Book contents
- Violence in Psychiatry
- Violence in Psychiatry
- Copyright page
- Contents
- Contributors
- Section 1 Statement of the problem
- Section 2 Assessment
- Section 3 Neurobiology
- Chapter 9 Deconstructing violence as a medical syndrome: mapping psychotic, impulsive, and predatory subtypes to malfunctioning brain circuits
- Chapter 10 Aggression, DRD1 polymorphism, and lesion location in penetrating traumatic brain injury
- Chapter 11 Is impulsive violence an addiction? The Habit Hypothesis
- Chapter 12 The neurobiology of psychopathy: recent developments and new directions in research and treatment
- Chapter 13 The neurobiology of violence
- Chapter 14 Impulsivity and aggression in schizophrenia: a neural circuitry perspective with implications for treatment
- Chapter 15 Serotonin and impulsive aggression
- Section 4 Guidelines
- Section 5 Psychopharmacology
- Section 6 Treatment interventions
- Index
- References
Chapter 13 - The neurobiology of violence
from Section 3 - Neurobiology
Published online by Cambridge University Press: 19 October 2021
Book contents
- Violence in Psychiatry
- Violence in Psychiatry
- Copyright page
- Contents
- Contributors
- Section 1 Statement of the problem
- Section 2 Assessment
- Section 3 Neurobiology
- Chapter 9 Deconstructing violence as a medical syndrome: mapping psychotic, impulsive, and predatory subtypes to malfunctioning brain circuits
- Chapter 10 Aggression, DRD1 polymorphism, and lesion location in penetrating traumatic brain injury
- Chapter 11 Is impulsive violence an addiction? The Habit Hypothesis
- Chapter 12 The neurobiology of psychopathy: recent developments and new directions in research and treatment
- Chapter 13 The neurobiology of violence
- Chapter 14 Impulsivity and aggression in schizophrenia: a neural circuitry perspective with implications for treatment
- Chapter 15 Serotonin and impulsive aggression
- Section 4 Guidelines
- Section 5 Psychopharmacology
- Section 6 Treatment interventions
- Index
- References
Summary
A summary is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.

- Type
- Chapter
- Information
- Violence in Psychiatry , pp. 104 - 135Publisher: Cambridge University PressPrint publication year: 2016
References
Hall, JE, Simon, TR, Lee, RD, Mercy, JA. Implications of direct protective factors for public health research and prevention strategies to reduce youth violence. Am. J. Prev. Med. 2012; 43(2 Suppl 1): S76–S83.CrossRefGoogle ScholarPubMed
Modi, MN, Palmer, S, Armstrong, A. The role of Violence Against Women Act in addressing intimate partner violence: a public health issue. J. Womens Health (Larchmt). 2014; 23(3): 253–259.CrossRefGoogle Scholar
Ramsay, SE, Bartley, A, Rodger, AJ. Determinants of assault-related violence in the community: potential for public health interventions in hospitals. Emerg. Med. J. 2014; 31: 986–989.CrossRefGoogle ScholarPubMed
Whitaker, S. Preventing violent conflict: a revised mandate for the public health professional? J. Public Health Policy. 2013; 34(1): 46–54.CrossRefGoogle ScholarPubMed
Bushman, BJ, Anderson, CA. Is it time to pull the plug on the hostile versus instrumental aggression dichotomy? Psychol. Rev. 2001; 108(1): 273–279.CrossRefGoogle Scholar
Baker, LA, Raine, A, Liu, J, Jacobson, KC. Differential genetic and environmental influences on reactive and proactive aggression in children. J. Abnorm. Child Psychol. 2008; 36(8): 1265–1278.CrossRefGoogle ScholarPubMed
Bezdjian, S, Tuvblad, C, Raine, A, Baker, LA. The genetic and environmental covariation among psychopathic personality traits, and reactive and proactive aggression in childhood. Child Dev. 2011; 82(4): 1267–1281.CrossRefGoogle ScholarPubMed
Cima, M, Raine, A, Meesters, C, Popma, A. Validation of the Dutch Reactive Proactive Questionnaire (RPQ): differential correlates of reactive and proactive aggression from childhood to adulthood. Aggress. Behav. 2013; 39(2): 99–113.CrossRefGoogle ScholarPubMed
Fossati, A, Raine, A, Borroni, S, et al. A cross-cultural study of the psychometric properties of the Reactive-Proactive Aggression Questionnaire among Italian nonclinical adolescents. Psychol. Assess. 2009; 21(1): 131–135.CrossRefGoogle ScholarPubMed
Fung, AL, Raine, A, Gao, Y. Cross-cultural generalizability of the Reactive-Proactive Aggression Questionnaire (RPQ). J. Pers. Assess. 2009; 91(5): 473–479.CrossRefGoogle Scholar
Raine, A, Dodge, K, Loeber, R, et al. The Reactive-Proactive Aggression Questionnaire: differential correlates of reactive and proactive aggression in adolescent boys. Aggress .Behav. 2006; 32(2): 159–171.CrossRefGoogle Scholar
Gardner, KJ, Archer, J, Jackson, S. Does maladaptive coping mediate the relationship between borderline personality traits and reactive and proactive aggression? Aggress. Behav. 2012; 38(5): 403–413.CrossRefGoogle ScholarPubMed
Lobbestael, J, Cima, M, Arntz, A. The relationship between adult reactive and proactive aggression, hostile interpretation bias, and antisocial personality disorder. J. Pers. Disord. 2013; 27(1): 53–66.CrossRefGoogle Scholar
Dodge, KA, Lochman, JE, Harnish, JD, Bates, JE, Pettit, GS. Reactive and proactive aggression in school children and psychiatrically impaired chronically assaultive youth. J. Abnorm. Psychol. 1997; 106(1): 37–51.CrossRefGoogle ScholarPubMed
Kolla, NJ, Malcolm, C, Attard, S, et al. Childhood maltreatment and aggressive behaviour in violent offenders with psychopathy. Can. J. Psychiatry. 2013; 58(8): 487–494.CrossRefGoogle ScholarPubMed
Arsenio, WF, Adams, E, Gold, J. Social information processing, moral reasoning, and emotion attributions: relations with adolescents’ reactive and proactive aggression. Child Dev. 2009; 80(6): 1739–1755.CrossRefGoogle ScholarPubMed
Crick, NR, Dodge, KA. Social information-processing mechanisms in reactive and proactive aggression. Child Dev. 1996; 67(3): 993–1002.CrossRefGoogle ScholarPubMed
Dodge, KA, Coie, JD. Social-information-processing factors in reactive and proactive aggression in children’s peer groups. J. Pers. Soc. Psychol. 1987; 53(6): 1146–1158.CrossRefGoogle ScholarPubMed
Hubbard, JA, Dodge, KA, Cillessen, AH, Coie, JD, Schwartz, D. The dyadic nature of social information processing in boys’ reactive and proactive aggression. J. Pers. Soc. Psychol. 2001; 80(2): 268–280.CrossRefGoogle ScholarPubMed
Smithmyer, CM, Hubbard, JA, Simons, RF. Proactive and reactive aggression in delinquent adolescents: relations to aggression outcome expectancies. J. Clin. Child Psychol. 2000; 29(1): 86–93.CrossRefGoogle ScholarPubMed
Walters, GD. Measuring proactive and reactive criminal thinking with the PICTS: correlations with outcome expectancies and hostile attribution biases. J. Interpers. Violence. 2007; 22(4): 371–385.CrossRefGoogle ScholarPubMed
Brugman, S, Lobbestael, J, Arntz, A, et al. Identifying cognitive predictors of reactive and proactive aggression. Aggress. Behav. 2014; 41: 51–64. DOI: 10.1002/AB.21573.CrossRefGoogle Scholar
Coccaro, EF, Kavoussi, RJ, Berman, ME, Lish, JD. Intermittent explosive disorder–revised: development, reliability, and validity of research criteria. Compr. Psychiatry. 1998; 39(6): 368–376.CrossRefGoogle Scholar
McCloskey, MS, Berman, ME, Noblett, KL, Coccaro, EF. Intermittent explosive disorder-integrated research diagnostic criteria: convergent and discriminant validity. J. Psychiatr. Res. 2006; 40(3): 231–242.CrossRefGoogle ScholarPubMed
Coccaro, EF. Intermittent explosive disorder: development of integrated research criteria for Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. Compr. Psychiatry. 2011; 52(2): 119–125.CrossRefGoogle Scholar
Coccaro, EF, Lee, R, Kavoussi, RJ. Aggression, suicidality, and intermittent explosive disorder: serotonergic correlates in personality disorder and healthy control subjects. Neuropsychopharmacology. 2010; 35(2): 435–444.CrossRefGoogle ScholarPubMed
Salzman, CD, Fusi, S. Emotion, cognition, and mental state representation in amygdala and prefrontal cortex. Annu. Rev. Neurosci. 2010; 33: 173–202.CrossRefGoogle ScholarPubMed
Fernando, AB, Murray, JE, Milton, AL. The amygdala: securing pleasure and avoiding pain. Front. Behav. Neurosci. 2013; 7: 190.CrossRefGoogle Scholar
Sah, P, Faber, ES, Lopez De, AM, Power, J. The amygdaloid complex: anatomy and physiology. Physiol. Rev. 2003; 83(3): 803–834.CrossRefGoogle Scholar
John, YJ, Bullock, D, Zikopoulos, B, Barbas, H. Anatomy and computational modeling of networks underlying cognitive-emotional interaction. Front. Hum. Neurosci. 2013; 7: 101.CrossRefGoogle Scholar
Lee, S, Kim, SJ, Kwon, OB, Lee, JH, Kim, JH. Inhibitory networks of the amygdala for emotional memory. Front. Neural. Circuits. 2013; 7: 129.CrossRefGoogle ScholarPubMed
Bzdok, D, Laird, AR, Zilles, K, Fox, PT, Eickhoff, SB. An investigation of the structural, connectional, and functional subspecialization in the human amygdala. Hum. Brain Mapp. 2013; 34(12): 3247–3266.CrossRefGoogle ScholarPubMed
Matthies, S, Rusch, N, Weber, M, et al. Small amygdala-high aggression? The role of the amygdala in modulating aggression in healthy subjects. World J. Biol. Psychiatry. 2012; 13(1): 75–81.CrossRefGoogle ScholarPubMed
Pardini, DA, Raine, A, Erickson, K, Loeber, R. Lower amygdala volume in men is associated with childhood aggression, early psychopathic traits, and future violence. Biol. Psychiatry. 2014; 75(1): 73–80.CrossRefGoogle ScholarPubMed
Gopal, A, Clark, E, Allgair, A, et al. Dorsal/ventral parcellation of the amygdala: relevance to impulsivity and aggression. Psychiatry Res. 2013; 211(1): 24–30.CrossRefGoogle ScholarPubMed
Bobes, MA, Ostrosky, F, Diaz, K, et al. Linkage of functional and structural anomalies in the left amygdala of reactive-aggressive men. Soc. Cogn. Affect. Neurosci. 2013; 8(8): 928–936.CrossRefGoogle ScholarPubMed
Dyck, M, Loughead, J, Kellermann, T, et al. Cognitive versus automatic mechanisms of mood induction differentially activate left and right amygdala. Neuroimage. 2011; 54(3): 2503–2513.CrossRefGoogle ScholarPubMed
New, AS, Hazlett, EA, Newmark, RE, et al. Laboratory induced aggression: a positron emission tomography study of aggressive individuals with borderline personality disorder. Biol. Psychiatry. 2009; 66(12): 1107–1114.CrossRefGoogle ScholarPubMed
Coccaro, EF, McCloskey, MS, Fitzgerald, DA, Phan, KL. Amygdala and orbitofrontal reactivity to social threat in individuals with impulsive aggression. Biol. Psychiatry. 2007; 62(2): 168–178.CrossRefGoogle ScholarPubMed
Lozier, LM, Cardinale, EM, Vanmeter, JW, Marsh, AA. Mediation of the relationship between callous-unemotional traits and proactive aggression by amygdala response to fear among children with conduct problems. JAMA Psychiatry. 2014; 71(6): 627–636.CrossRefGoogle ScholarPubMed
Walton, ME, Croxson, PL, Behrens, TE, Kennerley, SW, Rushworth, MF. Adaptive decision making and value in the anterior cingulate cortex. Neuroimage. 2007; 36(Suppl 2): T142–T154.CrossRefGoogle ScholarPubMed
Rudebeck, PH, Murray, EA. The orbitofrontal oracle: cortical mechanisms for the prediction and evaluation of specific behavioral outcomes. Neuron. 2014; 84(6): 1143–1156.CrossRefGoogle ScholarPubMed
Gansler, DA, McLaughlin, NC, Iguchi, L, et al. A multivariate approach to aggression and the orbital frontal cortex in psychiatric patients. Psychiatry Res. 2009; 171(3): 145–154.CrossRefGoogle Scholar
Antonucci, AS, Gansler, DA, Tan, S, et al. Orbitofrontal correlates of aggression and impulsivity in psychiatric patients. Psychiatry Res. 2006; 147(2–3): 213–220.CrossRefGoogle ScholarPubMed
Boes, AD, Tranel, D, Anderson, SW, Nopoulos, P. Right anterior cingulate: a neuroanatomical correlate of aggression and defiance in boys. Behav. Neurosci. 2008; 122(3): 677–684.CrossRefGoogle Scholar
Ducharme, S, Hudziak, JJ, Botteron, KN, et al. Right anterior cingulate cortical thickness and bilateral striatal volume correlate with child behavior checklist aggressive behavior scores in healthy children. Biol .Psychiatry. 2011; 70(3): 283–290.CrossRefGoogle ScholarPubMed
Soloff, PH, Meltzer, CC, Greer, PJ, Constantine, D, Kelly, TM. A fenfluramine-activated FDG-PET study of borderline personality disorder. Biol. Psychiatry. 2000; 47(6): 540–547.CrossRefGoogle ScholarPubMed
New, AS, Hazlett, EA, Buchsbaum, MS, et al. Blunted prefrontal cortical 18fluorodeoxyglucose positron emission tomography response to meta-chlorophenylpiperazine in impulsive aggression. Arch. Gen. Psychiatry. 2002; 59(7): 621–629.CrossRefGoogle ScholarPubMed
Ghashghaei, HT, Hilgetag, CC, Barbas, H. Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. Neuroimage. 2007; 34(3): 905–923.CrossRefGoogle ScholarPubMed
Timbie, C, Barbas, H. Specialized pathways from the primate amygdala to posterior orbitofrontal cortex. J. Neurosci. 2014; 34(24): 8106–8118.CrossRefGoogle ScholarPubMed
Ghashghaei, HT, Barbas, H. Pathways for emotion: interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience. 2002; 115(4): 1261–1279.CrossRefGoogle ScholarPubMed
Roy, AK, Shehzad, Z, Margulies, DS, et al. Functional connectivity of the human amygdala using resting state fMRI. Neuroimage. 2009; 45(2): 614–626.CrossRefGoogle ScholarPubMed
Hoptman, MJ, D’Angelo, D, Catalano, D, et al. Amygdalofrontal functional disconnectivity and aggression in schizophrenia. Schizophr. Bull. 2010; 36(5): 1020–1028.CrossRefGoogle Scholar
Fulwiler, CE, King, JA, Zhang, N. Amygdala-orbitofrontal restingstate functional connectivity is associated with trait anger. Neuroreport. 2012; 23(10): 606–610.CrossRefGoogle Scholar
Beyer, F, Munte, TF, Wiechert, J, Heldmann, M, Kramer, UM. Trait aggressiveness is not related to structural connectivity between orbitofrontal cortex and amygdala. PLoS One. 2014; 9(6): e101105.CrossRefGoogle Scholar
New, AS, Hazlett, EA, Buchsbaum, MS, et al. Amygdala-prefrontal disconnection in borderline personality disorder. Neuropsychopharmacology. 2007; 32(7): 1629–1640.CrossRefGoogle ScholarPubMed
Hornboll, B, Macoveanu, J, Rowe, J, et al. Acute serotonin 2A receptor blocking alters the processing of fearful faces in the orbitofrontal cortex and amygdala. J. Psychopharmacol. 2013; 27(10): 903–914.CrossRefGoogle ScholarPubMed
Rosell, DR, Thompson, JL, Slifstein, M, et al. Increased serotonin 2A receptor availability in the orbitofrontal cortex of physically aggressive personality disordered patients. Biol. Psychiatry. 2010; 67(12): 1154–1162.CrossRefGoogle Scholar
Passamonti, L, Crockett, MJ, Apergis-Schoute, AM, et al. Effects of acute tryptophan depletion on prefrontal-amygdala connectivity while viewing facial signals of aggression. Biol. Psychiatry. 2012; 71(1): 36–43.CrossRefGoogle ScholarPubMed
Pezawas, L, Meyer-Lindenberg, A, Drabant, EM, et al. 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nat. Neurosci. 2005; 8(6): 828–834.CrossRefGoogle Scholar
Heinz, A, Braus, DF, Smolka, MN, et al. Amygdala-prefrontal coupling depends on a genetic variation of the serotonin transporter. Nat. Neurosci. 2005; 8(1): 20–21.CrossRefGoogle ScholarPubMed
Haber, SN. The primate basal ganglia: parallel and integrative networks. J. Chem. Neuroanat. 2003; 26(4): 317–330.CrossRefGoogle ScholarPubMed
Crockett, MJ, Apergis-Schoute, A, Herrmann, B, et al. Serotonin modulates striatal responses to fairness and retaliation in humans. J. Neurosci. 2013; 33(8): 3505–3513.CrossRefGoogle ScholarPubMed
van de Giessen, E, Rosell, DR, Thompson, JL, et al. Serotonin transporter availability in impulsive aggressive personality disordered patients: a PET study with [(11)C]DASB. J. Psychiatr. Res. 2014; 58: 147–154.CrossRefGoogle Scholar
Malick, JB, Barnett, A. The role of serotonergic pathways in isolation-induced aggression in mice. Pharmacol. Biochem. Behav. 1976; 5(1): 55–61.CrossRefGoogle ScholarPubMed
Brown, GL, Goodwin, FK, Ballenger, JC, Goyer, PF, Major, LF. Aggression in humans correlates with cerebrospinal fluid amine metabolites. Psychiatry Res. 1979; 1(2): 131–139.CrossRefGoogle ScholarPubMed
Brown, GL, Ebert, MH, Goyer, PF, et al. Aggression, suicide, and serotonin: relationships to CSF amine metabolites. Am. J. Psychiatry. 1982; 139(6): 741–746.Google ScholarPubMed
Brown, CS, Kent, TA, Bryant, SG, et al. Blood platelet uptake of serotonin in episodic aggression. Psychiatry Res. 1989; 27(1): 5–12.CrossRefGoogle ScholarPubMed
Stoff, DM, Pollock, L, Vitiello, B, Behar, D, Bridger, WH. Reduction of (3H)-imipramine binding sites on platelets of conduct-disordered children. Neuropsychopharmacology. 1987; 1(1): 55–62.CrossRefGoogle Scholar
Coccaro, EF, Kavoussi, RJ, Hauger, RL. Physiological responses to d-fenfluramine and ipsapirone challenge correlate with indices of aggression in males with personality disorder. Int. Clin. Psychopharmacol. 1995; 10(3): 177–179.CrossRefGoogle Scholar
Coccaro, EF, Berman, ME, Kavoussi, RJ, Hauger, RL. Relationship of prolactin response to d-fenfluramine to behavioral and questionnaire assessments of aggression in personality-disordered men. Biol. Psychiatry. 1996; 40(3): 157–164.CrossRefGoogle ScholarPubMed
Coccaro, EF, Kavoussi, RJ, Cooper, TB, Hauger, RL. Central serotonin activity and aggression: inverse relationship with prolactin response to d-fenfluramine, but not CSF 5-HIAA concentration, in human subjects. Am. J. Psychiatry. 1997; 154(10): 1430–1435.Google Scholar
Coccaro, EF, Astill, JL, Herbert, JL, Schut, AG. Fluoxetine treatment of impulsive aggression in DSM-III-R personality disorder patients. J. Clin. Psychopharmacol. 1990; 10(5): 373–375.CrossRefGoogle Scholar
Coccaro, EF, Kavoussi, RJ. Fluoxetine and impulsive aggressive behavior in personality-disordered subjects. Arch. Gen. Psychiatry. 1997; 54(12): 1081–1088.CrossRefGoogle Scholar
Kruesi, MJ, Rapoport, JL, Hamburger, S, et al. Cerebrospinal fluid monoamine metabolites, aggression, and impulsivity in disruptive behavior disorders of children and adolescents. Arch. Gen. Psychiatry. 1990; 47(5): 419–426.CrossRefGoogle Scholar
Coccaro, EF, Lee, R. Cerebrospinal fluid 5-hydroxyindolacetic acid and homovanillic acid: reciprocal relationships with impulsive aggression in human subjects. J. Neural. Transm. 2010; 117(2): 241–248.CrossRefGoogle Scholar
Coccaro, EF, Kavoussi, RJ, Hauger, RL, Cooper, TB, Ferris, CF. Cerebrospinal fluid vasopressin levels: correlates with aggression and serotonin function in personality-disordered subjects. Arch. Gen. Psychiatry. 1998; 55(8): 708–714.CrossRefGoogle ScholarPubMed
Goveas, JS, Csernansky, JG, Coccaro, EF. Platelet serotonin content correlates inversely with life history of aggression in personality-disordered subjects. Psychiatry Res. 2004; 126(1): 23–32.CrossRefGoogle ScholarPubMed
Coccaro, EF, Kavoussi, RJ, Sheline, YI, Berman, ME, Csernansky, JG. Impulsive aggression in personality disorder correlates with platelet 5-HT2A receptor binding. Neuropsychopharmacology. 1997; 16(3): 211–216.CrossRefGoogle ScholarPubMed
Marseille, R, Lee, R, Coccaro, EF. Inter-relationship between different platelet measures of 5-HT and their relationship to aggression in human subjects. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2012; 36(2): 277–281.CrossRefGoogle ScholarPubMed
Modai, I, Gibel, A, Rauchverger, B, et al. Paroxetine binding in aggressive schizophrenic patients. Psychiatry Res. 2000; 94(1): 77–81.CrossRefGoogle ScholarPubMed
Sarne, Y, Mandel, J, Goncalves, MH, et al. Imipramine binding to blood platelets and aggressive behavior in offenders, schizophrenics and normal volunteers. Neuropsychobiology. 1995; 31(3): 120–124.CrossRefGoogle ScholarPubMed
Coccaro, EF, Kavoussi, RJ, Hauger, RL. Serotonin function and antiaggressive response to fluoxetine: a pilot study. Biol. Psychiatry. 1997; 42(7): 546–552.CrossRefGoogle ScholarPubMed
Carpenter, LL, Anderson, GM, Pelton, GH, et al. Tryptophan depletion during continuous CSF sampling in healthy human subjects. Neuropsychopharmacology. 1998; 19(1): 26–35.CrossRefGoogle Scholar
Moreno, FA, McGavin, C, Malan, TP, et al. Tryptophan depletion selectively reduces CSF 5-HT metabolites in healthy young men: results from single lumbar puncture sampling technique. Int. J. Neuropsychopharmacol. 2000; 3(4): 277–283.CrossRefGoogle ScholarPubMed
Williams, WA, Shoaf, SE, Hommer, D, Rawlings, R, Linnoila, M. Effects of acute tryptophan depletion on plasma and cerebrospinal fluid tryptophan and 5-hydroxyindoleacetic acid in normal volunteers. J. Neurochem. 1999; 72(4): 1641–1647.CrossRefGoogle ScholarPubMed
Bjork, JM, Dougherty, DM, Moeller, FG, Cherek, DR, Swann, AC. The effects of tryptophan depletion and loading on laboratory aggression in men: time course and a food-restricted control. Psychopharmacology (Berl). 1999; 142(1): 24–30.CrossRefGoogle Scholar
Bjork, JM, Dougherty, DM, Moeller, FG, Swann, AC. Differential behavioral effects of plasma tryptophan depletion and loading in aggressive and nonaggressive men. Neuropsychopharmacology. 2000; 22(4): 357–369.CrossRefGoogle ScholarPubMed
Kramer, UM, Riba, J, Richter, S, Munte, TF. An fMRI study on the role of serotonin in reactive aggression. PLoS One. 2011; 6(11): e27668.CrossRefGoogle Scholar
Kotting, WF, Bubenzer, S, Helmbold, K, et al. Effects of tryptophan depletion on reactive aggression and aggressive decision-making in young people with ADHD. Acta Psychiatr. Scand. 2013; 128(2): 114–123.CrossRefGoogle ScholarPubMed
Stadler, C, Zepf, FD, Demisch, L, et al. Influence of rapid tryptophan depletion on laboratory-provoked aggression in children with ADHD. Neuropsychobiology. 2007; 56(2–3): 104–110.CrossRefGoogle ScholarPubMed
Zimmermann, M, Grabemann, M, Mette, C, et al. The effects of acute tryptophan depletion on reactive aggression in adults with attention-deficit/hyperactivity disorder (ADHD) and healthy controls. PLoS One. 2012; 7(3): e32023.CrossRefGoogle ScholarPubMed
Fanning, JR, Berman, ME, Guillot, CR, Marsic, A, McCloskey, MS. Serotonin (5-HT) augmentation reduces provoked aggression associated with primary psychopathy traits. J. Pers. Disord. 2014; 28(3): 449–461.CrossRefGoogle ScholarPubMed
Berman, ME, McCloskey, MS, Fanning, JR, Schumacher, JA, Coccaro, EF. Serotonin augmentation reduces response to attack in aggressive individuals. Psychol. Sci. 2009; 20(6): 714–720.CrossRefGoogle ScholarPubMed
Rubia, K, Lee, F, Cleare, AJ, et al. Tryptophan depletion reduces right inferior prefrontal activation during response inhibition in fast, event-related fMRI. Psychopharmacology (Berl). 2005; 179(4): 791–803.CrossRefGoogle ScholarPubMed
Lee, RJ, Gill, A, Chen, B, McCloskey, M, Coccaro, EF. Modulation of central serotonin affects emotional information processing in impulsive aggressive personality disorder. J. Clin. Psychopharmacol. 2012; 32(3): 329–335.CrossRefGoogle ScholarPubMed
Grady, CL, Siebner, HR, Hornboll, B, et al. Acute pharmacologically induced shifts in serotonin availability abolish emotion-selective responses to negative face emotions in distinct brain networks. Eur. Neuropsychopharmacol. 2013; 23(5): 368–378.CrossRefGoogle ScholarPubMed
Zhang, X, Beaulieu, JM, Sotnikova, TD, Gainetdinov, RR, Caron, MG. Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science. 2004; 305(5681): 217.CrossRefGoogle Scholar
Osipova, DV, Kulikov, AV, Popova, NK. C1473G polymorphism in mouse tph2 gene is linked to tryptophan hydroxylase-2 activity in the brain, intermale aggression, and depressive-like behavior in the forced swim test. J. Neurosci. Res. 2009; 87(5): 1168–1174.CrossRefGoogle ScholarPubMed
Takahashi, A, Shiroishi, T, Koide, T. Genetic mapping of escalated aggression in wild-derived mouse strain MSM/Ms: association with serotonin-related genes. Front. Neurosci. 2014; 8: 156.CrossRefGoogle ScholarPubMed
Mosienko, V, Bert, B, Beis, D, et al. Exaggerated aggression and decreased anxiety in mice deficient in brain serotonin. Transl. Psychiatry. 2012; 2: e122.CrossRefGoogle ScholarPubMed
Chen, GL, Novak, MA, Meyer, JS, et al. The effect of rearing experience and TPH2 genotype on HPA axis function and aggression in rhesus monkeys: a retrospective analysis. Horm. Behav. 2010; 57(2): 184–191.CrossRefGoogle ScholarPubMed
Yang, J, Lee, MS, Lee, SH, et al. Association between tryptophan hydroxylase 2 polymorphism and anger-related personality traits among young Korean women. Neuropsychobiology. 2010; 62(3): 158–163.CrossRefGoogle Scholar
Yoon, HK, Lee, HJ, Kim, L, Lee, MS, Ham, BJ. Impact of tryptophan hydroxylase 2 G-703T polymorphism on anger-related personality traits and orbitofrontal cortex. Behav. Brain Res. 2012; 231(1): 105–110.CrossRefGoogle ScholarPubMed
Gutknecht, L, Jacob, C, Strobel, A, et al. Tryptophan hydroxylase-2 gene variation influences personality traits and disorders related to emotional dysregulation. Int. J. Neuropsychopharmacol. 2007; 10(3): 309–320.Google ScholarPubMed
Inoue, H, Yamasue, H, Tochigi, M, et al. Effect of tryptophan hydroxylase-2 gene variants on amygdalar and hippocampal volumes. Brain Res. 2010; 1331: 51–57.CrossRefGoogle ScholarPubMed
Perez-Rodriguez, MM, Weinstein, S, New, AS, et al. Tryptophan-hydroxylase 2 haplotype association with borderline personality disorder and aggression in a sample of patients with personality disorders and healthy controls. J. Psychiatr. Res. 2010; 44(15): 1075–1081.CrossRefGoogle Scholar
Brown, SM, Peet, E, Manuck, SB, et al. A regulatory variant of the human tryptophan hydroxylase-2 gene biases amygdala reactivity. Mol. Psychiatry. 2005; 10(9): 884–888.CrossRefGoogle Scholar
Booij, L, Turecki, G, Leyton, M, et al. Tryptophan hydroxylase(2) gene polymorphisms predict brain serotonin synthesis in the orbitofrontal cortex in humans. Mol. Psychiatry. 2012; 17(8): 809–817.CrossRefGoogle ScholarPubMed
Heiming, RS, Monning, A, Jansen, F, et al. To attack, or not to attack? The role of serotonin transporter genotype in the display of maternal aggression. Behav. Brain Res. 2013; 242: 135–141.CrossRefGoogle ScholarPubMed
Holmes, A, Murphy, DL, Crawley, JN. Reduced aggression in mice lacking the serotonin transporter. Psychopharmacology (Berl.). 2002; 161(2): 160–167.CrossRefGoogle ScholarPubMed
Yu, Q, Teixeira, CM, Mahadevia, D, et al. Dopamine and serotonin signaling during two sensitive developmental periods differentially impact adult aggressive and affective behaviors in mice. Mol. Psychiatry. 2014; 19(6): 688–698.CrossRefGoogle ScholarPubMed
Kiryanova, V, Dyck, RH. Increased aggression, improved spatial memory, and reduced anxiety-like behaviour in adult male mice exposed to fluoxetine early in life. Dev. Neurosci. 2014; 36(5): 396–408.CrossRefGoogle ScholarPubMed
Heils, A, Teufel, A, Petri, S, et al. Allelic variation of human serotonin transporter gene expression. J. Neurochem. 1996; 66(6): 2621–2624.CrossRefGoogle ScholarPubMed
May, ME, Lightfoot, DA, Srour, A, Kowalchuk, RK, Kennedy, CH. Association between serotonin transporter polymorphisms and problem behavior in adult males with intellectual disabilities. Brain Res. 2010; 1357: 97–103.CrossRefGoogle ScholarPubMed
Hallikainen, T, Saito, T, Lachman, HM, et al. Association between low activity serotonin transporter promoter genotype and early onset alcoholism with habitual impulsive violent behavior. Mol. Psychiatry. 1999; 4(4): 385–388.CrossRefGoogle ScholarPubMed
Haberstick, BC, Smolen, A, Hewitt, JK. Family-based association test of the 5HTTLPR and aggressive behavior in a general population sample of children. Biol. Psychiatry. 2006; 59(9): 836–843.CrossRefGoogle Scholar
Beitchman, JH, Baldassarra, L, Mik, H, et al. Serotonin transporter polymorphisms and persistent, pervasive childhood aggression. Am. J. Psychiatry. 2006; 163(6): 1103–1105.CrossRefGoogle ScholarPubMed
Verona, E, Joiner, TE, Johnson, F, Bender, TW. Gender specific gene-environment interactions on laboratory-assessed aggression. Biol. Psychol. 2006; 71(1): 33–41.CrossRefGoogle ScholarPubMed
Conway, CC, Keenan-Miller, D, Hammen, C, et al. Coaction of stress and serotonin transporter genotype in predicting aggression at the transition to adulthood. J. Clin. Child Adolesc. Psychol. 2012; 41(1): 53–63.CrossRefGoogle ScholarPubMed
Reif, A, Rosler, M, Freitag, CM, et al. Nature and nurture predispose to violent behavior: serotonergic genes and adverse childhood environment. Neuropsychopharmacology. 2007; 32(11): 2375–2383.CrossRefGoogle ScholarPubMed
Aluja, A, Garcia, LF, Blanch, A, De, LD, Fibla, J. Impulsive-disinhibited personality and serotonin transporter gene polymorphisms: association study in an inmate’s sample. J. Psychiatr. Res. 2009; 43(10): 906–914.CrossRefGoogle Scholar
Payer, DE, Nurmi, EL, Wilson, SA, McCracken, JT, London, ED. Effects of methamphetamine abuse and serotonin transporter gene variants on aggression and emotion-processing neurocircuitry. Transl. Psychiatry. 2012; 2: e80.CrossRefGoogle ScholarPubMed
Philibert, R, Madan, A, Andersen, A, et al. Serotonin transporter mRNA levels are associated with the methylation of an upstream CpG island. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2007; 144B(1): 101–105.CrossRefGoogle ScholarPubMed
Koenen, KC, Uddin, M, Chang, SC, et al. SLC6A4 methylation modifies the effect of the number of traumatic events on risk for posttraumatic stress disorder. Depress. Anxiety. 2011; 28(8): 639–647.CrossRefGoogle Scholar
Zhao, J, Goldberg, J, Bremner, JD, Vaccarino, V. Association between promoter methylation of serotonin transporter gene and depressive symptoms: a monozygotic twin study. Psychosom. Med. 2013; 75(6): 523–529.CrossRefGoogle ScholarPubMed
Dannlowski, U, Kugel, H, Redlich, R, et al. Serotonin transporter gene methylation is associated with hippocampal gray matter volume. Hum. Brain Mapp. 2014; 35(11): 5356–5367.CrossRefGoogle Scholar
Nikolova, YS, Koenen, KC, Galea, S, et al. Beyond genotype: serotonin transporter epigenetic modification predicts human brain function. Nat. Neurosci. 2014; 17(9): 1153–1155.CrossRefGoogle ScholarPubMed
Wang, D, Szyf, M, Benkelfat, C, et al. Peripheral SLC6A4 DNA methylation is associated with in vivo measures of human brain serotonin synthesis and childhood physical aggression. PLoS One. 2012; 7(6): e39501.CrossRefGoogle ScholarPubMed
Frankle, WG, Lombardo, I, New, AS, et al. Brain serotonin transporter distribution in subjects with impulsive aggressivity: a positron emission study with [11C]McN 5652. Am. J. Psychiatry. 2005; 162(5): 915–923.CrossRefGoogle ScholarPubMed
Bortolato, M, Chen, K, Shih, JC. Monoamine oxidase inactivation: from pathophysiology to therapeutics. Adv. Drug Deliv. Rev. 2008; 60(13–14): 1527–1533.CrossRefGoogle ScholarPubMed
Brunner, HG, Nelen, M, Breakefield, XO, Ropers, HH, van Oost, BA. Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science. 1993; 262(5133): 578–580.CrossRefGoogle ScholarPubMed
Sabol, SZ, Hu, S, Hamer, D. A functional polymorphism in the monoamine oxidase A gene promoter. Hum. Genet. 1998; 103(3): 273–279.CrossRefGoogle ScholarPubMed
Kuepper, Y, Grant, P, Wielpuetz, C, Hennig, J. MAOA-uVNTR genotype predicts interindividual differences in experimental aggressiveness as a function of the degree of provocation. Behav. Brain Res. 2013; 247: 73–78.CrossRefGoogle ScholarPubMed
Manuck, SB, Flory, JD, Ferrell, RE, Mann, JJ, Muldoon, MF. A regulatory polymorphism of the monoamine oxidase-A gene may be associated with variability in aggression, impulsivity, and central nervous system serotonergic responsivity. Psychiatry Res. 2000; 95(1): 9–23.CrossRefGoogle ScholarPubMed
Stetler, DA, Davis, C, Leavitt, K, et al. Association of low-activity MAOA allelic variants with violent crime in incarcerated offenders. J. Psychiatr. Res. 2014; 58: 69–75.CrossRefGoogle ScholarPubMed
Byrd, AL, Manuck, SB. MAOA, childhood maltreatment, and antisocial behavior: meta-analysis of a gene-environment interaction. Biol. Psychiatry. 2014; 75(1): 9–17.CrossRefGoogle ScholarPubMed
Karere, GM, Kinnally, EL, Sanchez, JN, et al. What is an “adverse” environment? Interactions of rearing experiences and MAOA genotype in rhesus monkeys. Biol. Psychiatry. 2009; 65(9): 770–777.CrossRefGoogle Scholar
Newman, TK, Syagailo, YV, Barr, CS, et al. Monoamine oxidase A gene promoter variation and rearing experience influences aggressive behavior in rhesus monkeys. Biol. Psychiatry. 2005; 57(2): 167–172.CrossRefGoogle ScholarPubMed
Alia-Klein, N, Goldstein, RZ, Kriplani, A, et al. Brain monoamine oxidase A activity predicts trait aggression. J. Neurosci. 2008; 28(19): 5099–5104.CrossRefGoogle Scholar
Cases, O, Seif, I, Grimsby, J, et al. Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science. 1995; 268(5218): 1763–1766.CrossRefGoogle ScholarPubMed
Scott, AL, Bortolato, M, Chen, K, Shih, JC. Novel monoamine oxidase A knock out mice with human-like spontaneous mutation. Neuroreport. 2008; 19(7): 739–743.CrossRefGoogle Scholar
Cases, O, Vitalis, T, Seif, I, et al. Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient mice: role of a serotonin excess during the critical period. Neuron. 1996; 16(2): 297–307.CrossRefGoogle ScholarPubMed
Bortolato, M, Godar, SC, Tambaro, S, et al. Early postnatal inhibition of serotonin synthesis results in long-term reductions of perseverative behaviors, but not aggression, in MAO A-deficient mice. Neuropharmacology. 2013; 75: 223–232.CrossRefGoogle Scholar
Garcia-Garcia, AL, Newman-Tancredi, A, Leonardo, ED. 5-HT(1A) [corrected] receptors in mood and anxiety: recent insights into autoreceptor versus heteroreceptor function. Psychopharmacology (Berl.). 2014; 231(4): 623–636.CrossRefGoogle ScholarPubMed
Polter, AM, Li, X. 5-HT1A receptor-regulated signal transduction pathways in brain. Cell Signal. 2010; 22(10): 1406–1412.CrossRefGoogle ScholarPubMed
Miczek, KA, Hussain, S, Faccidomo, S. Alcohol-heightened aggression in mice: attenuation by 5-HT1A receptor agonists. Psychopharmacology (Berl.). 1998; 139(1–2): 160–168.CrossRefGoogle ScholarPubMed
Pruus, K, Skrebuhhova-Malmros, T, Rudissaar, R, Matto, V, Allikmets, L. 5-HT1A receptor agonists buspirone and gepirone attenuate apomorphine-induced aggressive behaviour in adult male Wistar rats. J. Physiol. Pharmacol. 2000; 51(4 Pt 2): 833–846.Google ScholarPubMed
Centenaro, LA, Vieira, K, Zimmermann, N, et al. Social instigation and aggressive behavior in mice: role of 5-HT1A and 5-HT1B receptors in the prefrontal cortex. Psychopharmacology (Berl.). 2008; 201(2): 237–248.CrossRefGoogle ScholarPubMed
da Veiga, CP, Miczek, KA, Lucion, AB, de Almeida, RM. Social instigation and aggression in postpartum female rats: role of 5-Ht1A and 5-Ht1B receptors in the dorsal raphe nucleus and prefrontal cortex. Psychopharmacology (Berl.). 2011; 213(2–3): 475–487.CrossRefGoogle ScholarPubMed
de Boer, SF, Lesourd, M, Mocaer, E, Koolhaas, JM. Somatodendritic 5-HT(1A) autoreceptors mediate the anti-aggressive actions of 5-HT(1A) receptor agonists in rats: an ethopharmacological study with S-15535, alnespirone, and WAY-100635. Neuropsychopharmacology. 2000; 23(1): 20–33.CrossRefGoogle ScholarPubMed
Stein, DJ, Miczek, KA, Lucion, AB, de Almeida, RM. Aggression-reducing effects of F15599, a novel selective 5-HT1A receptor agonist, after microinjection into the ventral orbital prefrontal cortex, but not in infralimbic cortex in male mice. Psychopharmacology (Berl.). 2013; 230(3): 375–387.CrossRefGoogle Scholar
Naumenko, VS, Kozhemyakina, RV, Plyusnina, IF, Kulikov, AV, Popova, NK. Serotonin 5-HT1A receptor in infancy-onset aggression: comparison with genetically defined aggression in adult rats. Behav. Brain Res. 2013; 243: 97–101.CrossRefGoogle Scholar
Popova, NK, Naumenko, VS, Plyusnina, IZ, Kulikov, AV. Reduction in 5-HT1A receptor density, 5-HT1A mRNA expression, and functional correlates for 5-HT1A receptors in genetically defined aggressive rats. J. Neurosci. Res. 2005; 80(2): 286–292.CrossRefGoogle ScholarPubMed
Popova, NK, Naumenko, VS, Plyusnina, IZ. Involvement of brain serotonin 5-HT1A receptors in genetic predisposition to aggressive behavior. Neurosci. Behav. Physiol. 2007; 37(6): 631–635.CrossRefGoogle ScholarPubMed
van der Vegt, BJ, de Boer, SF, Buwalda, B, et al. Enhanced sensitivity of postsynaptic serotonin-1A receptors in rats and mice with high trait aggression. Physiol. Behav. 2001; 74(1–2): 205–211.CrossRefGoogle ScholarPubMed
Audero, E, Mlinar, B, Baccini, G, et al. Suppression of serotonin neuron firing increases aggression in mice. J. Neurosci. 2013; 33(20): 8678–8688.CrossRefGoogle Scholar
Almeida, M, Lee, R, Coccaro, EF. Cortisol responses to ipsapirone challenge correlate with aggression, while basal cortisol levels correlate with impulsivity, in personality disorder and healthy volunteer subjects. J. Psychiatr. Res. 2010; 44(14): 874–880.CrossRefGoogle Scholar
Coccaro, EF, Gabriel, S, Siever, LJ. Buspirone challenge: preliminary evidence for a role for central 5-HT1a receptor function in impulsive aggressive behavior in humans. Psychopharmacol. Bull. 1990; 26(3): 393–405.Google Scholar
Benko, A, Lazary, J, Molnar, E, et al. Significant association between the C(-1019)G functional polymorphism of the HTR1A gene and impulsivity. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2010; 153B(2): 592–599.CrossRefGoogle Scholar
Joyce, PR, Stephenson, J, Kennedy, M, Mulder, RT, McHugh, PC. The presence of both serotonin 1A receptor (HTR1A) and dopamine transporter (DAT1) gene variants increase the risk of borderline personality disorder. Front. Genet. 2014; 4: 313.CrossRefGoogle ScholarPubMed
Witte, AV, Floel, A, Stein, P, et al. Aggression is related to frontal serotonin-1A receptor distribution as revealed by PET in healthy subjects. Hum. Brain Mapp. 2009; 30(8): 2558–2570.CrossRefGoogle ScholarPubMed
Parsey, RV, Oquendo, MA, Simpson, NR, et al. Effects of sex, age, and aggressive traits in man on brain serotonin 5-HT1A receptor binding potential measured by PET using [C-11]WAY-100635. Brain Res. 2002; 954(2): 173–182.CrossRefGoogle Scholar
Sari, Y. Serotonin1B receptors: from protein to physiological function and behavior. Neurosci. Biobehav. Rev. 2004; 28(6): 565–582.CrossRefGoogle ScholarPubMed
Bannai, M, Fish, EW, Faccidomo, S, Miczek, KA. Anti-aggressive effects of agonists at 5-HT1B receptors in the dorsal raphe nucleus of mice. Psychopharmacology (Berl.). 2007; 193(2): 295–304.CrossRefGoogle ScholarPubMed
de Almeida, RM, Miczek, KA. Aggression escalated by social instigation or by discontinuation of reinforcement (“frustration”) in mice: inhibition by anpirtoline: a 5-HT1B receptor agonist. Neuropsychopharmacology. 2002; 27(2): 171–181.CrossRefGoogle ScholarPubMed
de Almeida, RM, Rosa, MM, Santos, DM, et al. 5-HT(1B) receptors, ventral orbitofrontal cortex, and aggressive behavior in mice. Psychopharmacology (Berl.). 2006; 185(4): 441–450.CrossRefGoogle ScholarPubMed
Faccidomo, S, Bannai, M, Miczek, KA. Escalated aggression after alcohol drinking in male mice: dorsal raphe and prefrontal cortex serotonin and 5-HT(1B) receptors. Neuropsychopharmacology. 2008; 33(12): 2888–2899.CrossRefGoogle ScholarPubMed
Faccidomo, S, Quadros, IM, Takahashi, A, Fish, EW, Miczek, KA. Infralimbic and dorsal raphe microinjection of the 5-HT(1B) receptor agonist CP-93,129: attenuation of aggressive behavior in CFW male mice. Psychopharmacology (Berl.). 2012; 222(1): 117–128.CrossRefGoogle Scholar
Fish, EW, Faccidomo, S, Miczek, KA. Aggression heightened by alcohol or social instigation in mice: reduction by the 5-HT(1B) receptor agonist CP-94,253. Psychopharmacology (Berl.). 1999; 146(4): 391–399.CrossRefGoogle Scholar
Fish, EW, McKenzie-Quirk, SD, Bannai, M, Miczek, KA. 5-HT(1B) receptor inhibition of alcohol-heightened aggression in mice: comparison to drinking and running. Psychopharmacology (Berl.). 2008; 197(1): 145–156.CrossRefGoogle ScholarPubMed
Veiga, CP, Miczek, KA, Lucion, AB, Almeida, RM. Effect of 5-HT1B receptor agonists injected into the prefrontal cortex on maternal aggression in rats. Braz. J. Med. Biol. Res. 2007; 40(6): 825–830.CrossRefGoogle Scholar
Ramboz, S, Saudou, F, Amara, DA, et al. 5-HT1B receptor knock out—behavioral consequences. Behav. Brain Res. 1996; 73(1–2): 305–312.CrossRefGoogle ScholarPubMed
Bouwknecht, JA, Hijzen, TH, van der Gugten, J, et al. Absence of 5-HT(1B) receptors is associated with impaired impulse control in male 5-HT(1B) knockout mice. Biol. Psychiatry. 2001; 49(7): 557–568.CrossRefGoogle ScholarPubMed
Conner, TS, Jensen, KP, Tennen, H, et al. Functional polymorphisms in the serotonin 1B receptor gene (HTR1B) predict self-reported anger and hostility among young men. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2010; 153B(1): 67–78.Google ScholarPubMed
Hakulinen, C, Jokela, M, Hintsanen, M, et al. Serotonin receptor 1B genotype and hostility, anger and aggressive behavior through the lifespan: the Young Finns study. J. Behav. Med. 2013; 36(6): 583–590.CrossRefGoogle ScholarPubMed
Jensen, KP, Covault, J, Conner, TS, et al. A common polymorphism in serotonin receptor 1B mRNA moderates regulation by miR-96 and associates with aggressive human behaviors. Mol. Psychiatry. 2009; 14(4): 381–389.CrossRefGoogle ScholarPubMed
Zouk, H, McGirr, A, Lebel, V, et al. The effect of genetic variation of the serotonin 1B receptor gene on impulsive aggressive behavior and suicide. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2007; 144B(8): 996–1002.CrossRefGoogle ScholarPubMed
Potenza, MN, Walderhaug, E, Henry, S, et al. Serotonin 1B receptor imaging in pathological gambling. World J. Biol. Psychiatry. 2013; 14(2): 139–145.CrossRefGoogle ScholarPubMed
Hu, J, Henry, S, Gallezot, JD, et al. Serotonin 1B receptor imaging in alcohol dependence. Biol. Psychiatry. 2010; 67(9): 800–803.CrossRefGoogle ScholarPubMed
Murrough, JW, Henry, S, Hu, J, et al. Reduced ventral striatal/ ventral pallidal serotonin1B receptor binding potential in major depressive disorder. Psychopharmacology (Berl.). 2011; 213(2–3): 547–553.CrossRefGoogle ScholarPubMed
Higgins, GA, Enderlin, M, Haman, M, Fletcher, PJ. The 5-HT2A receptor antagonist M100,907 attenuates motor and ‘impulsive-type’ behaviours produced by NMDA receptor antagonism. Psychopharmacology (Berl.). 2003; 170(3): 309–319.CrossRefGoogle ScholarPubMed
Sakaue, M, Ago, Y, Sowa, C, et al. Modulation by 5-hT2A receptors of aggressive behavior in isolated mice. Jpn J. Pharmacol. 2002; 89(1): 89–92.CrossRefGoogle ScholarPubMed
Winstanley, CA, Theobald, DE, Dalley, JW, Glennon, JC, Robbins, TW. 5-HT2A and 5-HT2C receptor antagonists have opposing effects on a measure of impulsivity: interactions with global 5-HT depletion. Psychopharmacology (Berl.). 2004; 176(3–4): 376–385.CrossRefGoogle ScholarPubMed
Giegling, I, Hartmann, AM, Moller, HJ, Rujescu, D. Anger- and aggression-related traits are associated with polymorphisms in the 5-HT-2A gene. J. Affect. Disord. 2006; 96(1–2): 75–81.CrossRefGoogle ScholarPubMed
Bruce, KR, Steiger, H, Joober, R, et al. Association of the promoter polymorphism -1438G/A of the 5-HT2A receptor gene with behavioral impulsiveness and serotonin function in women with bulimia nervosa. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2005; 137B(1): 40–44.CrossRefGoogle ScholarPubMed
Jakubczyk, A, Wrzosek, M, Lukaszkiewicz, J, et al. The CC genotype in HTR2A T102C polymorphism is associated with behavioral impulsivity in alcohol-dependent patients. J. Psychiatr. Res. 2012; 46(1): 44–49.CrossRefGoogle Scholar
Jakubczyk, A, Klimkiewicz, A, Kopera, M, et al. The CC genotype in the T102C HTR2A polymorphism predicts relapse in individuals after alcohol treatment. J. Psychiatr. Res. 2013; 47(4): 527–533.CrossRefGoogle Scholar
Preuss, UW, Koller, G, Bondy, B, Bahlmann, M, Soyka, M. Impulsive traits and 5-HT2A receptor promoter polymorphism in alcohol dependents: possible association but no influence of personality disorders. Neuropsychobiology. 2001; 43(3): 186–191.CrossRefGoogle Scholar
Tsuang, HC, Chen, WJ, Lin, SH, et al. Impaired impulse control is associated with a 5-HT2A receptor polymorphism in schizophrenia. Psychiatry Res. 2013; 208(2): 105–110.CrossRefGoogle Scholar
Bjork, JM, Moeller, FG, Dougherty, DM, et al. Serotonin 2a receptor T102C polymorphism and impaired impulse control. Am. J. Med. Genet. 2002; 114(3): 336–339.CrossRefGoogle ScholarPubMed
Oquendo, MA, Russo, SA, Underwood, MD, et al. Higher postmortem prefrontal 5-HT2A receptor binding correlates with lifetime aggression in suicide. Biol. Psychiatry. 2006; 59(3): 235–243.CrossRefGoogle ScholarPubMed
Dwivedi, Y, Mondal, AC, Payappagoudar, GV, Rizavi, HS. Differential regulation of serotonin (5HT)2A receptor mRNA and protein levels after single and repeated stress in rat brain: role in learned helplessness behavior. Neuropharmacology. 2005; 48(2): 204–214.CrossRefGoogle ScholarPubMed
Soloff, PH, Chiappetta, L, Mason, NS, Becker, C, Price, JC. Effects of serotonin-2A receptor binding and gender on personality traits and suicidal behavior in borderline personality disorder. Psychiatry Res. 2014; 222(3): 140–148.CrossRefGoogle ScholarPubMed
Meyer, JH, Wilson, AA, Rusjan, P, et al. Serotonin2A receptor binding potential in people with aggressive and violent behaviour. J. Psychiatry Neurosci. 2008; 33(6): 499–508.Google Scholar
Rylands, AJ, Hinz, R, Jones, M, et al. Pre- and postsynaptic serotonergic differences in males with extreme levels of impulsive aggression without callous unemotional traits: a positron emission tomography study using (11)C-DASB and (11)C-MDL100907. Biol. Psychiatry. 2012; 72(12): 1004–1011.CrossRefGoogle ScholarPubMed
Chameau, P, van Hooft, JA. Serotonin 5-HT(3) receptors in the central nervous system. Cell Tissue Res. 2006; 326(2): 573–581.CrossRefGoogle ScholarPubMed
De Deurwaerdère, P, Moison, D, Navailles, S, Porras, G, Spampinato, U. Regionally and functionally distinct serotonin3 receptors control in vivo dopamine outflow in the rat nucleus accumbens. J. Neurochem. 2005; 94(1): 140–149.CrossRefGoogle Scholar
Cervantes, MC, Delville, Y. Serotonin 5-HT1A and 5-HT3 receptors in an impulsive-aggressive phenotype. Behav. Neurosci. 2009; 123(3): 589–598.CrossRefGoogle Scholar
Ricci, LA, Grimes, JM, Melloni, RH Jr. Serotonin type 3 receptors modulate the aggression-stimulating effects of adolescent cocaine exposure in Syrian hamsters (Mesocricetus auratus). Behav. Neurosci. 2004; 118(5): 1097–1110.CrossRefGoogle Scholar
Ricci, LA, Knyshevski, I, Melloni, RH Jr. Serotonin type 3 receptors stimulate offensive aggression in Syrian hamsters. Behav. Brain Res. 2005; 156(1): 19–29.CrossRefGoogle Scholar
Rudissaar, R, Pruus, K, Skrebuhhova, T, Allikmets, L, Matto, V. Modulatory role of 5-HT3 receptors in mediation of apomorphine-induced aggressive behaviour in male rats. Behav. Brain Res. 1999; 106(1–2): 91–96.CrossRefGoogle ScholarPubMed
McKenzie-Quirk, SD, Girasa, KA, Allan, AM, Miczek, KA. 5-HT(3) receptors, alcohol and aggressive behavior in mice. Behav. Pharmacol. 2005; 16(3): 163–169.CrossRefGoogle ScholarPubMed
Sellers, EM, Toneatto, T, Romach, MK, et al. Clinical efficacy of the 5-HT3 antagonist ondansetron in alcohol abuse and dependence. Alcohol Clin. Exp. Res. 1994; 18(4): 879–885.CrossRefGoogle ScholarPubMed
Johnson, BA, Ait-Daoud, N, Ma, JZ, Wang, Y. Ondansetron reduces mood disturbance among biologically predisposed, alcohol-dependent individuals. Alcohol Clin. Exp. Res. 2003; 27(11): 1773–1779.CrossRefGoogle ScholarPubMed
Myrick, H, Anton, RF, Li, X, et al. Effect of naltrexone and ondansetron on alcohol cue-induced activation of the ventral striatum in alcohol-dependent people. Arch. Gen. Psychiatry. 2008; 65(4): 466–475.CrossRefGoogle Scholar
Ducci, F, Enoch, MA, Yuan, Q, et al. HTR3B is associated with alcoholism with antisocial behavior and alpha EEG power—an intermediate phenotype for alcoholism and co-morbid behaviors. Alcohol. 2009; 43(1): 73–84.CrossRefGoogle Scholar
Melke, J, Westberg, L, Nilsson, S, et al. A polymorphism in the serotonin receptor 3A (HTR3A) gene and its association with harm avoidance in women. Arch. Gen. Psychiatry. 2003; 60(10): 1017–1023.CrossRefGoogle ScholarPubMed
Gatt, JM, Williams, LM, Schofield, PR, et al. Impact of the HTR3A gene with early life trauma on emotional brain networks and depressed mood. Depress. Anxiety. 2010; 27(8): 752–759.CrossRefGoogle ScholarPubMed
Iidaka, T, Ozaki, N, Matsumoto, A, et al. A variant C178T in the regulatory region of the serotonin receptor gene HTR3A modulates neural activation in the human amygdala. J. Neurosci. 2005; 25(27): 6460–6466.CrossRefGoogle ScholarPubMed
Schlüter, T, Winz, O, Henkel, K, et al. The impact of dopamine on aggression: an [18F]-FDOPA PET Study in healthy males. J. Neurosci. 2013; 33(43): 16, 889–16, 896.CrossRefGoogle Scholar
Buckholtz, JW, Treadway, MT, Cowan, RL, et al. Mesolimbic dopamine reward system hypersensitivity in individuals with psychopathic traits. Nat. Neurosci. 2010; 13(4): 419–421.CrossRefGoogle Scholar
Wagner, S, Baskaya, O, Anicker, NJ, et al. The catechol o-methyltransferase (COMT) val(158)met polymorphism modulates the association of serious life events (SLE) and impulsive aggression in female patients with borderline personality disorder (BPD). Acta Psychiatr. Scand. 2010; 122(2): 110–117.CrossRefGoogle Scholar
Bhakta, SG, Zhang, JP, Malhotra, AK. The COMT Met158 allele and violence in schizophrenia: a meta-analysis. Schizophr. Res. 2012; 140(1–3): 192–197.CrossRefGoogle ScholarPubMed
Flory, JD, Xu, K, New, AS, et al. Irritable assault and variation in the COMT gene. Psychiatr. Genet. 2007; 17(6): 344–346.CrossRefGoogle ScholarPubMed
Soyka, M, Zill, P, Koller, G, et al. Val158Met COMT polymorphism and risk of aggression in alcohol dependence. Addict. Biol. 2015; 20(1): 197–204.CrossRefGoogle ScholarPubMed
Vevera, J, Stopkova, R, Bes, M, et al. COMT polymorphisms in impulsively violent offenders with antisocial personality disorder. Neuro. Endocrinol. Lett. 2009; 30(6): 753–756.Google ScholarPubMed
Hirata, Y, Zai, CC, Nowrouzi, B, Beitchman, JH, Kennedy, JL. Study of the catechol-o-methyltransferase (COMT) gene with high aggression in children. Aggress. Behav. 2013; 39(1): 45–51.CrossRefGoogle ScholarPubMed
Fresan, A, Camarena, B, Apiquian, R, et al. Association study of MAO-A and DRD4 genes in schizophrenic patients with aggressive behavior. Neuropsychobiology. 2007; 55(3–4): 171–175.CrossRefGoogle ScholarPubMed
Buchmann, AF, Zohsel, K, Blomeyer, D, et al. Interaction between prenatal stress and dopamine D4 receptor genotype in predicting aggression and cortisol levels in young adults. Psychopharmacology (Berl.). 2014; 231(16): 3089–3097.CrossRefGoogle ScholarPubMed
Delville, Y, Mansour, KM, Ferris, CF. Serotonin blocks vasopressin-facilitated offensive aggression: interactions within the ventrolateral hypothalamus of golden hamsters. Physiol. Behav. 1996; 59(4–5): 813–816.CrossRefGoogle ScholarPubMed
Ferris, CF, Melloni, RH Jr, Koppel, G, et al. Vasopressin/serotonin interactions in the anterior hypothalamus control aggressive behavior in golden hamsters. J. Neurosci. 1997; 17(11): 4331–4340.CrossRefGoogle ScholarPubMed
Ferris, CF, Potegal, M. Vasopressin receptor blockade in the anterior hypothalamus suppresses aggression in hamsters. Physiol. Behav. 1988; 44(2): 235–239.CrossRefGoogle ScholarPubMed
Bosch, OJ, Neumann, ID. Vasopressin released within the central amygdala promotes maternal aggression. Eur. J. Neurosci. 2010; 31(5): 883–891.CrossRefGoogle ScholarPubMed
Wersinger, SR, Caldwell, HK, Christiansen, M, Young, WS III. Disruption of the vasopressin 1b receptor gene impairs the attack component of aggressive behavior in mice. Genes Brain Behav. 2007; 6(7): 653–660.CrossRefGoogle ScholarPubMed
Wersinger, SR, Ginns, EI, O’Carroll, AM, Lolait, SJ, Young, WS III. Vasopressin V1b receptor knockout reduces aggressive behavior in male mice. Mol. Psychiatry. 2002; 7(9): 975–984.CrossRefGoogle ScholarPubMed
Wersinger, SR, Caldwell, HK, Martinez, L, et al. Vasopressin 1a receptor knockout mice have a subtle olfactory deficit but normal aggression. Genes Brain Behav. 2007; 6(6): 540–551.CrossRefGoogle ScholarPubMed
Fodor, A, Barsvari, B, Aliczki, M, et al. The effects of vasopressin deficiency on aggression and impulsiveness in male and female rats. Psychoneuroendocrinology. 2014; 47: 141–150.CrossRefGoogle ScholarPubMed
Uzefovsky, F, Shalev, I, Israel, S, Knafo, A, Ebstein, RP. Vasopressin selectively impairs emotion recognition in men. Psychoneuroendocrinology. 2012; 37(4): 576–580.CrossRefGoogle ScholarPubMed
Guastella, AJ, Kenyon, AR, Alvares, GA, Carson, DS, Hickie, IB. Intranasal arginine vasopressin enhances the encoding of happy and angry faces in humans. Biol. Psychiatry. 2010; 67(12): 1220–1222.CrossRefGoogle ScholarPubMed
Lee, RJ, Coccaro, EF, Cremers, H, et al. A novel V1a receptor antagonist blocks vasopressin-induced changes in the CNS response to emotional stimuli: an fMRI study. Front. Syst. Neurosci. 2013; 7: 100.CrossRefGoogle Scholar
Luppino, D, Moul, C, Hawes, DJ, Brennan, J, Dadds, MR. Association between a polymorphism of the vasopressin 1B receptor gene and aggression in children. Psychiatr. Genet. 2014; 24(5): 185–190.CrossRefGoogle ScholarPubMed
Zai, CC, Muir, KE, Nowrouzi, B, et al. Possible genetic association between vasopressin receptor 1B and child aggression. Psychiatry Res. 2012; 200(2–3): 784–788.CrossRefGoogle ScholarPubMed
Vogel, F, Wagner, S, Baskaya, O, et al. Variable number of tandem repeat polymorphisms of the arginine vasopressin receptor 1A gene and impulsive aggression in patients with borderline personality disorder. Psychiatr. Genet. 2012; 22(2): 105–106.CrossRefGoogle ScholarPubMed
McBurnett, K, Lahey, BB, Rathouz, PJ, Loeber, R. Low salivary cortisol and persistent aggression in boys referred for disruptive behavior. Arch. Gen. Psychiatry. 2000; 57(1): 38–43.CrossRefGoogle Scholar
Popma, A, Vermeiren, R, Geluk, CA, et al. Cortisol moderates the relationship between testosterone and aggression in delinquent male adolescents. Biol. Psychiatry. 2007; 61(3): 405–411.CrossRefGoogle ScholarPubMed
Kuepper, Y, Alexander, N, Osinsky, R, et al. Aggression–interactions of serotonin and testosterone in healthy men and women. Behav. Brain Res. 2010; 206(1): 93–100.CrossRefGoogle ScholarPubMed
Welker, KM, Lozoya, E, Campbell, JA, Neumann, CS, Carre, JM. Testosterone, cortisol, and psychopathic traits in men and women. Physiol. Behav. 2014; 129: 230–236.CrossRefGoogle ScholarPubMed
Denson, TF, Mehta, PH, Ho, TD. Endogenous testosterone and cortisol jointly influence reactive aggression in women. Psychoneuroendocrinology. 2013; 38(3): 416–424.CrossRefGoogle ScholarPubMed
Cima, M, Smeets, T, Jelicic, M. Self-reported trauma, cortisol levels, and aggression in psychopathic and non-psychopathic prison inmates. Biol. Psychol. 2008; 78(1): 75–86.CrossRefGoogle ScholarPubMed
Derntl, B, Windischberger, C, Robinson, S, et al. Amygdala activity to fear and anger in healthy young males is associated with testosterone. Psychoneuroendocrinology. 2009; 34(5): 687–693.CrossRefGoogle ScholarPubMed
Hermans, EJ, Ramsey, NF, van Honk, J. Exogenous testosterone enhances responsiveness to social threat in the neural circuitry of social aggression in humans. Biol. Psychiatry. 2008; 63(3): 263–270.CrossRefGoogle ScholarPubMed
van Wingen, G, Mattern, C, Verkes, RJ, Buitelaar, J, Fernández, G. Testosterone reduces amygdala-orbitofrontal cortex coupling. Psychoneuroendocrinology. 2010; 35(1): 105–113.CrossRefGoogle ScholarPubMed
Goetz, SM, Tang, L, Thomason, ME, et al. Testosterone rapidly increases neural reactivity to threat in healthy men: a novel two-step pharmacological challenge paradigm. Biol. Psychiatry. 2014; 76(4): 324–331.CrossRefGoogle Scholar
Grillo, CA, Risher, M, Macht, VA, et al. Repeated restraint stress-induced atrophy of glutamatergic pyramidal neurons and decreases in glutamatergic efflux in the rat amygdala are prevented by the antidepressant agomelatine. Neuroscience. 2015; 284: 430–443.CrossRefGoogle ScholarPubMed
Padival, MA, Blume, SR, Vantrease, JE, Rosenkranz, JA. Qualitatively different effect of repeated stress during adolescence on principal neuron morphology across lateral and basal nuclei of the rat amygdala. Neuroscience. 2015; 291: 128–145.CrossRefGoogle ScholarPubMed
Vyas, A, Mitra, R, Shankaranarayana Rao, BS, Chattarji, S. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J. Neurosci. 2002; 22(15): 6810–6818.CrossRefGoogle ScholarPubMed
Vyas, A, Bernal, S, Chattarji, S. Effects of chronic stress on dendritic arborization in the central and extended amygdala. Brain Res. 2003; 965(1–2): 290–294.CrossRefGoogle ScholarPubMed
Gilabert-Juan, J, Castillo-Gomez, E, Perez-Rando, M, Molto, MD, Nacher, J. Chronic stress induces changes in the structure of interneurons and in the expression of molecules related to neuronal structural plasticity and inhibitory neurotransmission in the amygdala of adult mice. Exp. Neurol. 2011; 232(1): 33–40.CrossRefGoogle Scholar