed aggression. Biol. Psychol. 2006; 71(1): 33–41.CrossRefGoogle ScholarPubMed
120
Conway, CC, Keenan-Miller, D, Hammen, C, et al. Coaction of stress and serotonin transporter genotype in predicting aggression at the transition to adulthood. J. Clin. Child Adolesc. Psychol. 2012; 41(1): 53–63.CrossRefGoogle ScholarPubMed
121
Reif, A, Rosler, M, Freitag, CM, et al.Nature and nurture predispose to violent behavior: serotonergic genes and adverse childhood environment. Neuropsychopharmacology. 2007; 32(11): 2375–2383.CrossRefGoogle ScholarPubMed
122
Aluja, A, Garcia, LF, Blanch, A, De, LD, Fibla, J. Impulsive-disinhibited personality and serotonin transporter gene polymorphisms: association study in an inmate’s sample. J. Psychiatr. Res. 2009; 43(10): 906–914.CrossRefGoogle Scholar
123
Payer, DE, Nurmi, EL, Wilson, SA, McCracken, JT, London, ED. Effects of methamphetamine abuse and serotonin transporter gene variants on aggression and emotion-processing neurocircuitry. Transl. Psychiatry. 2012; 2: e80.CrossRefGoogle ScholarPubMed
124
Philibert, R, Madan, A, Andersen, A, et al. Serotonin transporter mRNA levels are associated with the methylation of an upstream CpG island. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2007; 144B(1): 101–105.CrossRefGoogle ScholarPubMed
125
Koenen, KC, Uddin, M, Chang, SC, et al.SLC6A4 methylation modifies the effect of the number of traumatic events on risk for posttraumatic stress disorder. Depress. Anxiety. 2011; 28(8): 639–647.CrossRefGoogle Scholar
126
Zhao, J, Goldberg, J, Bremner, JD, Vaccarino, V. Association between promoter methylation of serotonin transporter gene and depressive symptoms: a monozygotic twin study. Psychosom. Med. 2013; 75(6): 523–529.CrossRefGoogle ScholarPubMed
127
Dannlowski, U, Kugel, H, Redlich, R, et al.Serotonin transporter gene methylation is associated with hippocampal gray matter volume. Hum. Brain Mapp. 2014; 35(11): 5356–5367.CrossRefGoogle Scholar
Wang, D, Szyf, M, Benkelfat, C, et al.Peripheral SLC6A4 DNA methylation is associated with in vivo measures of human brain serotonin synthesis and childhood physical aggression. PLoS One. 2012; 7(6): e39501.CrossRefGoogle ScholarPubMed
130
Frankle, WG, Lombardo, I, New, AS, et al.Brain serotonin transporter distribution in subjects with impulsive aggressivity: a positron emission study with [11C]McN 5652. Am. J. Psychiatry. 2005; 162(5): 915–923.CrossRefGoogle ScholarPubMed
131
Bortolato, M, Chen, K, Shih, JC. Monoamine oxidase inactivation: from pathophysiology to therapeutics. Adv. Drug Deliv. Rev. 2008; 60(13–14): 1527–1533.CrossRefGoogle ScholarPubMed
132
Brunner, HG, Nelen, M, Breakefield, XO, Ropers, HH, van Oost, BA. Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science. 1993; 262(5133): 578–580.CrossRefGoogle ScholarPubMed
133
Sabol, SZ, Hu, S, Hamer, D. A functional polymorphism in the monoamine oxidase A gene promoter. Hum. Genet. 1998; 103(3): 273–279.CrossRefGoogle ScholarPubMed
134
Kuepper, Y, Grant, P, Wielpuetz, C, Hennig, J. MAOA-uVNTR genotype predicts interindividual differences in experimental aggressiveness as a function of the degree of provocation. Behav. Brain Res. 2013; 247: 73–78.CrossRefGoogle ScholarPubMed
135
Manuck, SB, Flory, JD, Ferrell, RE, Mann, JJ, Muldoon, MF. A regulatory polymorphism of the monoamine oxidase-A gene may be associated with variability in aggression, impulsivity, and central nervous system serotonergic responsivity. Psychiatry Res. 2000; 95(1): 9–23.CrossRefGoogle ScholarPubMed
136
Stetler, DA, Davis, C, Leavitt, K, et al.Association of low-activity MAOA allelic variants with violent crime in incarcerated offenders. J. Psychiatr. Res. 2014; 58: 69–75.CrossRefGoogle ScholarPubMed
137
Byrd, AL, Manuck, SB. MAOA, childhood maltreatment, and antisocial behavior: meta-analysis of a gene-environment interaction. Biol. Psychiatry. 2014; 75(1): 9–17.CrossRefGoogle ScholarPubMed
138
Karere, GM, Kinnally, EL, Sanchez, JN, et al. What is an “adverse” environment? Interactions of rearing experiences and MAOA genotype in rhesus monkeys. Biol. Psychiatry. 2009; 65(9): 770–777.CrossRefGoogle Scholar
139
Newman, TK, Syagailo, YV, Barr, CS, et al.Monoamine oxidase A gene promoter variation and rearing experience influences aggressive behavior in rhesus monkeys. Biol. Psychiatry. 2005; 57(2): 167–172.CrossRefGoogle ScholarPubMed
140
Alia-Klein, N, Goldstein, RZ, Kriplani, A, et al.Brain monoamine oxidase A activity predicts trait aggression. J. Neurosci. 2008; 28(19): 5099–5104.CrossRefGoogle Scholar
141
Cases, O, Seif, I, Grimsby, J, et al.Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science. 1995; 268(5218): 1763–1766.CrossRefGoogle ScholarPubMed
142
Scott, AL, Bortolato, M, Chen, K, Shih, JC. Novel monoamine oxidase A knock out mice with human-like spontaneous mutation. Neuroreport. 2008; 19(7): 739–743.CrossRefGoogle Scholar
143
Cases, O, Vitalis, T, Seif, I, et al. Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient mice: role of a serotonin excess during the critical period. Neuron. 1996; 16(2): 297–307.CrossRefGoogle ScholarPubMed
144
Bortolato, M, Godar, SC, Tambaro, S, et al.Early postnatal inhibition of serotonin synthesis results in long-term reductions of perseverative behaviors, but not aggression, in MAO A-deficient mice. Neuropharmacology. 2013; 75: 223–232.CrossRefGoogle Scholar
145
Garcia-Garcia, AL, Newman-Tancredi, A, Leonardo, ED. 5-HT(1A) [corrected] receptors in mood and anxiety: recent insights into autoreceptor versus heteroreceptor function. Psychopharmacology (Berl.). 2014; 231(4): 623–636.CrossRefGoogle ScholarPubMed
146
Polter, AM, Li, X. 5-HT1A receptor-regulated signal transduction pathways in brain. Cell Signal. 2010; 22(10): 1406–1412.CrossRefGoogle ScholarPubMed
147
Miczek, KA, Hussain, S, Faccidomo, S. Alcohol-heightened aggression in mice: attenuation by 5-HT1A receptor agonists. Psychopharmacology (Berl.). 1998; 139(1–2): 160–168.CrossRefGoogle ScholarPubMed
148
Pruus, K, Skrebuhhova-Malmros, T, Rudissaar, R, Matto, V, Allikmets, L. 5-HT1A receptor agonists buspirone and gepirone attenuate apomorphine-induced aggressive behaviour in adult male Wistar rats. J. Physiol. Pharmacol. 2000; 51(4 Pt 2): 833–846.Google ScholarPubMed
149
Centenaro, LA, Vieira, K, Zimmermann, N, et al. Social instigation and aggressive behavior in mice: role of 5-HT1A and 5-HT1B receptors in the prefrontal cortex. Psychopharmacology (Berl.). 2008; 201(2): 237–248.CrossRefGoogle ScholarPubMed
150
da Veiga, CP, Miczek, KA, Lucion, AB, de Almeida, RM. Social instigation and aggression in postpartum female rats: role of 5-Ht1A and 5-Ht1B receptors in the dorsal raphe nucleus and prefrontal cortex. Psychopharmacology (Berl.). 2011; 213(2–3): 475–487.CrossRefGoogle ScholarPubMed
151
de Boer, SF, Lesourd, M, Mocaer, E, Koolhaas, JM. Somatodendritic 5-HT(1A) autoreceptors mediate the anti-aggressive actions of 5-HT(1A) receptor agonists in rats: an ethopharmacological study with S-15535, alnespirone, and WAY-100635. Neuropsychopharmacology. 2000; 23(1): 20–33.CrossRefGoogle ScholarPubMed
152
Stein, DJ, Miczek, KA, Lucion, AB, de Almeida, RM. Aggression-reducing effects of F15599, a novel selective 5-HT1A receptor agonist, after microinjection into the ventral orbital prefrontal cortex, but not in infralimbic cortex in male mice. Psychopharmacology (Berl.). 2013; 230(3): 375–387.CrossRefGoogle Scholar
153
Naumenko, VS, Kozhemyakina, RV, Plyusnina, IF, Kulikov, AV, Popova, NK. Serotonin 5-HT1A receptor in infancy-onset aggression: comparison with genetically defined aggression in adult rats. Behav. Brain Res. 2013; 243: 97–101.CrossRefGoogle Scholar
154
Popova, NK, Naumenko, VS, Plyusnina, IZ, Kulikov, AV. Reduction in 5-HT1A receptor density, 5-HT1A mRNA expression, and functional correlates for 5-HT1A receptors in genetically defined aggressive rats. J. Neurosci. Res. 2005; 80(2): 286–292.CrossRefGoogle ScholarPubMed
155
Popova, NK, Naumenko, VS, Plyusnina, IZ. Involvement of brain serotonin 5-HT1A receptors in genetic predisposition to aggressive behavior. Neurosci. Behav. Physiol. 2007; 37(6): 631–635.CrossRefGoogle ScholarPubMed
156
van der Vegt, BJ, de Boer, SF, Buwalda, B, et al. Enhanced sensitivity of postsynaptic serotonin-1A receptors in rats and mice with high trait aggression. Physiol. Behav. 2001; 74(1–2): 205–211.CrossRefGoogle ScholarPubMed
157
Audero, E, Mlinar, B, Baccini, G, et al. Suppression of serotonin neuron firing increases aggression in mice. J. Neurosci. 2013; 33(20): 8678–8688.CrossRefGoogle Scholar
158
Almeida, M, Lee, R, Coccaro, EF. Cortisol responses to ipsapirone challenge correlate with aggression, while basal cortisol levels correlate with impulsivity, in personality disorder and healthy volunteer subjects. J. Psychiatr. Res. 2010; 44(14): 874–880.CrossRefGoogle Scholar
159
Coccaro, EF, Gabriel, S, Siever, LJ. Buspirone challenge: preliminary evidence for a role for central 5-HT1a receptor function in impulsive aggressive behavior in humans. Psychopharmacol. Bull. 1990; 26(3): 393–405.Google Scholar
160
Benko, A, Lazary, J, Molnar, E, et al.Significant association between the C(-1019)G functional polymorphism of the HTR1A gene and impulsivity. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2010; 153B(2): 592–599.CrossRefGoogle Scholar
161
Joyce, PR, Stephenson, J, Kennedy, M, Mulder, RT, McHugh, PC. The presence of both serotonin 1A receptor (HTR1A) and dopamine transporter (DAT1) gene variants increase the risk of borderline personality disorder. Front. Genet. 2014; 4: 313.CrossRefGoogle ScholarPubMed
162
Witte, AV, Floel, A, Stein, P, et al.Aggression is related to frontal serotonin-1A receptor distribution as revealed by PET in healthy subjects. Hum. Brain Mapp. 2009; 30(8): 2558–2570.CrossRefGoogle ScholarPubMed
163
Parsey, RV, Oquendo, MA, Simpson, NR, et al.Effects of sex, age, and aggressive traits in man on brain serotonin 5-HT1A receptor binding potential measured by PET using [C-11]WAY-100635. Brain Res. 2002; 954(2): 173–182.CrossRefGoogle Scholar
164
Sari, Y. Serotonin1B receptors: from protein to physiological function and behavior. Neurosci. Biobehav. Rev. 2004; 28(6): 565–582.CrossRefGoogle ScholarPubMed
165
Bannai, M, Fish, EW, Faccidomo, S, Miczek, KA. Anti-aggressive effects of agonists at 5-HT1B receptors in the dorsal raphe nucleus of mice. Psychopharmacology (Berl.). 2007; 193(2): 295–304.CrossRefGoogle ScholarPubMed
166
de Almeida, RM, Miczek, KA. Aggression escalated by social instigation or by discontinuation of reinforcement (“frustration”) in mice: inhibition by anpirtoline: a 5-HT1B receptor agonist. Neuropsychopharmacology. 2002; 27(2): 171–181.CrossRefGoogle ScholarPubMed
167
de Almeida, RM, Rosa, MM, Santos, DM, et al. 5-HT(1B) receptors, ventral orbitofrontal cortex, and aggressive behavior in mice. Psychopharmacology (Berl.). 2006; 185(4): 441–450.CrossRefGoogle ScholarPubMed
168
Faccidomo, S, Bannai, M, Miczek, KA. Escalated aggression after alcohol drinking in male mice: dorsal raphe and prefrontal cortex serotonin and 5-HT(1B) receptors. Neuropsychopharmacology. 2008; 33(12): 2888–2899.CrossRefGoogle ScholarPubMed
169
Faccidomo, S, Quadros, IM, Takahashi, A, Fish, EW, Miczek, KA. Infralimbic and dorsal raphe microinjection of the 5-HT(1B) receptor agonist CP-93,129: attenuation of aggressive behavior in CFW male mice. Psychopharmacology (Berl.). 2012; 222(1): 117–128.CrossRefGoogle Scholar
170
Fish, EW, Faccidomo, S, Miczek, KA. Aggression heightened by alcohol or social instigation in mice: reduction by the 5-HT(1B) receptor agonist CP-94,253. Psychopharmacology (Berl.). 1999; 146(4): 391–399.CrossRefGoogle Scholar
171
Fish, EW, McKenzie-Quirk, SD, Bannai, M, Miczek, KA. 5-HT(1B) receptor inhibition of alcohol-heightened aggression in mice: comparison to drinking and running. Psychopharmacology (Berl.). 2008; 197(1): 145–156.CrossRefGoogle ScholarPubMed
172
Veiga, CP, Miczek, KA, Lucion, AB, Almeida, RM. Effect of 5-HT1B receptor agonists injected into the prefrontal cortex on maternal aggression in rats. Braz. J. Med. Biol. Res. 2007; 40(6): 825–830.CrossRefGoogle Scholar
173
Ramboz, S, Saudou, F, Amara, DA, et al.5-HT1B receptor knock out—behavioral consequences. Behav. Brain Res. 1996; 73(1–2): 305–312.CrossRefGoogle ScholarPubMed
174
Bouwknecht, JA, Hijzen, TH, van der Gugten, J, et al. Absence of 5-HT(1B) receptors is associated with impaired impulse control in male 5-HT(1B) knockout mice. Biol. Psychiatry. 2001; 49(7): 557–568.CrossRefGoogle ScholarPubMed
175
Conner, TS, Jensen, KP, Tennen, H, et al. Functional polymorphisms in the serotonin 1B receptor gene (HTR1B) predict self-reported anger and hostility among young men. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2010; 153B(1): 67–78.Google ScholarPubMed
176
Hakulinen, C, Jokela, M, Hintsanen, M, et al.Serotonin receptor 1B genotype and hostility, anger and aggressive behavior through the lifespan: the Young Finns study. J. Behav. Med. 2013; 36(6): 583–590.CrossRefGoogle ScholarPubMed
177
Jensen, KP, Covault, J, Conner, TS, et al. A common polymorphism in serotonin receptor 1B mRNA moderates regulation by miR-96 and associates with aggressive human behaviors. Mol. Psychiatry. 2009; 14(4): 381–389.CrossRefGoogle ScholarPubMed
178
Zouk, H, McGirr, A, Lebel, V, et al. The effect of genetic variation of the serotonin 1B receptor gene on impulsive aggressive behavior and suicide. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2007; 144B(8): 996–1002.CrossRefGoogle ScholarPubMed
179
Potenza, MN, Walderhaug, E, Henry, S, et al.Serotonin 1B receptor imaging in pathological gambling. World J. Biol. Psychiatry. 2013; 14(2): 139–145.CrossRefGoogle ScholarPubMed
180
Hu, J, Henry, S, Gallezot, JD, et al.Serotonin 1B receptor imaging in alcohol dependence. Biol. Psychiatry. 2010; 67(9): 800–803.CrossRefGoogle ScholarPubMed
181
Murrough, JW, Henry, S, Hu, J, et al.Reduced ventral striatal/ ventral pallidal serotonin1B receptor binding potential in major depressive disorder. Psychopharmacology (Berl.). 2011; 213(2–3): 547–553.CrossRefGoogle ScholarPubMed
182
Higgins, GA, Enderlin, M, Haman, M, Fletcher, PJ. The 5-HT2A receptor antagonist M100,907 attenuates motor and ‘impulsive-type’ behaviours produced by NMDA receptor antagonism. Psychopharmacology (Berl.). 2003; 170(3): 309–319.CrossRefGoogle ScholarPubMed
183
Sakaue, M, Ago, Y, Sowa, C, et al.Modulation by 5-hT2A receptors of aggressive behavior in isolated mice. Jpn J. Pharmacol. 2002; 89(1): 89–92.CrossRefGoogle ScholarPubMed
184
Winstanley, CA, Theobald, DE, Dalley, JW, Glennon, JC, Robbins, TW. 5-HT2A and 5-HT2C receptor antagonists have opposing effects on a measure of impulsivity: interactions with global 5-HT depletion. Psychopharmacology (Berl.). 2004; 176(3–4): 376–385.CrossRefGoogle ScholarPubMed
185
Giegling, I, Hartmann, AM, Moller, HJ, Rujescu, D. Anger- and aggression-related traits are associated with polymorphisms in the 5-HT-2A gene. J. Affect. Disord. 2006; 96(1–2): 75–81.CrossRefGoogle ScholarPubMed
186
Bruce, KR, Steiger, H, Joober, R, et al.Association of the promoter polymorphism -1438G/A of the 5-HT2A receptor gene with behavioral impulsiveness and serotonin function in women with bulimia nervosa. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2005; 137B(1): 40–44.CrossRefGoogle ScholarPubMed
187
Jakubczyk, A, Wrzosek, M, Lukaszkiewicz, J, et al.The CC genotype in HTR2A T102C polymorphism is associated with behavioral impulsivity in alcohol-dependent patients. J. Psychiatr. Res. 2012; 46(1): 44–49.CrossRefGoogle Scholar
188
Jakubczyk, A, Klimkiewicz, A, Kopera, M, et al.The CC genotype in the T102C HTR2A polymorphism predicts relapse in individuals after alcohol treatment. J. Psychiatr. Res. 2013; 47(4): 527–533.CrossRefGoogle Scholar
189
Preuss, UW, Koller, G, Bondy, B, Bahlmann, M, Soyka, M. Impulsive traits and 5-HT2A receptor promoter polymorphism in alcohol dependents: possible association but no influence of personality disorders. Neuropsychobiology. 2001; 43(3): 186–191.CrossRefGoogle Scholar
190
Tsuang, HC, Chen, WJ, Lin, SH, et al. Impaired impulse control is associated with a 5-HT2A receptor polymorphism in schizophrenia. Psychiatry Res. 2013; 208(2): 105–110.CrossRefGoogle Scholar
191
Bjork, JM, Moeller, FG, Dougherty, DM, et al. Serotonin 2a receptor T102C polymorphism and impaired impulse control. Am. J. Med. Genet. 2002; 114(3): 336–339.CrossRefGoogle ScholarPubMed
192
Oquendo, MA, Russo, SA, Underwood, MD, et al.Higher postmortem prefrontal 5-HT2A receptor binding correlates with lifetime aggression in suicide. Biol. Psychiatry. 2006; 59(3): 235–243.CrossRefGoogle ScholarPubMed
193
Dwivedi, Y, Mondal, AC, Payappagoudar, GV, Rizavi, HS. Differential regulation of serotonin (5HT)2A receptor mRNA and protein levels after single and repeated stress in rat brain: role in learned helplessness behavior. Neuropharmacology. 2005; 48(2): 204–214.CrossRefGoogle ScholarPubMed
194
Soloff, PH, Chiappetta, L, Mason, NS, Becker, C, Price, JC. Effects of serotonin-2A receptor binding and gender on personality traits and suicidal behavior in borderline personality disorder. Psychiatry Res. 2014; 222(3): 140–148.CrossRefGoogle ScholarPubMed
195
Meyer, JH, Wilson, AA, Rusjan, P, et al.Serotonin2A receptor binding potential in people with aggressive and violent behaviour. J. Psychiatry Neurosci. 2008; 33(6): 499–508.Google Scholar
196
Rylands, AJ, Hinz, R, Jones, M, et al.Pre- and postsynaptic serotonergic differences in males with extreme levels of impulsive aggression without callous unemotional traits: a positron emission tomography study using (11)C-DASB and (11)C-MDL100907. Biol. Psychiatry. 2012; 72(12): 1004–1011.CrossRefGoogle ScholarPubMed
197
Chameau, P, van Hooft, JA. Serotonin 5-HT(3) receptors in the central nervous system. Cell Tissue Res. 2006; 326(2): 573–581.CrossRefGoogle ScholarPubMed
198
De Deurwaerdère, P, Moison, D, Navailles, S, Porras, G, Spampinato, U. Regionally and functionally distinct serotonin3 receptors control in vivo dopamine outflow in the rat nucleus accumbens. J. Neurochem. 2005; 94(1): 140–149.CrossRefGoogle Scholar
199
Cervantes, MC, Delville, Y. Serotonin 5-HT1A and 5-HT3 receptors in an impulsive-aggressive phenotype. Behav. Neurosci. 2009; 123(3): 589–598.CrossRefGoogle Scholar
200
Ricci, LA, Grimes, JM, Melloni, RHJr.Serotonin type 3 receptors modulate the aggression-stimulating effects of adolescent cocaine exposure in Syrian hamsters (Mesocricetus auratus). Behav. Neurosci. 2004; 118(5): 1097–1110.CrossRefGoogle Scholar
201
Ricci, LA, Knyshevski, I, Melloni, RHJr. Serotonin type 3 receptors stimulate offensive aggression in Syrian hamsters. Behav. Brain Res. 2005; 156(1): 19–29.CrossRefGoogle Scholar
202
Rudissaar, R, Pruus, K, Skrebuhhova, T, Allikmets, L, Matto, V. Modulatory role of 5-HT3 receptors in mediation of apomorphine-induced aggressive behaviour in male rats. Behav. Brain Res. 1999; 106(1–2): 91–96.CrossRefGoogle ScholarPubMed
203
McKenzie-Quirk, SD, Girasa, KA, Allan, AM, Miczek, KA. 5-HT(3) receptors, alcohol and aggressive behavior in mice. Behav. Pharmacol. 2005; 16(3): 163–169.CrossRefGoogle ScholarPubMed
204
Sellers, EM, Toneatto, T, Romach, MK, et al. Clinical efficacy of the 5-HT3 antagonist ondansetron in alcohol abuse and dependence. Alcohol Clin. Exp. Res. 1994; 18(4): 879–885.CrossRefGoogle ScholarPubMed
205
Johnson, BA, Ait-Daoud, N, Ma, JZ, Wang, Y. Ondansetron reduces mood disturbance among biologically predisposed, alcohol-dependent individuals. Alcohol Clin. Exp. Res. 2003; 27(11): 1773–1779.CrossRefGoogle ScholarPubMed
206
Myrick, H, Anton, RF, Li, X, et al. Effect of naltrexone and ondansetron on alcohol cue-induced activation of the ventral striatum in alcohol-dependent people. Arch. Gen. Psychiatry. 2008; 65(4): 466–475.CrossRefGoogle Scholar
207
Ducci, F, Enoch, MA, Yuan, Q, et al.HTR3B is associated with alcoholism with antisocial behavior and alpha EEG power—an intermediate phenotype for alcoholism and co-morbid behaviors. Alcohol. 2009; 43(1): 73–84.CrossRefGoogle Scholar
208
Melke, J, Westberg, L, Nilsson, S, et al.A polymorphism in the serotonin receptor 3A (HTR3A) gene and its association with harm avoidance in women. Arch. Gen. Psychiatry. 2003; 60(10): 1017–1023.CrossRefGoogle ScholarPubMed
209
Gatt, JM, Williams, LM, Schofield, PR, et al.Impact of the HTR3A gene with early life trauma on emotional brain networks and depressed mood. Depress. Anxiety. 2010; 27(8): 752–759.CrossRefGoogle ScholarPubMed
210
Iidaka, T, Ozaki, N, Matsumoto, A, et al.A variant C178T in the regulatory region of the serotonin receptor gene HTR3A modulates neural activation in the human amygdala. J. Neurosci. 2005; 25(27): 6460–6466.CrossRefGoogle ScholarPubMed
211
Schlüter, T, Winz, O, Henkel, K, et al.The impact of dopamine on aggression: an [18F]-FDOPA PET Study in healthy males. J. Neurosci. 2013; 33(43): 16, 889–16, 896.CrossRefGoogle Scholar
212
Buckholtz, JW, Treadway, MT, Cowan, RL, et al.Mesolimbic dopamine reward system hypersensitivity in individuals with psychopathic traits. Nat. Neurosci. 2010; 13(4): 419–421.CrossRefGoogle Scholar
213
Wagner, S, Baskaya, O, Anicker, NJ, et al. The catechol o-methyltransferase (COMT) val(158)met polymorphism modulates the association of serious life events (SLE) and impulsive aggression in female patients with borderline personality disorder (BPD). Acta Psychiatr. Scand. 2010; 122(2): 110–117.CrossRefGoogle Scholar
214
Bhakta, SG, Zhang, JP, Malhotra, AK. The COMT Met158 allele and violence in schizophrenia: a meta-analysis. Schizophr. Res. 2012; 140(1–3): 192–197.CrossRefGoogle ScholarPubMed
215
Flory, JD, Xu, K, New, AS, et al. Irritable assault and variation in the COMT gene. Psychiatr. Genet. 2007; 17(6): 344–346.CrossRefGoogle ScholarPubMed
216
Soyka, M, Zill, P, Koller, G, et al. Val158Met COMT polymorphism and risk of aggression in alcohol dependence. Addict. Biol. 2015; 20(1): 197–204.CrossRefGoogle ScholarPubMed
217
Vevera, J, Stopkova, R, Bes, M, et al.COMT polymorphisms in impulsively violent offenders with antisocial personality disorder. Neuro. Endocrinol. Lett. 2009; 30(6): 753–756.Google ScholarPubMed
218
Hirata, Y, Zai, CC, Nowrouzi, B, Beitchman, JH, Kennedy, JL. Study of the catechol-o-methyltransferase (COMT) gene with high aggression in children. Aggress. Behav. 2013; 39(1): 45–51.CrossRefGoogle ScholarPubMed
219
Fresan, A, Camarena, B, Apiquian, R, et al. Association study of MAO-A and DRD4 genes in schizophrenic patients with aggressive behavior. Neuropsychobiology. 2007; 55(3–4): 171–175.CrossRefGoogle ScholarPubMed
220
Buchmann, AF, Zohsel, K, Blomeyer, D, et al.Interaction between prenatal stress and dopamine D4 receptor genotype in predicting aggression and cortisol levels in young adults. Psychopharmacology (Berl.). 2014; 231(16): 3089–3097.CrossRefGoogle ScholarPubMed
221
Delville, Y, Mansour, KM, Ferris, CF. Serotonin blocks vasopressin-facilitated offensive aggression: interactions within the ventrolateral hypothalamus of golden hamsters. Physiol. Behav. 1996; 59(4–5): 813–816.CrossRefGoogle ScholarPubMed
222
Ferris, CF, Melloni, RHJr, Koppel, G, et al. Vasopressin/serotonin interactions in the anterior hypothalamus control aggressive behavior in golden hamsters. J. Neurosci. 1997; 17(11): 4331–4340.CrossRefGoogle ScholarPubMed
223
Ferris, CF, Potegal, M. Vasopressin receptor blockade in the anterior hypothalamus suppresses aggression in hamsters. Physiol. Behav. 1988; 44(2): 235–239.CrossRefGoogle ScholarPubMed
224
Bosch, OJ, Neumann, ID. Vasopressin released within the central amygdala promotes maternal aggression. Eur. J. Neurosci. 2010; 31(5): 883–891.CrossRefGoogle ScholarPubMed
225
Wersinger, SR, Caldwell, HK, Christiansen, M, Young, WSIII. Disruption of the vasopressin 1b receptor gene impairs the attack component of aggressive behavior in mice. Genes Brain Behav. 2007; 6(7): 653–660.CrossRefGoogle ScholarPubMed
226
Wersinger, SR, Ginns, EI, O’Carroll, AM, Lolait, SJ, Young, WSIII. Vasopressin V1b receptor knockout reduces aggressive behavior in male mice. Mol. Psychiatry. 2002; 7(9): 975–984.CrossRefGoogle ScholarPubMed
227
Wersinger, SR, Caldwell, HK, Martinez, L, et al. Vasopressin 1a receptor knockout mice have a subtle olfactory deficit but normal aggression. Genes Brain Behav. 2007; 6(6): 540–551.CrossRefGoogle ScholarPubMed
228
Fodor, A, Barsvari, B, Aliczki, M, et al.The effects of vasopressin deficiency on aggression and impulsiveness in male and female rats. Psychoneuroendocrinology. 2014; 47: 141–150.CrossRefGoogle ScholarPubMed
229
Uzefovsky, F, Shalev, I, Israel, S, Knafo, A, Ebstein, RP. Vasopressin selectively impairs emotion recognition in men. Psychoneuroendocrinology. 2012; 37(4): 576–580.CrossRefGoogle ScholarPubMed
230
Guastella, AJ, Kenyon, AR, Alvares, GA, Carson, DS, Hickie, IB. Intranasal arginine vasopressin enhances the encoding of happy and angry faces in humans. Biol. Psychiatry. 2010; 67(12): 1220–1222.CrossRefGoogle ScholarPubMed
231
Lee, RJ, Coccaro, EF, Cremers, H, et al.A novel V1a receptor antagonist blocks vasopressin-induced changes in the CNS response to emotional stimuli: an fMRI study. Front. Syst. Neurosci. 2013; 7: 100.CrossRefGoogle Scholar
232
Luppino, D, Moul, C, Hawes, DJ, Brennan, J, Dadds, MR. Association between a polymorphism of the vasopressin 1B receptor gene and aggression in children. Psychiatr. Genet. 2014; 24(5): 185–190.CrossRefGoogle ScholarPubMed
233
Zai, CC, Muir, KE, Nowrouzi, B, et al.Possible genetic association between vasopressin receptor 1B and child aggression. Psychiatry Res. 2012; 200(2–3): 784–788.CrossRefGoogle ScholarPubMed
234
Vogel, F, Wagner, S, Baskaya, O, et al.Variable number of tandem repeat polymorphisms of the arginine vasopressin receptor 1A gene and impulsive aggression in patients with borderline personality disorder. Psychiatr. Genet. 2012; 22(2): 105–106.CrossRefGoogle ScholarPubMed
235
McBurnett, K, Lahey, BB, Rathouz, PJ, Loeber, R. Low salivary cortisol and persistent aggression in boys referred for disruptive behavior. Arch. Gen. Psychiatry. 2000; 57(1): 38–43.CrossRefGoogle Scholar
236
Popma, A, Vermeiren, R, Geluk, CA, et al.Cortisol moderates the relationship between testosterone and aggression in delinquent male adolescents. Biol. Psychiatry. 2007; 61(3): 405–411.CrossRefGoogle ScholarPubMed
237
Kuepper, Y, Alexander, N, Osinsky, R, et al.Aggression–interactions of serotonin and testosterone in healthy men and women. Behav. Brain Res. 2010; 206(1): 93–100.CrossRefGoogle ScholarPubMed
238
Welker, KM, Lozoya, E, Campbell, JA, Neumann, CS, Carre, JM. Testosterone, cortisol, and psychopathic traits in men and women. Physiol. Behav. 2014; 129: 230–236.CrossRefGoogle ScholarPubMed
Cima, M, Smeets, T, Jelicic, M. Self-reported trauma, cortisol levels, and aggression in psychopathic and non-psychopathic prison inmates. Biol. Psychol. 2008; 78(1): 75–86.CrossRefGoogle ScholarPubMed
241
Derntl, B, Windischberger, C, Robinson, S, et al.Amygdala activity to fear and anger in healthy young males is associated with testosterone. Psychoneuroendocrinology. 2009; 34(5): 687–693.CrossRefGoogle ScholarPubMed
242
Hermans, EJ, Ramsey, NF, van Honk, J. Exogenous testosterone enhances responsiveness to social threat in the neural circuitry of social aggression in humans. Biol. Psychiatry. 2008; 63(3): 263–270.CrossRefGoogle ScholarPubMed
Goetz, SM, Tang, L, Thomason, ME, et al. Testosterone rapidly increases neural reactivity to threat in healthy men: a novel two-step pharmacological challenge paradigm. Biol. Psychiatry. 2014; 76(4): 324–331.CrossRefGoogle Scholar
245
Grillo, CA, Risher, M, Macht, VA, et al.Repeated restraint stress-induced atrophy of glutamatergic pyramidal neurons and decreases in glutamatergic efflux in the rat amygdala are prevented by the antidepressant agomelatine. Neuroscience. 2015; 284: 430–443.CrossRefGoogle ScholarPubMed
246
Padival, MA, Blume, SR, Vantrease, JE, Rosenkranz, JA. Qualitatively different effect of repeated stress during adolescence on principal neuron morphology across lateral and basal nuclei of the rat amygdala. Neuroscience. 2015; 291: 128–145.CrossRefGoogle ScholarPubMed
247
Vyas, A, Mitra, R, Shankaranarayana Rao, BS, Chattarji, S. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J. Neurosci. 2002; 22(15): 6810–6818.CrossRefGoogle ScholarPubMed
248
Vyas, A, Bernal, S, Chattarji, S. Effects of chronic stress on dendritic arborization in the central and extended amygdala. Brain Res. 2003; 965(1–2): 290–294.CrossRefGoogle ScholarPubMed
249
Gilabert-Juan, J, Castillo-Gomez, E, Perez-Rando, M, Molto, MD, Nacher, J. Chronic stress induces changes in the structure of interneurons and in the expression of molecules related to neuronal structural plasticity and inhibitory neurotransmission in the amygdala of adult mice. Exp. Neurol. 2011; 232(1): 33–40.CrossRefGoogle Scholar