We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
Abadie, C., Lacan, F., Radic, A., Pradoux, C., Poitrasson, F., 2017. Iron isotopes reveal distinct dissolved iron sources and pathways in the intermediate versus deep Southern Ocean. Proceedings of the National Academy of Sciences114, 858–863.CrossRefGoogle ScholarPubMed
Acosta-Vigil, A., London, D., Morgan, G.B. VI, Cesare, B., Buick, I., Hermann, J., Bartoli, O., 2017. Primary crustal melt compositions: Insights into the controls, mechanisms and timing of generation from kinetics experiments and melt inclusions. Lithos286–287, 454–479.CrossRefGoogle Scholar
Addy, S.K., Garlick, G.D., 1974. Oxygen isotope fractionation between rutile and water. Contributions to Mineralogy and Petrology45, 119–121.CrossRefGoogle Scholar
Ader, M., Thomazo, C., Sansjofre, P., Busigny, V., Papineau, D., Laffont, R., Cartigny, P., Halverson, G.P., 2016. Interpretation of the nitrogen isotopic composition of Precambrian sedimentary rocks: Assumptions and perspectives. Chemical Geology429, 93–110.CrossRefGoogle Scholar
Agrawal, S., Guevara, M., Verma, S.P., 2004. Discriminant analysis applied to establish major-element field boundaries for tectonic varieties of basic rocks. International Geology Reviews46, 575–594.CrossRefGoogle Scholar
Ahmedali, S.T., 1989. X-ray fluorescence analysis in the geological sciences: Advances in methodology. Geological Association of Canada: Short course 7.Google Scholar
Aigner-Torres, M., Blundy, J., Ulmer, P., Pettke, T., 2007. Laser ablation ICPMS study of trace element partitioning between plagioclase and basaltic melts: An experimental approach. Contributions to Mineralogy and Petrology153, 647–667.CrossRefGoogle Scholar
Aitcheson, S.J., Forrest, A.H., 1994. Quantification of crustal contamination in open magmatic systems. Journal of Petrology35, 461–488.CrossRefGoogle Scholar
Aitchison, J., 1981. A new approach to null correlations of proportions. Mathematical Geology13, 175–189.CrossRefGoogle Scholar
Aitchison, J., 1982. The statistical analysis of compositional data (with discussion). Journal of the Royal Statistical Society44, 139–177.Google Scholar
Aitchison, J., 1984. The statistical analysis of geochemical compositions. Mathematical Geology16, 531–564.CrossRefGoogle Scholar
Aitchison, J., 1986. The statistical analysis of compositional data. Methuen, New York.CrossRefGoogle Scholar
Aitchison, J., 2003. The statistical analysis of compositional data. Blackburn Press, Caldwell, NJ.Google Scholar
Aitchison, J., Egozcue, J.J., 2005. Compositional data analysis: Where are we and where should we be heading?Mathematical Geology37, 829–850.CrossRefGoogle Scholar
Aitchison, J., Greenacre, M., 2002. Biplots of compositional data. Applied Statistics51, 375–392.Google Scholar
Albarede, F., Telouk, P., Balter, V., 2017. Medical applications of isotope metallomics. Reviews in Mineralogy and Geochemistry82, 851–885.CrossRefGoogle Scholar
Alibert, C., McCulloch, M.T., 1993. Rare earth element and neodymium isotopic compositions of the banded iron-formations and associated shales from Hamersley, Western Australia. Geochimica et Cosmochimica Acta57(1), 187–204.CrossRefGoogle Scholar
Alibo, D.S., Nozaki, Y., 1999. Rare earth elements in seawater: Particle association, shale normalization, and Ce oxidation. Geochimica et Cosmochimica Acta63, 363–372.CrossRefGoogle Scholar
Allegre, C.J., Minster, J.F., 1978. Quantitative models of trace element behavior in magmatic processes. Earth and Planetary Science Letters38, 1–25.CrossRefGoogle Scholar
Allegre, C.J., Rousseau, D., 1984. The growth of the continents through geological time studied by the Nd isotopic analysis of shales. Earth and Planetary Science Letters67, 19–34.CrossRefGoogle Scholar
Allegre, C.J., Hart, S.R. and Minster, J.-F., 1983. Chemical structure and evolution of the mantle and continents determined by inversion of Nd and Sr isotopic data, I. Theoretical models. Earth and Planetary Science Letters66, 177–190.CrossRefGoogle Scholar
Allegre, C.J., Treuil, M., Minster, J.F., Minster, B., Albarède, F., 1977. Systematic use of trace element in igneous process. Contributions to Mineralogy and Petrology60(1), 57–75.CrossRefGoogle Scholar
Al-Mishwat, A.T., 2015. CIPWFULL: A software program for calculation of comprehensive CIPW norms of igneous rocks. International Association for Mathematical Geosciences47, 441–453.CrossRefGoogle Scholar
Altwegg, K., et al., 2015. 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. Science347(6220).CrossRefGoogle ScholarPubMed
Amelin, Y., Lee, D.C., Halliday, A.N., 2000. Early-middle Archaean crustal evolution deduced from Lu–Hf and U–Pb isotopic studies of single zircon grains. Geochimica et Cosmochimica Acta64(24), 4205–4225.CrossRefGoogle Scholar
Anders, E., Grevesse, N., 1989. Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta53, 197–214.CrossRefGoogle Scholar
André, L., Abraham, K., Hofmann, A., Monin, L., Kleinhanns, I.C., Foley, S.F., 2019. Early continental crust generated by reworking of basalts variably silicified by seawater. Nature Geoscience12, 769–773.CrossRefGoogle Scholar
Anovitz, L.M., Essene, E.J., 1987. Phase equilibria in the system CaCO3-MgCO3-FeCO3. Journal of Petrology28, 389–414.CrossRefGoogle Scholar
Apted, M.J., Roy, S.D., 1981. Corrections to the trace element fractionation equations of Hertogen and Gijbels (1976). Geochimica et Cosmochimica Acta45, 777–778.CrossRefGoogle Scholar
Aranovich, L.Y., Newton, R.C., Manning, C.E., 2013. Brine-assisted anatexis: Experimental melting in the system haplogranite–H2O–NaCl–KCl at deep-crustal conditions. Earth and Planetary Science Letters374, 111–120.CrossRefGoogle Scholar
Arevalo, R., 2014. Laser ablation ICP-MS and laser fluorination GS-MS. In: Holland, H.D., Turekian, K.K. (eds.), Treatise on geochemistry, 2nd ed.Elsevier, Oxford. 15: 425–441.CrossRefGoogle Scholar
Arevalo, R., McDonough, W.F., 2010. Chemical variations and regional diversity observed in MORB. Chemical Geology271, 70–85.CrossRefGoogle Scholar
Arevalo, R., McDonough, W.F., Luong, M., 2009. The K/U ratio of the silicate earth: Insights into mantle composition, structure and thermal evolution. Earth and Planetary Science Letters278, 361–369.CrossRefGoogle Scholar
Armstrong, J.T., McSwiggen, P., Nielsen, C., 2013. A thermal field-emission electron probe microanalyzer for improved analytical spatial resolution. Microscopy and Analysis27, 18–22.Google Scholar
Armstrong, R., 1981. Radiogenic isotopes: The case for crustal recycling on a near-steady-state no-continental-growth Earth. Philosophical Transactions of the Royal Society of LondonA30, 443–472.Google Scholar
Arndt, N.T., Goldstein, S.L., 1987. Use and abuse of crust-formation ages. Geology15, 893–895.2.0.CO;2>CrossRefGoogle Scholar
Arndt, N.T., Jenner, G.A., 1986. Crustally contaminated komatiites and basalts from Kambalda, western Australia. Chemical Geology 229–255.CrossRefGoogle Scholar
Arth, J.G., 1976. Behavior of trace elements during magmatic processes: A summary of theoretical models and their applications. Journal of Research US Geological Survey4(1), 41–47.Google Scholar
Asimow, P.D., Ghiorso, M.S., 1998. Algorithmic modifications extending MELTS to calculate subsolidus phase relations. American Mineralogist83, 1127–1132.CrossRefGoogle Scholar
Austreheim, H., Griffin, W.L. (eds.), 2000. Element partitioning in geochemistry and petrology. Lithos53, 57–75.Google Scholar
Bacon, C.R., Druitt, T.H., 1988. Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contributions to Mineralogy and Petrology98, 224–256.CrossRefGoogle Scholar
Baertschi, P.1976. Absolute 18O content of standard mean ocean water. Earth and Planetary Science Letters1, 341–344.CrossRefGoogle Scholar
Bai, Y., Su, B.-X., Xiao, Y., Chen, C., Cui, M.-M., He, X.-Q., Qin, L.-P., Charlier, B., 2019. Diffusion-driven chromium isotope fractionation in ultramafic cumulate minerals: Elemental and isotopic evidence from the Stillwater Complex. Geochimica et Cosmochimica Acta263, 167–181.CrossRefGoogle Scholar
Bailey, J.C., 1981. Geochemical criteria for a refined tectonic discrimination of orogenic andesites. Chemical Geology32, 139–154.CrossRefGoogle Scholar
Baker, A.J., 1988. Stable isotope evidence for limited fluid infiltration of deep crustal rocks from the Ivrea Zone, Italy. Geology16, 492–495.2.3.CO;2>CrossRefGoogle Scholar
Barker, D.S., 1978. Magmatic trends on alkali-iron-magnesium diagrams. American Mineralogist63, 531–534.Google Scholar
Barker, F., 1979. Trondhjemite: Definition, environment and hypotheses of origin. In: Barker, F. (ed.), Trondhjemites, darefs and related rocks. Elsevier, Amsterdam. 1–12.Google Scholar
Barnes, S.-J., Maier, W.D., 2002. Platinum group elements and microstructures of normal Merensky Reef, from Impala platinum mines, Bushveld Complex. Journal of Perology43, 102–128.Google Scholar
Barrat, J.A., Zanda, B., Moynier, F., Bollinger, C., Liorzou, C., Bayon, G., 2012. Geochemistry of CI chondrites: Major and trace elements, and Cu and Zn isotopes. Geochimica et Cosmochimica Acta83, 79–92.CrossRefGoogle Scholar
Barry, P.H., Hilton, D.R., Fischer, T.P., de Moor, J.M., Mangasini, F., Ramirez, C., 2013. Helium and carbon isotope systematics of cold ‘mazuku’ CO2 vents and hydrothermal gases and fluids from Rungwe Volcanic Province, southern Tanzania. Chemical Geology339, 141–156.CrossRefGoogle Scholar
Barry, P.H., Hilton, D.R., Furi, E., Halldorsson, S.A., Gronvold, K., 2014. Carbon isotope and abundance systematics of Icelandic geothermal gases, fluids and subglacial basalts with implications for mantle plume-related CO2 fluxes. Geochimica et Cosmochimica Acta134, 74–99.CrossRefGoogle Scholar
Barth, T.W., 1952. Theoretical petrology: A textbook on the origin and evolution of rocks. Wiley, New York.Google Scholar
Bau, M., Schmidt, K., Koschinsky, A., Hein, J., Kuhn, T., Usui, A., 2014. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium. Chemical Geology381, 1–9.CrossRefGoogle Scholar
Bau, M., Schmidt, K., Pack, A., Bendel, V., Kraemer, D., 2018. The European shale: An improved data set for normalisation of rare earth element and yttrium concentrations in environmental and biological samples from Europe. Applied Geochemistry90, 142–149.CrossRefGoogle Scholar
Bauer, K.W., Gueguen, B., Cole, D.B., Francois, R., Kallmeyer, J., Planavsky, N., Crowe, S.A., 2019. Chromium isotope fractionation in ferruginous sediments. Geochimica et Cosmochimica Acta223, 198–215.CrossRefGoogle Scholar
Bauer, M.E., Burisch, M., Ostendorf, J., Krause, J., Frenzel, M., Seifert, T., Gutzmer, J., 2019. Trace element geochemistry of sphalerite in contrasting hydrothermal fluid systems of the Freiberg district, Germany: Insights from LA-ICP-MS analysis, near-infrared light microthermometry of sphalerite-hosted fluid inclusions, and sulfur isotope geochemistry. Mineralium Deposita54, 237–262.CrossRefGoogle Scholar
Bea, F., 1996. Controls on the trace element composition of crustal melts. Earth and Environmental Science Transactions of the Royal Society of Edinburgh87(1–2), 33–41.CrossRefGoogle Scholar
Beattie, P., 1994. Systematics and energetics of trace-element partitioning between olivine and silicate melts: Implications for the nature of mineral/melt partitioning. Chemical Geology117, 57–71.CrossRefGoogle Scholar
Beaumont, V., Robert, F., 1999. Nitrogen isotope ratios of kerogens in Precambrian cherts: A record of the evolution of atmospheric chemistry?Precambrian Research96, 63–82.CrossRefGoogle Scholar
Beccaluva, L., Bianchini, G., Natali, C., Siena, F., 2017. The alkaline-carbonatite complex of Jacupiranga (Brazil): Magma genesis and mode of emplacement. Gondwana Research44, 157–177.CrossRefGoogle Scholar
Becker, A., Holz, F., Johannes, W., 1998. Liquidus temperatures and phase compositions in the system Qz-Ab-Or at 5kbar and very low water activities. Contributions to Mineralogy and Petrology130, 213–224.CrossRefGoogle Scholar
Bédard, J.H., 2005. Partitioning coefficients between olivine and silicate melts. Lithos83, 394–419.CrossRefGoogle Scholar
Bédard, J.H., 2006. Trace element partitioning in plagioclase feldspar. Geochimica et Cosmochimica Acta70, 3717–3742.CrossRefGoogle Scholar
Bédard, J.H., 2007. Trace element partitioning coefficients between silicate melts and orthopyroxene: Parameterizations of D variations. Chemical Geology244(1–2), 263–303.CrossRefGoogle Scholar
Bédard, J.H., 2014. Parameterizations of calcic clinopyroxene: Melt trace element partition coefficients. Geochemistry, Geophysics, Geosystems15, doi: 10.1002/2013GC005112.CrossRefGoogle Scholar
Béguelin, P., Bizimis, M., McIntosh, E.C., Cousens, B., Clague, D.A., 2019. Source vs processes: Unraveling the compositional heterogeneity of rejuvenated-type Hawaiian magmas. Earth and Planetary Science Letters514, 119–129.CrossRefGoogle Scholar
Belousova, E.A., Kostitsyn, Y.A., Griffin, W.L., Begg, G.C., O’Reilly, S.Y., Pearson, N.J., 2010. The growth of the continental crust: Constraints from zircon Hf-isotope data. Lithos119, 457–466.CrossRefGoogle Scholar
Bender, J.F., Langmuir, C.H., Hanson, G.N., 1984. Petrogenesis of basalt glasses from the Tamayo region, East Pacific Rise. Journal of Petrology25, 213–254.CrossRefGoogle Scholar
Bennett, S.L., Blundy, J., Elliott, T., 2004. The effect of sodium and titanium on crystal-melt partitioning of trace elements. Geochimica et Cosmochimica Acta68, 2335–2347.CrossRefGoogle Scholar
Bennett, V.C., Esat, T.M., Norman, M.D., 1996. Two mantle-plume components in Hawaiian picrites inferred from correlated Os–Pb isotopes. Nature381(6579), 221–224.CrossRefGoogle Scholar
Bente, K., Nielsen, H., 1982. Experimental S isotope fractionation studies between co-existing bismuthinite (Bi2S3) and sulphur (So). Earth and Planetary Science Letters59, 18–20.CrossRefGoogle Scholar
Berger, M., Rollinson, H., 1997. Isotopic and geochemical evidence for crust–mantle interaction during late Archaean crustal growth. Geochimica et Cosmochimica Acta61, 4809–4829.CrossRefGoogle Scholar
Bethke, C.M., 2012. Geochemical and biogeochemical reaction modelling, 2nd ed.Cambridge University Press.Google Scholar
Bézos, A., Humler, E., 2005. The Fe3+/ΣFe ratios of MORB glasses and their implications for mantle melting. Geochimica et Cosmochimica Acta69, 711–725.CrossRefGoogle Scholar
Bézos, A., Lorand, J.P., Humler, E., Gros, M., 2005. Platinum-group element systematics in Mid-Oceanic Ridge basaltic glasses from the Pacific, Atlantic, and Indian Oceans. Geochimica et Cosmochimica Acta69(10), 2613–2627.CrossRefGoogle Scholar
Bhatia, M.R., 1983. Plate tectonics and geochemical composition of sandstones. Journal of Geology91, 611–627.CrossRefGoogle Scholar
Bhatia, M.R., 1984. Composition and classification of Paleozoic flysch mudrocks of eastern Australia: Implications in provenance and tectonic setting interpretation. Sedimentary Geology41(2–4), 249–268.CrossRefGoogle Scholar
Bhatia, M.R., Crook, K.A.W, 1986. Trace element characteristics of graywackes and tectonic discrimination of sedimentary basins. Contributions to Mineralogy and Petrology92, 181–193.CrossRefGoogle Scholar
Bickle, M.J., Arndt, N.T., Nisbet, E.G., Orpen, J.L., Martin, A., Keays, R.R., Renner, R., 1993. Geochemistry of the igneous rocks of the Belingwe greenstone belt: Alteration contamination and petro-genesis. In: Bickle, M.J., Nisbet, E.G. (eds.), The geology of the Belingwe greenstone belt Zimbabwe. Balkema, Rotterdam. 175–213.Google Scholar
Bindeman, I., 2008. Oxygen isotopes in mantle and crustal magmas as revealed by single crystal analysis. Rev. Mineralogy and Geochemistry69, 445–478.CrossRefGoogle Scholar
Bindeman, I.N., Davis, A.M., 2000. Trace element partitioning between plagioclase and melt: Investigation of dopant influence on partition behavior. Geochimica et Cosmochimica Acta64, 2863–2878.CrossRefGoogle Scholar
Bindeman, I.N., Valley, J.W., 2002. Oxygen isotope study of the Long Valley magma system, California: Isotope thermometry and convection in large silicic magma bodies. Contributions to Mineralogy and Petrology144, 185–205.CrossRefGoogle Scholar
Bindeman, I.N., Davis, A.M., Drake, M.J., 1998. Ion microprobe study of plagioclase-basalt partition experiments at natural concentration levels of trace elements. Geochimica et Cosmochimica Acta62, 1175–1193.CrossRefGoogle Scholar
Bingham, N.H., Fry, J.M., 2010. Regression: Linear models in statistics. In: Regression. Springer, London.CrossRefGoogle Scholar
Bizimis, M., Lassiter, J.C., Salters, V.J., Sen, G., Griselin, M., 2004. Extreme Hf-Os isotope compositions in Hawaiian peridotite xenoliths: Evidence for an ancient recycled lithosphere. AGUFM, V51B-0550 (abstract).Google Scholar
Bizimis, M., Griselin, M., Lassiter, J.C., Salters, V.J., Sen, G., 2007. Ancient recycled mantle lithosphere in the Hawaiian plume: Osmium–hafnium isotopic evidence from peridotite mantle xenoliths. Earth and Planetary Science Letters257, 259–273.CrossRefGoogle Scholar
Black, B.A., Gibson, S.A., 2019. Deep carbon and the life cycle of large igneous provinces. Elements15, 319–324.CrossRefGoogle Scholar
Blackburn, T.J., Stockli, D.F., Walker, J.D., 2007. Magnetite (U–Th)/He dating and its application to the geochronology of intermediate to mafic volcanic rocks. Earth and Planetary Science Letters259, 360–371.CrossRefGoogle Scholar
Blichert‐Toft, J., Weis, D., Maerschalk, C., Agranier, A., Albarède, F., 2003. Hawaiian hot spot dynamics as inferred from the Hf and Pb isotope evolution of Mauna Kea volcano. Geochemistry, Geophysics, Geosystems4(2).CrossRefGoogle Scholar
Bloch, E., Jollands, M., Devoir, A., Bouvier, A.-S., Ibañez-Mejia, M., Baumgartner, L.P., 2020. Multispecies diffusion of yttrium, rare earth elements and hafnium in garnet. Journal of Petrology, egaa055, https://doi.org/10.1093/petrology/egaa055.CrossRefGoogle Scholar
Blundy, J., Cashman, K., 2001. Ascent-driven crystallisation of daref magmas at Mount St Helens, 1980–1986. Contributions to Mineralogy and Petrology140, 631–650.CrossRefGoogle Scholar
Blundy, J.D., Wood, B.J., 1991. Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions. Geochimica et Cosmochimica Acta55, 193–209.CrossRefGoogle Scholar
Blundy, J.D., Wood, B.J., 1994. Prediction of crystal-melt partition coefficients from elastic moduli. Nature372, 452–454.CrossRefGoogle Scholar
Blundy, J.D., Wood, B.J., 2003. Partitioning of trace elements between crystals and melts. Earth and Planetary Science Letters210, 383–397.CrossRefGoogle Scholar
Bohrson, W.A., Spera, F.J., 2001. Energy-constrained open-system magmatic processes II: Application of energy-constrained assimilation-fractional crystallization (EC-AFC) model to magmatic systems. Journal of Petrology42, 1019–1041.CrossRefGoogle Scholar
Bohrson, W.A., Spera, F.J., 2007. Energy-constrained recharge, assimilation, and fractional crystallization (EC-RAXFC): A visual basic computer code for calculating trace element and isotope variations of open-system magmatic systems. Geochemistry, Geophysics, Geosystems8, Q11003. https://doi.org/10.1029/2007G C001781.CrossRefGoogle Scholar
Bohrson, W.A., Spera, F.J., Ghiorso, M.S., Brown, G.A., Creamer, J.B., Mayfield, A., 2014. Thermodynamic model for energy-constrained open-system evolution of crustal magma bodies undergoing simultaneous recharge, assimilation and crystallization: The magma chamber simulator. Journal of Petrology55, 1685–1717.CrossRefGoogle Scholar
Bolhar, R., Hofmann, A., Woodhead, J., Hergt, J., Dirks, P.H.G.M., 2002. Pb- and Nd-isotope systematics of stromatolitic limestones from the 2.7 Ga Ngezi group of the Belingwe greenstone belt: Constraints on timing of deposition and provenance. Precambrian Research114(3–4), 277–294.CrossRefGoogle Scholar
Bolhar, R., Whitehouse, M.J., Milani, L., Magalhães, N., Golding, S.D., Bybee, G., LeBras, L., Bekker, A., 2020. Atmospheric S and lithospheric Pb in sulphides from the 2.06 Ga Phalaborwa phoscorite-carbonatite complex, South Africa. Earth and Planetary Science Letters530, 115939.CrossRefGoogle Scholar
Bonnand, P., Parkinson, I. J., Anand, M., 2016. Mass-dependent fractionation of stable chromium isotopes in mare basalts: Implications for the formation and the differentiation of the Moon. Geochimica et Cosmochimica Acta175, 208–221.CrossRefGoogle Scholar
Bottinga, Y., 1969, Calculated fractionation factors between carbon and hydrogen isotope exchange in the system calref-carbon dioxide-graphite-methane-hydrogen-water vapour. Geochimica et Cosmochimica Acta33, 49–64.CrossRefGoogle Scholar
Bottinga, Y., Javoy, M., 1973. Comments on oxygen isotope geothermometry. Earth and Planetary Science Letters20, 250–265.CrossRefGoogle Scholar
Bottrell, S.H., Greenwood, P.B., Yardley, B.W.D., Sheppard, T.J., Spiro, B., 1990. Metamorphic and post-metamorphic fluid flow in the low-grade rocks of the Harlech dome, north Wales. Journal of Metamorphic Geology8, 131–143.CrossRefGoogle Scholar
Bouvier, A., Boyet, M., 2016. Primitive solar system materials and Earth share a common initial 142Nd abundance. Nature537, 399–402.CrossRefGoogle Scholar
Bouvier, A., Vervoort, J.D., Patchett, P.J., 2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters273(1–2), 48–57.CrossRefGoogle Scholar
Bowen, N.L.1928. The evolution of the igneous rocks. Princeton University Press.Google Scholar
Boynton, W.V., 1984. Geochemistry of the rare earth elements: Meteorite studies. In: Henderson, P. (ed.), Rare earth element geochemistry. Elsevier, Amsterdam. 63–114.CrossRefGoogle Scholar
Boztug, D., Arehart, G.B., 2007. Oxygen and sulfur isotope geochemistry revealing a significant crustal signature in the genesis of the post-collisional granitoids in central Anatolia, Turkey. Journal of Asian Earth Sciences30, 403–416.CrossRefGoogle Scholar
Branson, O., Fehrenbacher, J.S., Vetter, L., Sadekov, A.Y., Eggins, S.M., Spero, H.J., 2019. LAtools: A data analysis package for the reproducible reduction of LA-ICPMS data. Chemical Geology504, 83–95.CrossRefGoogle Scholar
Brenan, J.M., Shaw, H.F., Ryerson, F.J., Phinney, D.L., 1995. Experimental determination of trace-element partitioning between pargasite and a synthetic hydrous andesitic melt. Earth and Planetary Science LettersI35, 1–11.CrossRefGoogle Scholar
Brenan, J.M., Neroda, E., Lundstron, C., Shaw, H.F., Ryerson, F.J., Phinney, D.L., 1998. Behaviour of boron, beryllium, and lithium during melting and crystallization: Constraints from mineral-melt partitioning experiments. Geochimica et Cosmochimica Acta62, 2129–2141.CrossRefGoogle Scholar
Brewer, A., Teng, F.-Z., Dethier, D., 2018. Magnesium isotope fractionation during granite weathering. Chemical Geology501, 95–103.CrossRefGoogle Scholar
Brice, J.C., 1975. Some thermodynamic aspects of the growth of strained crystals. Journal of Crystal Growth28, 249–253.CrossRefGoogle Scholar
Brooks, C., Hart, S.R., Wendt, I., 1972. Realistic use of two‐error regression treatments as applied to rubidium‐strontium data. Reviews of Geophysics10, 551–577.CrossRefGoogle Scholar
Brophy, J.G., Ota, T., Kunihro, T., Tsujimori, T., Nakamura, E., 2011. In situ ion-microprobe determination of trace element partition coefficients for hornblende, plagioclase, orthopyroxene, and apatite in equilibrium with natural rhyolitic glass, Little Glass Mountain rhyolite, California. American Mineralogist96, 1838–1850.CrossRefGoogle Scholar
Brűgmann, G.E., Naldett, A.J., MacDonald, A.J., 1989. Magma mixing and constitutional zone refining in the Lac des Iles complex, Ontario: Genesis of platinum-group element mineralization. Economic Geology84, 1557–1573.CrossRefGoogle Scholar
Buccianti, A., Grunsky, E., 2014. Compositional data analysis in geochemistry: Are we sure to see what really occurs during natural processes?Journal of Geochemical Exploration141, 1–5.CrossRefGoogle Scholar
Buccianti, A., Mateu-Figueras, G., Pawlowsky-Glahn, V., 2006. Compositional data analysis in the geosciences: From theory to practice. Geological Society Special Publication 264. Geological Society, London.Google Scholar
Buccianti, A., Lima, A., Albaneses, S., De Vivo, B., 2018. Measuring the change under compositional data analysis (CoDA): Insight on the dynamics of geochemical systems. Journal of Geochemical Exploration189, 100–108.CrossRefGoogle Scholar
Buggle, B., Glasser, B., Hambach, U.F., Gerasimenko, N., Markovic, S., 2011. An evaluation of geochemical weathering indices in loess-palaeosol studies. Quaternary International240, 12–21.CrossRefGoogle Scholar
Burrows, D.R., Wood, P.C., Spooner, E.T.C., 1986. Carbon isotope evidence for a magmatic origin for Archean gold-quartz vein ore deposits. Nature321, 851–854.CrossRefGoogle Scholar
Busigny, V., Bebout, G., 2013. Nitrogen in the silicate Earth: Speciation and isotopic behavior during mineral–fluid interactions. Elements9, 353–358.CrossRefGoogle Scholar
Busigny, V., Chen, J.-B., Philippot, P., Borensztajn, S., Moynier, F., 2018. Insight into hydrothermal and subduction processes from copper and nitrogen isotopes in oceanic metagabbros. Earth and Planetary Science Letters498, 54–64.CrossRefGoogle Scholar
Butler, I.B., Fallick, A.E., Nesbitt, R.W., 1998. Mineralogy, sulphur isotope geochemistry and the development of sulphide structures at the Broken Spur hydrothermal vent site, 29°10′N, Mid-Atlantic Ridge. Journal of the Geological Society, London155, 773–785.CrossRefGoogle Scholar
Butler, J.C., 1979. Trends in ternary petrological variation diagrams: Fact or fantasy?American Mineralogist64, 1115–1121.Google Scholar
Butler, J.C., 1981. Effect of various transformations on the analysis of percentage data. Mathematical Geology13, 53–68.CrossRefGoogle Scholar
Butler, J.C., 1986. The role of spurious correlation in the development of a komatiite alteration model. Journal of Geophysical Research91, E275–E280.CrossRefGoogle Scholar
Butler, J.C., Woronow, A., 1986. Discrimination among tectonic settings using trace element abundances of basalts. Journal of Geophysical Research91, B10289–B10300.CrossRefGoogle Scholar
Cabanis, B., Lecolle, M., 1989. Le diagramme La/10-Y/15-Nb/8: Un outil pour la discrimination des series volcaniques et la mise en evidence des processus de melange et/ou de contamination crustale. Comptes Rendus de l’Academie des sciences309(Ser. II), 2023–2029.Google Scholar
Campbell, A.C., et al., 1988. Chemistry of hot springs on the Mid-Atlantic Ridge. Nature335, 514–519.CrossRefGoogle Scholar
Carlson, R.W., 2005. Application of the Pt–Re–Os isotopic systems to mantle geochemistry and geochronology. Lithos82(3–4), 249–272.CrossRefGoogle Scholar
Caro, G., Bourdon, B., 2010. Non-chondritic Sm/Nd ratio in the terrestrial planets: Consequences for the geochemical evolution of the mantle–crust system. Geochimica et Cosmochimica Acta74, 3333–3349.CrossRefGoogle Scholar
Carr, D.D., Rooney, L.F., 1983. Limestone and dolomite. In: Lefond, S.Y. (ed.), Industrial minerals and rocks, 5th ed.American Institute of Metallurgical, Mining and Petroleum Engineers, New York. 833–868.Google Scholar
Carr, M.J., Gazel, E., 2017. Igpet software for modelling igneous processes: Examples of application using the open educational version. Mineralogy and Petrology111, 283–289.CrossRefGoogle Scholar
Carr, P.F., 1985. Geochemistry of late Permian shoshonitic lavas from the southern Sydney Basin. In: Sutherland, F.L., Franklin, B.J., Waltho, A.E. (eds.), Volcanism in Eastern Australia. Geological Society of Australia, N.S.W. Division Publication 1, 165–183.Google Scholar
Cartigny, P.2005. Stable isotopes and the origin of diamond. Elements, 1, 79–84.CrossRefGoogle Scholar
Cartigny, P., Ader, M., 2003. A comment on ‘The nitrogen record of crust–mantle interaction and mantle convection from Archean to Present’ by B. Marty and N. Dauphas [Earth and Planetary Science Letters 206(2003) 397–410]. Earth and Planetary Science Letters216, 425–432.CrossRefGoogle Scholar
Cartigny, P., Marty, B., 2013. Nitrogen isotopes and mantle geodynamics: The emergence of life and the atmosphere–crust–mantle connection. Elements9, 359–366.CrossRefGoogle Scholar
Cassata, W.S., Renne, P.R., 2013. Systematic variations of argon diffusion in feldspars and implications for thermochronometry. Geochimica et Cosmochiica Acta112, 251–287.CrossRefGoogle Scholar
Cassata, W.S., Renne, P., Shuster, D., 2011. Argon diffusion in pyroxenes: Implications for thermochronometry and mantle degassing. Earth and Planetary Science Letters304, 407–416.CrossRefGoogle Scholar
Cavazzini, G., 1996. Degrees of contamination in magmas evolving by assimilation-fractional crystallization. Geochimica et Cosmochimica Acta60, 2049–2052.CrossRefGoogle Scholar
Cawood, P., Hawkesworth, C., Dhuime, B., 2012. Detrital zircon record and tectonic setting. Geology40, 875–878.CrossRefGoogle Scholar
Cazanas, X., Alfonso, P., Melgarejo, J.C., Proenza, J.A., Fallick, A.E., 2008. Geology, fluid inclusion and sulphur isotope characteristics of the El Cobre VHMS deposit, southern Cuba. Mineralium Deposita43, 805–824.CrossRefGoogle Scholar
Cesare, B., Acosta-Vigil, A., Bartoli, O., Ferrero, S., 2015. What can we learn from melt inclusions in migmatites and granulites?Lithos239, 186–216.CrossRefGoogle Scholar
Chacko, T., Cole, D.R., Horita, J., 2001. Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems. In: Valley, J.W., Cole, D.R. (eds.), Stable isotope geochemistry. Mineralogical Society of America, Washington, DC. 1–81.Google Scholar
Chakrabarti, R., Basu, A.R., Paul, D.K., 2007. Nd–Hf–Sr–Pb isotopes and trace element geochemistry of Proterozoic lamproites from southern India: Subducted komatiite in the source. Chemical Geology236, 291–302.CrossRefGoogle Scholar
Chamberlain, C.P., Rumble, D., 1988. Thermal anomalies in a regional metamorphic terrane: An isotopic study of the role of fluids. Journal of Petrology29, 1215–1232.CrossRefGoogle Scholar
Chan, L.H., 1987. Lithium isotope analysis by thermal ionisation mass-spectrometry of lithium tetraborate. Analytical Chemistry59, 2662–2665.CrossRefGoogle Scholar
Chan, L. H., Frey, F. A., 2003. Lithium isotope geochemistry of the Hawaiian plume: Results from the Hawaii Scientific Drilling Project and Koolau volcano. Geochemistry Geophysics Geosystems4, 8707.CrossRefGoogle Scholar
Chan, L.H., Leeman, W. P., Plank, T., 2006. Lithium isotopic composition of marine sediments. Geochemistry, Geophysics, Geosystems7, doi: 10.1029/2005GC001202.Google Scholar
Chapman, J.B., Gehrels, G.E., Ducea, M.N., Giesler, N., Pullen, A., 2016. A new method for estimating parent rock trace element concentrations from zircon. Chemical Geology439, 59–70.CrossRefGoogle Scholar
Chase, C., Patchett, P., 1988. Stored mafic/ultramafic crust and early Archean mantle depletion. Earth and Planetary Science Letters91, 66–72.CrossRefGoogle Scholar
Chaussidon, M., Deng, Z., Villeneuve, J., Moureau, J., Watson, B., Richter, F., Moynier, F., 2017. In-situ analysis of non-traditional isotopes by SIMS and LA-MC-ICP-MS: Key aspects and the example of Mg-isotopes in olivines and silicate glass. Reviews in Mineralogy and Geochemistry82, 127–164.CrossRefGoogle Scholar
Chauvel, C., Blichert-Toft, J., 2001. A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth and Planetary Science Letters190(3–4), 37–151.CrossRefGoogle Scholar
Chayes, F., 1949. On ratio correlation in petrography. Journal of Geology57, 239–254.CrossRefGoogle Scholar
Chayes, F., 1960. On correlation between variables of constant sum. Journal of Geophysical Research65, 4185–4193.CrossRefGoogle Scholar
Chayes, F., 1971. Ratio correlation. University of Chicago Press.Google Scholar
Chayes, F., 1977. Use of correlation statistics with rubidium-strontium systematics. Science196, 1234–1235.CrossRefGoogle ScholarPubMed
Chen, C., Su, B.X., Xiao, Y., Sakyi, P.A., He, X.Q., Pang, K.N., Ibrahim, U., Erdi, A., Qin, L.P., 2019. High-temperature chromium isotope fractionation and its implications: Constraints from Kızıldag ophiolite, SE Turkey. Lithos342, 361–369.CrossRefGoogle Scholar
Chen, R.-X., Zheng, Y.-F., Gong, B., 2011. Mineral hydrogen isotopes and water contents in ultrahigh-pressure metabasite and metagranite: Constraints on fluid flow during continental subduction-zone metamorphism. Chemical Geology281, 103–124.CrossRefGoogle Scholar
Chen, Y., Huang, F., Shi, G.-H., Wu, F.-Y., Chen, X., Jin, Q.-Z., Su, B., Guo, S., Sein, K., Nyunt, T.T., 2018. Magnesium isotope composition of subduction zone fluids as constrained by jadeitites from Myanmar. Journal of Geophysical Research: Solid Earth123, 7566–7585.Google Scholar
Chen, Y., Song, S., Niu, Y., Wei, C., 2014. Melting of continental crust during subduction initiation: A case study from the Chaidanuo peraluminous granite in the North Qilian suture zone. Geochimica et Cosmochimica Acta132, 311–336.CrossRefGoogle Scholar
Cherniak, D.J., 1993. Lead diffusion in titanite and preliminary results on the effects of radiation damage on Pb transport. Chemical Geology110, 177–194.CrossRefGoogle Scholar
Cherniak, D.J., 2000. Pb diffusion in rutile. Contributions to Mineralogy and Petrology139, 198–207.CrossRefGoogle Scholar
Cherniak, D.J., Watson, E.B., 1992. A study of strontium diffusion in K-feldspar, Na–K feldspar and anorthite using Rutherford backscattering spectroscopy. Earth and Planetary Science Letters113, 411–425.CrossRefGoogle Scholar
Cherniak, D.J., Watson, E.B., 2001. Pb diffusion in zircon. Chemical Geology172, 1999–2017.CrossRefGoogle Scholar
Cherniak, D.J., Hanchar, J., Watson, E., 1997. Rare earth diffusion in zircon. Chemical Geology134, 289–301.CrossRefGoogle Scholar
Cherniak, D.J., Lanford, W.A., Ryerson, F.J., 1991. Lead diffusion in apatite and zircon using ion implantation and Rutherford backscattering techniques. Geochimica et Cosmochimica Acta55, 1663–1673.CrossRefGoogle Scholar
Cherniak, D.J., Watson, E.B., Grove, M., Harrison, T.M., 2004. Pb diffusion in monazite: A combined RBS/SIMS study. Geochimica et Cosmochimica Acta68, 829–840.CrossRefGoogle Scholar
Chesner, C.A., Ettlinger, A.D., 1989. Composition of volcanic allanite from the TobaTuffs, Sumatra, Indonesia. American Mineralogist74, 750–758.Google Scholar
Chivas, A.R., Andrew, A.S., Sinha, A.K., O’Neill, J.R., 1982. Geochemistry of a Pliocene-Pleistocene oceanic-arc plutonic complex, Guadalcanal. Nature300, 139–143.CrossRefGoogle Scholar
Clark, I., Harper, W.V., 2007. Practical geostatistics 2000. Ecosse North America, Columbus, OH.Google Scholar
Clark, R.N., Brown, R.H., Cruikshank, D.P., Swayze, G.A., 2019. Isotopic ratios of Saturn’s rings and satellites: Implications for the origin of water and Phoebe. Icarus321, 791–802.CrossRefGoogle Scholar
Clauer, N., Fallick, A.E., Gálan, E., Aparicio, P., Miras, A., Fernández-Caliani, J.C., Aubert, A., 2015. Stable isotope constraints on the origin of kaolin deposits from Variscan granitoids of Galicia (NW Spain). Chemical Geology417, 90–101.CrossRefGoogle Scholar
Claypool, G.E., Holser, W.T., Kaplan, I.R., Sakai, H., Zak, I., 1980. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology28, 199–260.CrossRefGoogle Scholar
Clayton, R.N., 1981. Isotopic thermometry. In: Newton, R.C., Navrotsky, A., Wood, B.J. (eds.), Thermodynamics of minerals and melts. Springer-Verlag, New York. 85–109.CrossRefGoogle Scholar
Clayton, R.N., Goldsmith, J.R., Mayeda, T.K., 1989. Oxygen isotope fractionation in quartz, albite, anorthite and calref. Geochimica et Cosmochimica Acta53, 725–733.CrossRefGoogle Scholar
Clayton, R.N., O’Neill, J.R., Mayeda, T.K., 1972. Oxygen isotope exchange between quartz and water. Journal of Geophysical Research77, 3057–3067.CrossRefGoogle Scholar
Cliff, R.A., 1985. Isotopic dating in metamorphic belts. Journal of the Geological Society142, 97–110.CrossRefGoogle Scholar
Cliff, R.A., Bond, C.E., Butler, R.W.H., Dixon, J.E., 2017. Geochronological challenges posed by continuously developing tectonometamorphic systems: Insights from Rb‐ Sr mica ages from the Cycladic Blueschist Belt, Syros (Greece). Journal of Metamorphic Geology35, 197–211.CrossRefGoogle Scholar
Clog, M., Aubauda, C., Cartigny, P., Dosso, L., 2013. The hydrogen isotopic composition and water content of southern Pacific MORB: A reassessment of the D/H ratio of the depleted mantle reservoir. Earth and Planetary Science Letters381, 156–165.CrossRefGoogle Scholar
Cohen, A.S., Coe, A.L., Bartlett, J.M., Hawkesworth, C.J., 1999. Precise Re–Os ages of organic-rich mudrocks and the Os isotope composition of Jurassic seawater. Earth and Planetary Science Letters167, 159–173.CrossRefGoogle Scholar
Coleman, M.L., 1977. Sulphur isotopes in petrology. Journal of the Geological Society133, 593–608.CrossRefGoogle Scholar
Coleman, M.L., Raiswell, R., 1981. Carbon, oxygen and sulphur isotope variations in concretions from the Upper Lias of NE England. Geochimica et Cosmochimica Acta45, 329–340.CrossRefGoogle Scholar
Collerson, K.D., Kamber, B.S., 1999. Evolution of the continents and the atmosphere inferred from Th-U-Nb systematics of the depleted mantle. Science283, 1519–1522.CrossRefGoogle ScholarPubMed
Collerson, K.D., Campbell, L.M., Weaver, B.L., Palacz, Z.A.1991. Evidence for extreme mantle fractionation in early Archaean ultramafic rocks from northern Labrador. Nature349, 209–214.CrossRefGoogle Scholar
Collins, W. J., Murphy, J.B., Johnson, T.E., Huang, H.-Q., 2020. Critical role of water in the formation of continental crust. Nature Geoscience13, 331–338.CrossRefGoogle Scholar
Coltice, N., Ferrachat, S., Ricard, Y., 2000. Box modelling the chemical evolution of geophysical systems: Case study of the Earth’s mantle. Geophysical Research Letters27, 1579–1582.CrossRefGoogle Scholar
Compston, W, Williams, I.S., Meyer, C., 1984. U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. Journal of Geophysical Research89, Supplement, B525–B534.CrossRefGoogle Scholar
Condie, K.C., 2005. High field strength element ratios in Archaean basalts: A window to evolving sources of mantle plumes?Lithos79, 491–504.CrossRefGoogle Scholar
Condie, K., 2015. Changing tectonic setting through time: Indiscriminate use of geochemical discriminant diagrams. Precambrian Research266, 587–591.CrossRefGoogle Scholar
Condie, K.C., Aster, R.C., 2010. Episodic zircon age spectra of orogenic granitoids: The supercontinent connection and continental growth. Precambrian Research180, 227–236.CrossRefGoogle Scholar
Condie, K.C., Wronkiewicz, D.J., 1990. A new look at the Archaean-Proterozoic boundary sediments and the tectonic setting constraint. In: Developments in Precambrian Geology.Elsevier. 8: 61–83.Google Scholar
Condie, K.C., Wilks, M., Rosen, D.M., Zlobin, V.L., 1991. Geochemistry of metasediments from the Precambrian Hapschan series, eastern Anabar Shield, Siberia. Precambrian Research50, 37–47.CrossRefGoogle Scholar
Coogan, L.A., Dosso, S.E., 2016. Quantifying parental MORB trace element compositions from eruptive prodicts of realistic magma chambers: Parental EPR MORB are depleted. Journal of Petrology57, 2105–2126.Google Scholar
Cortés, J.A., 2009. On the Harker variation diagrams: A comment on ‘The statistical analysis of compositional data. Where are we and where should we be heading? by Aitchison and Egozcue (2005). Mathematical Geosciences41, 817–828.CrossRefGoogle Scholar
Coryell, C.G., Chase, J.W., Winchester, J.W., 1963. A procedure for geochemical interpretation of terrestrial rare-earth abundance patterns. Journal of Geophysical Research68, 559–566.CrossRefGoogle Scholar
Cox, K.G., Bell, J.D., Pankhurst, R.J., 1979, The interpretation of igneous rocks. George, Allen and Unwin, London.CrossRefGoogle Scholar
Cox, R., Lowe, D.R., Cullers, R.L., 1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta59(14), 2919–2940.CrossRefGoogle Scholar
Cribb, J.-W., Barton, M., 1996. Geochemical effects of decoupled fractional crystallisation and crustal assimilation. Lithos37, 293–307.CrossRefGoogle Scholar
Crockford, P.W., et al., 2019. Claypool continued: Extending the isotopic record of sedimentary sulfate. Chemical Geology513, 200–225.CrossRefGoogle Scholar
Cross, W., Iddings, J.P., Pirsson, L.V., Washington, H.S., 1902. Quantitative classification of igneous rocks: Based on chemical and mineral characters, with a systematic nomenclature. University of Chicago Press.Google Scholar
Crow, M.J., Van Waveren, I.M., Hasibuan, F., 2019. The geochemistry, tectonic and palaeogeographic setting of the Karing Volcanic Complex and the Dusunbaru pluton, an early Permian volcanic-plutonic centre in Sumatra, Indonesia. Journal of Asian Earth Sciences169, 257–283.CrossRefGoogle Scholar
Cullers, R.L., 1988. Mineralogical and chemical changes of soil and stream sediment formed by intense weathering of the Danburg granite, Georgia, U.S.A. Lithos21, 301–314.CrossRefGoogle Scholar
Cullers, R.L., 2000. The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian ages, Colorado, USA: Implications for provenance and metamorphic studies. Lithos51, 181–203.CrossRefGoogle Scholar
Cullers, R.L., Basu, A., Suttner, L.J., 1988. Geochemical signature of provenance in sand-sized material in soils and stream sediments near the Tobacco Root batholith, Montana, U.S.A. Chemical Geology70, 335–348.CrossRefGoogle Scholar
Dalpe, C., Baker, D.R., 2000. Experimental investigation of large-ion-lithophile-element, high-field-strength-element and rare-earth-element-partitioning between calcic amphibole and basaltic melt: The effects of pressure and oxygen fugacity. Contributions to Mineralogy and Petrology140, 233–250.Google Scholar
Dasgupta, R., Hirschmann, M.M., 2010. The deep carbon cycle and melting in Earth’s interior. Earth and Planetary Science Letters298, 1–13.CrossRefGoogle Scholar
Daunis-I-Estadella, J., Barcelo-Vidal, C., Buccianti, A., 2006. Exploratory compositional data analysis. In: Buccianti, A., Mateu-Figueras, G., Pawlowsky-Glahn, V. (eds.), Compositional data analysis in the geosciences: From theory to practice. Geological Society Special Publication 264. Geological Society, London. 161–174.Google Scholar
Dauphas, N., John, S., Rouxel, O., 2017. Iron isotope systematics. Reviews in Mineralogy and Geochemistry82, 415–510.CrossRefGoogle Scholar
Davis, F.A., Humayun, M., Hirschmann, M.M., Cooper, R.S., 2013. Experimentally determined mineral/melt partitioning of first-row transition elements (FRTE) during partial melting of peridotite at 3 GPa. Geochimica et Cosmochimica Acta104, 232–260.CrossRefGoogle Scholar
Davis, J.C., 2002. Statistics and data analysis in Geology, 3rd ed.Wiley and Sons, Hoboken, NJ.Google Scholar
Day, J.M.D., Brandon, A.D., Walker, R.A., 2016. Highly siderophile elements in earth, mars, the moon, and asteroids. Reviews in Mineralogy & Geochemistry81, 161–238.CrossRefGoogle Scholar
de Graaf, S., Nooitgedacht, C.W., Le Goff, J., van der Lubbe, J.H.J.L.Vonhof, H.B., Reijmer, J.J.G., 2019. Fluid-flow evolution in the Albanide fold-thrust belt: Insights from hydrogen and oxygen isotope ratios of fluid inclusions. American Association of Petroleum Geologists Bulletin103, 2421–2445.CrossRefGoogle Scholar
de Hoog, J.C.M., Taylor, B.E., van Bergen, M.J., 2001. Sulfur isotope systematics of basaltic lavas from Indonesia: Implications for the sulfur cycle in subduction zones. Earth and Planetary Science Letters189, 237–252.CrossRefGoogle Scholar
de la Roche, H., Leterrier, J., Grande Claude, P., Marchal, M., 1980. A classification of volcanic and plutonic rocks using R1-R2 diagrams and major element analyses: Its relationships and current nomenclature. Chemical Geology29, 183–210.CrossRefGoogle Scholar
de Moor, J.M., Fischer, T.P., Sharp, Z.D., Hilton, D.R., Barry, P.H., Mangasini, F., Ramirez, C., 2013. Gas chemistry and nitrogen isotope compositions of cold mantle gases from Rungwe Volcanic Province, southern Tanzania. Chemical Geology339, 30–42.CrossRefGoogle Scholar
Deines, P., 2002. The carbon isotope geochemistry of mantle xenoliths. Earth Science Reviews.58, 247–278.CrossRefGoogle Scholar
Deines, P., Gold, D.P, 1973. The isotopic composition of carbonatite and kimberlite carbonates and their bearing on the isotopic composition of deep-seated carbon. Geochimica et Cosmochimica Acta37, 1709–1733.CrossRefGoogle Scholar
Deines, P., Stachel, T., Harris, J.W., 2009. Systematic regional variations in diamond carbon isotopic compositions and inclusion chemistry beneath the Orapa kimberlite cluster in Botswana. Lithos112, 776–784.CrossRefGoogle Scholar
Delavault, H., Dhuime, B., Hawkesworth, C.J., Cawood, P.A., Marschall, H., Edinburgh Ion Microprobe Facility, 2016. Tectonic settings of continental crust formation: Insights from Pb isotopes in feldspar inclusions in zircon. Geology44, 819–822.CrossRefGoogle Scholar
Delbari, M., Afrasiab, P., Loiskandl, W., 2011. Geostatistical analysis of soil texture fractions on the field scale. Soil and Water Resources6, 173–189.CrossRefGoogle Scholar
Demetriades, A., 2014. Basic considerations: Sampling, the key for a successful applied geochemical survey for mineral exploration and environmental purposes. In: Holland, H.D., Turekian, K.K. (eds.), Treatise on geochemistry, 2nd ed.Elsevier, Oxford. 15: 1–31.Google Scholar
Demšar, U., Harris, P., Brunsdon, C., Fotheringham, S., McLoone, S., 2013. Principal component analysis on spatial data: An overview. Annals of the Association of American Geographers103, 106–128.CrossRefGoogle Scholar
Deng, Z., Chaussidon, M., Guitreau, M., Puchtel, I.S., Dauphas, N., Moynier, F., 2019. An oceanic subduction origin for Archaean granitoids revealed by silicon isotopes. Nature Geoscience12, 774–778.CrossRefGoogle Scholar
Denny, A.C., Orland, I.J., Valley, J.W., 2020. Regionally correlated oxygen and carbon isotope zonation in diagenetic carbonates of the Bakken formation. Chemical Geology531, 119327.CrossRefGoogle Scholar
DePaolo, D.J., 1981a. Neodymium isotopes in the Colorado Front range and crust–mantle evolution in the Proterozoic. Nature291, 193–196.CrossRefGoogle Scholar
DePaolo, D.J., 1981b. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallisation. Earth and Planetary Science Letters53, 189–202.CrossRefGoogle Scholar
DePaolo, D.J., Wasserburg, G.J., 1976. Nd isotopic variations and petrogenetic models. Geophysical Research Letters3, 249–252.CrossRefGoogle Scholar
DePaolo, D.J., Wasserburg, G.J., 1979. Petrogenetic mixing models and Nd-Sr isotopic patterns. Geochimica et Cosmochimica Acta43, 615–627.CrossRefGoogle Scholar
Dhuime, B., Hawkesworth, C.J., Cawood, P.A., Storey, C.D., 2012. A change in the geodynamics of continental growth 3 billion years ago. Science335, 1334–1336.CrossRefGoogle ScholarPubMed
Dhuime, B., Wuestefeld, A., Hawkesworth, C.J., 2015. Emergence of modern continental crust about 3 billion years ago. Nature Geoscience8, 552–555.CrossRefGoogle Scholar
Dickson, J.A.D., 1991. Disequilibrium carbon and oxygen isotope variations in natural calref. Nature353, 842–844.CrossRefGoogle Scholar
Dodson, M.H., 1973. Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology40, 259–274.CrossRefGoogle Scholar
Dodson, M.H., 1979. Theory of cooling ages. In: Jager, E., Hunziker, J.C. (eds.), Lectures in isotope geology. Springer-Verlag, New York. 194–202.CrossRefGoogle Scholar
Dodson, M.H., 1982. On ‘spurious’ correlations in Rb-Sr isochron diagrams. Lithos15, 215–219.CrossRefGoogle Scholar
Doe, B.R., Zartman, R.E., 1979. Plumbotectonics I, the Phanerozoic. In: Barnes, H.L. (ed.), Geochemistry of hydrothermal ore deposits, 2nd ed.Wiley-Interscience, New York. 22–70.Google Scholar
Dottin, J.W., Labidi, J., Lekic, V., Jackson, M.G., Farquhar, J., 2020. Sulfur isotope characterization of primordial and recycled sources feeding the Samoan mantle plume. Earth and Planetary Science Letters534, 116073.CrossRefGoogle Scholar
Drake, M.J., Holloway, J.R., 1981. Partitioning of Ni between olivine and silicate melt: the ‘Henry’s Law problem’ re-examined. Geochimica et Cosmochimica Acta45, 431–437.CrossRefGoogle Scholar
Drake, M.J., Weill, D.F., 1975. Partition of Sr, Ba, Ca, Y, Eu2+, Eu3+ and other REE between plagioclase feldspar and magmatic liquid: An experimental study. Geochimica et Cosmochimica Acta39, 689–712.CrossRefGoogle Scholar
Drummond, M.S., Defant, M.J., 1990. A model for trondhjemite‐tonalite‐daref genesis and crustal growth via slab melting: Archean to modern comparisons. Journal of Geophysical Research: Solid Earth95(B13), 21503–21521.CrossRefGoogle Scholar
Dunham, R.J., 1962. Classification of carbonate rocks according to depositional textures. American Association of Petroleum Geologists Memoir1, 108–121.Google Scholar
Dunn, T., 1987. Partitioning of Hf, Lu, Ti and Mn between olivine, clinopyroxene and basaltic liquid. Contributions to Mineralogy and Petrology96, 476–484.CrossRefGoogle Scholar
Dunn, T., Sen, C., 1994. Mineral/matrix partition coefficients for orthopyroxene, plagioclase, and olivine in basaltic to andesitic systems: A combined analytical and experimental study. Geochimica et Cosmochimica Acta58, 717–733.CrossRefGoogle Scholar
Dupre, B., Allegre, C.J., 1983. Pb-Sr isotope variation in Indian Ocean basalts and mixing phenomena. Nature303, 142–146.CrossRefGoogle Scholar
Ebadi, A., Johannes, W., 1991. Beginning of melting and composition of first melts in the system Qz-Ab-Or-H2O-CO2. Contribution to Mineralogy and Petrology106, 286–295.CrossRefGoogle Scholar
Egozcue, J.J., 2009. Reply to ’On the Harker Variation Diagrams …’ by JA Cortes. Mathematical Geosciences41, 829–834.CrossRefGoogle Scholar
Egozcue, J., Pawlowsy-Glahn, V., Mateu-Figueras, G., Barcelo-Vidal, C., 2003. Isometric logratio transformations for compositional data analysis. Mathematical Geology35, 279–300.CrossRefGoogle Scholar
Eguchi, J., Seales, J., Dasgupta, R., 2020. Great oxidation and Lomagundi events linked by deep cycling and enhanced degassing of carbon. Nature Geoscience12, 71–76.CrossRefGoogle Scholar
Eiler, J.M., 2001. Oxygen isotope variations of basaltic lavas and upper mantle rocks. Reviews in Mineralogy and Geochemistry43(1), 319–364.CrossRefGoogle Scholar
Eiler, J.M., 2007. ‘Clumped-isotope’ geochemistry: The study of naturally-occurring, multiply-substituted isotopologues. Earth and Planetary Science Letters262, 309–327.CrossRefGoogle Scholar
Eiler, J.M., Kitchen, N., 2004. Hydrogen isotope evidence for the origin and evolution of the carbonaceous chondrites. Geochimica et Cosmochimica Acta68, 1395–1411.CrossRefGoogle Scholar
Eisele, J., Sharma, M., Galer, S.J., Blichert-Toft, J., Devey, C.W., Hofmann, A.W., 2002. The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot. Earth and Planetary Science Letters196, 197–212.CrossRefGoogle Scholar
Eissen, J.-P., Juteau, T., Joron, J.-L., Dupre, B., Humler, E., Al’Mukhamedov, A., 1989. Petrology and geochemistry of basalts from the Red Sea axial rift at 18 deg north. Journal of Petrology30, 791–839.CrossRefGoogle Scholar
Elardo, S.M., Shahar, A., Mock, T.D., Sio, C.K., 2019. The effect of core composition on iron isotope fractionation between planetary cores and mantles. Earth and Planetary Science Letters513, 124–134.CrossRefGoogle Scholar
Elderfield, H., 1988. The oceanic chemistry of the rare-earth elements. Philosophical Transactions of the Royal Society of LondonA325, 105–126.Google Scholar
El-Hinnawi, E., 2016a. Evaluation of boundary lines in the total alkali-silica diagram for the discrimination between subalkali and alkali basalts, and a new method to distinguish transitional basalts. Periodico di Mineralogia85, 51–58.Google Scholar
El-Hinnawi, E., 2016b. A new method for the adjustment of Fe2O3/FeO ratio in volcanic rocks for the calculation of the CIPW norm. Neues Jahrbuch fűr Mineralogie-Abhandlungen: Journal of Mineralogy and Geochemistry193, 87–93.Google Scholar
Elliott, T., Thomas, A., Jeffcoate, A., Niu, Y., 2006. Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts. Nature443, 565–568.CrossRefGoogle ScholarPubMed
Elthon, D., 1983. Isomolar and isostructural pseudo-liquidus phase diagrams for oceanic basalts. American Mineralogist68, 506–511.Google Scholar
Epstein, G.S., Bebout, G.E., Angiboust, S., Agard, P., 2020. Scales of fluid-rock interaction and carbon mobility in the deeply underplated and HP-metamorphosed schistes lustrés, western Alps. Lithos354–355, 105229.CrossRefGoogle Scholar
Epstein, S., Buchsbaum, R., Lowenstam, H.A., Urey, H.C., 1953. Revised carbonate–water isotopic temperature scale. Geological Society of America Bulletin64, 1315–1326.CrossRefGoogle Scholar
Escoube, R., Rouxel, O.J., Pokrovsky, O.S., Schroth, A., Holmes, R.M., Donard, O.F.X., 2015. Iron isotope systematics in Arctic rivers. Comptes Rendus Geoscience347, 377–385.CrossRefGoogle Scholar
Escrig, S., Schiano, P., Schilling, J.G., Allegre, C., 2005. Rhenium–osmium isotope systematics in MORB from the southern Mid-Atlantic Ridge (40–50 S). Earth and Planetary Science Letters235, 528–548.CrossRefGoogle Scholar
Evensen, N.M., Hamilton, P.J., O’Nions, R.K., 1978. Rare earth abundances in chondritic meteorites. Geochimica et Cosmochimica Acta42, 1199–1212.CrossRefGoogle Scholar
Ewart, A., 1982. The mineralogy and petrology of Tertiary-recent orogenic volcanic rocks with special reference to the andesitic-basaltic composition range. In: Thorpe, R.S. (ed.), Andesites. Wiley, Chichester. 25–87.Google Scholar
Falloon, T.J., Danyushevsky, L.V., Green, D.H., 2001. Peridotite melting at 1 GPa: Reversal experiments on partial melt compositions produced by peridotite–basalt sandwich experiments. Journal of Petrology42, 2363–2390.CrossRefGoogle Scholar
Farkas, J., Chrastny, V., Novak, M., Cadkova, E., Pasava, J., Chakrabarti, R., Jacobsen, S.B., Ackerman, L., Bullen, T.D., 2013. Chromium isotope variations (δ53Cr) in mantle-derived sources and their weathering products: Implications for environmental studies and the evolution of δ53Cr in the Earth’s mantle over geologic time. Contributions to Mineralogy and Petrology123, 74–92.Google Scholar
Farley, K.A., 2000. Helium diffusion from apatite: General behavior as illustrated by Durango fluorapatite. Journal of Geophysical Research105, 2903–2914.CrossRefGoogle Scholar
Farley, K.A., 2007. He diffusion systematics in minerals: Evidence from synthetic monazite and zircon structure phosphates. Geochimica et Cosmochimica Acta71, 4015–4024.CrossRefGoogle Scholar
Farley, K.A., Natland, J.H., Craig, H., 1992. Binary mixing of enriched and undegassed (primitive?) mantle components (He, Sr, Nd, Pb) in Samoan lavas. Earth and Planetary Science Letters111, 183–199.CrossRefGoogle Scholar
Farquhar, J., Wing, B.A., 2003. Multiple sulfur isotopes and the evolution of the atmosphere. Earth and Planetary Science Letters213, 1–13.CrossRefGoogle Scholar
Farquhar, J., Wing, B.A., McKeegan, K.D., Harris, J.W., Cartigny, P., Thiemens, M.H., 2002. Mass-independent sulfur of inclusions in diamond and sulfur recycling on early Earth. Science298, 2369–2372.CrossRefGoogle ScholarPubMed
Farrel, J., Clemens, S., Gromet, L.P., 1995. Improved chronostratigraphic reference curve of late Neogene seawater 87Sr/86Sr. Geology23, 403–406.2.3.CO;2>CrossRefGoogle Scholar
Fazio, G., Mendes Guimarães, E., Walde, D.W.G., do Carmo, D.A., Adorno, R.R., et al., 2019. Mineralogical and chemical composition of Ediacaran-Cambrian pelitic rocks of the Tamengo and Guaicurus formations (Corumbá Group – MS, Brazil): Stratigraphic positioning and paleoenvironmental interpretations. Journal of South American Earth Sciences90, 487–503.CrossRefGoogle Scholar
Fedo, C.M., McGlynn, I.O., McSween, H.Y., Jr, 2015. Grain size and hydrodynamic sorting controls on the composition of basaltic sediments: Implications for interpreting Martian soils. Earth and Planetary Science Letters423, 67–77.CrossRefGoogle Scholar
Fedo, C.M., Wayne Nesbitt, H., Young, G.M., 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology23(10), 921–924.2.3.CO;2>CrossRefGoogle Scholar
Fiege, A., Holtz, F., Behrens, H., Mandeville, C., Shimizu, N., Crede, L.-S., Goettlicher, J., 2015. Experimental investigation of the S and S-isotope distribution between H2O-S ± Cl fluids and basaltic melts during decompression. Chemical Geology393–394, 36–54.CrossRefGoogle Scholar
Fitton, J.G., 1997. X-ray fluorescence spectrometry. In: Gill, R. (ed.), Modern analytical geochemistry: An introduction to quantitative chemical analysis for earth, environmental and material scientists. Addison Wesley Longman, Harlow.Google Scholar
Fitton, J.G., Saunders, A.D., Norry, M.J., Hardarson, B.S., Taylor, R.N., 1997. Thermal and chemical structure of the Iceland plume. Earth and Planetary Science Letters153, 197–208.CrossRefGoogle Scholar
Fletcher, I.R., Rosman, K.J.R., 1982. Precise determination of initial e-Nd from Sm-Nd isochron data. Geochimica et Cosmochimica Acta46, 1983–1987.CrossRefGoogle Scholar
Fletcher, T.A., Boyce, A.J., Fallick, A.E., 1989. A sulphur isotope study of Ni-Cu mineralisation in the Huntly-Knock Caledonian mafic and ultramafic intrusions of northeast Scotland. Journal of the Geological Society146, 675–684.CrossRefGoogle Scholar
Floyd, P.A., Winchester, J.A., 1975. Magma-type and tectonic setting discrimination using immobile elements. Earth and Planetary Science Letters27, 211–218.CrossRefGoogle Scholar
Floyd, P.A., Shail, R., Leveridge, B.E., Franke, W., 1991. Geochemistry and provenance of Rhenohercynian synorogenic sandstones: Implications for tectonic environment discrimination. Geological Society Special Publication 57. Geological Society, London. 173–188.Google Scholar
Floyd, P.A., Winchester, J.A., Park, R.G., 1989. Geochemistry and tectonic setting of Lewisian clastic metasediments from the early Proterozoic Loch Maree group of Gairloch, NW Scotland. Precambrian Research45, 203–214.CrossRefGoogle Scholar
Fogel, M.L., Steele, A., 2013. Nitrogen in extraterrestrial environments: Clues to the possible presence of life. Elements9, 367–372.CrossRefGoogle Scholar
Foland, K.A., 1994. Argon diffusion in feldspars. In: Parsons, I. (ed.), Feldspars and their reactions. Kluwer, Amsterdam. 415–447.CrossRefGoogle Scholar
Foley, S., Tiepolo, M., Vannucci, R., 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature417, 837–840.CrossRefGoogle ScholarPubMed
Folk, R.L., 1959. Practical petrographic classification of limestones. American Association of Petroleum Geologists Bulletin43, 1–38.Google Scholar
Foustoukos, D.I., James, R.H., Berndt, M.E., Seyfried, W.E., 2004. Lithium isotopic systematics of hydrothermal vent fluids at the Main Endeavour Field, Northern Juan de Fuca Ridge. Chemical Geology212, 17–26.CrossRefGoogle Scholar
Fowler, S.J., Bohrson, W.A., Spera, F.J., 2004. Magmatic evolution of the Skye Igneous Centre, western Scotland: Modelling of assimilation, recharge and fractional crystallization. Journal of Petrology45, 2481–2505.CrossRefGoogle Scholar
France, L., Ouillon, N., Chazot, N, Kornprobst, J., Boivin, P., 2009. CMAS 3D, a new program to visualize and project major elements compositions in the CMAS system. Computers and Geosciences35, 1304–1310.CrossRefGoogle Scholar
Frank, A.B., Klaebe, R.B., Lohr, S., Xu, L., Frei, R., 2020. Chromium isotope composition of organic-rich marine sediments and their mineral phases and implications for using black shales as a paleoredox archive. Geochimica et Cosmochimica Acta270, 338–359.CrossRefGoogle Scholar
Frank, M., 2002. Radiogenic isotopes: Tracers of past ocean circulation and erosional input. Reviews of Geophysics40, 1–38.CrossRefGoogle Scholar
Frei, R., Polat, A., 2013. Chromium isotope fractionation during oxidative weathering: Implications from the study of a Paleoproterozoic (ca. 1.9 Ga) paleosol, Schreiber Beach, Ontario, Canada. Precambrian Research224, 434–453.CrossRefGoogle Scholar
Friedman, I., O’Neill, J.R., 1977. Data of geochemistry: Compilation of stable isotope fractionation factors of geochemical interest. US Geological Survey Professional Paper 440-KK.CrossRefGoogle Scholar
Frost, B.R., Frost, C.D., 2008. A geochemical classification for feldspathic igneous rocks. Journal of Petrology49, 1955–1969.CrossRefGoogle Scholar
Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., Frost, C.D., 2001. A geochemical classification for granitic rocks. Journal of Petrology42, 2033–2048.CrossRefGoogle Scholar
Fukuda, K., Beard, B.L., Dunlap, D.R., Spicuzzaa, M.J., Fournelle, J.H., Wadhwa, M., Kita, N.T., 2020. Magnesium isotope analysis of olivine and pyroxene by SIMS: Evaluation of matrix effects. Chemical Geology540, 119482.CrossRefGoogle Scholar
Gabriel, K.R., 1971. The biplot graphic display of matrices with application to principal component analysis. Biometrika58, 453–467.CrossRefGoogle Scholar
Gaetani, G.A, Kent, A.J.R., Grove, T.L., Hutcheon, D., Stolper, E.M., 2003. Mineral/melt partitioning of trace elements during hydrous peridotite partial melting. Contributions to Mineralogy and Petrology145, 391–405.CrossRefGoogle Scholar
Galy, A., France-Lanord, C., 2001. Higher erosion rates in the Himalaya: Geochemical constraints on riverine fluxes. Geology29, 23–26.2.0.CO;2>CrossRefGoogle Scholar
Ganguly, J., Tirrone, M., Hervig, R.L., 1998. Diffusion kinetics of samarium and neodymium in garnet, and a method for determining cooling rates of rocks. Science281, 805–807.CrossRefGoogle Scholar
Garapić, G., Jackson, M.G., Hauri, E.H., Hart, S.R., Farley, K.A., Blusztajn, J.S., Woodhead, J.D., 2015. A radiogenic isotopic (He-Sr-Nd-Pb-Os) study of lavas from the Pitcairn hotspot: Implications for the origin of EM-1 (enriched mantle 1). Lithos228, 1–11.CrossRefGoogle Scholar
Garcia, M.O., Mucek, A.E., Lynn, K.J., Swanson, D.A., Norman, M.D., 2018. Geochemical evolution of Keanakāko ‘i Tephra, Kīlauea Volcano, Hawai‘i. In: Field volcanology: A tribute to the distinguished career of Don Swanson. Geological Society Special Publication 538. Geological Society, London.Google Scholar
Garçon, M., Chauvel, C., 2014. Where is basalt in river sediments, and why does it matter?Earth and Planetary Science Letters407, 61–69.CrossRefGoogle Scholar
Garzanti, E., 2019. Petrographic classification of sand and sandstone. Earth-Science Reviews192, 545–563.CrossRefGoogle Scholar
Geng, X., Liu, Y., Zhang, W., Wang, Z., Hu, Z., Zhou, L., Liang, Z., 2020. The effect of host magma infiltration on the Pb isotopic systematics of lower crustal xenolith: An in-situ study from Hannuoba, North China. Lithos, doi: 10.1016/j.lithos.2020.105556.CrossRefGoogle Scholar
Genske, F.S., Turner, S.P., Beier, C., Chu, M.-F., Tonarini, S., Pearson, N.J., Haase, K.M., 2014. Lithium and boron isotope systematics in lavas from the Azores islands reveal crustal assimilation. Chemical Geology373, 27–36.CrossRefGoogle Scholar
Gerdes, A., Zeh, A., 2006. Combined U–Pb and Hf isotope LA-(MC-) ICP-MS analyses of detrital zircons: Comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth & Planetary Science Letters249, 47–61.CrossRefGoogle Scholar
Ghiorso, M.S., Gualda, G.A.R., 2015. An H2O-CO2 mixed fluid saturation model compatible with rhyolite-MELTS. Contributions to Mineralogy and Petrology, doi: 10.1007/s00410-015-1141-8.CrossRefGoogle Scholar
Ghiorso, M.S., Sack, R.O., 1995. Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contributions to Mineralogy and Petrology119, 197–212.CrossRefGoogle Scholar
Gibson, S.A., Thompson, R.N., Dickin, A.P., 2000. Ferropicrites: Geochemical evidence for Fe-rich streaks in upwelling mantle plumes. Earth and Planetary Science Letters174, 355–374.CrossRefGoogle Scholar
Giletti, B.J., 1974. Studies in diffusion I: Argon in phlogopite mica. In: Hofmann, A.W., Giletti, B.J., Yoder, H.S., Jr, Yund, R.A. (eds.), Geochemical transport and kinetics. Carnegie Institute, Washington Year b Publication 634, Washington, DC.107–115.Google Scholar
Gill, R.C.O. (ed.), 1997. Modern analytical geochemistry: An introduction to quantitative chemical analysis for earth, environmental and material scientists. Addison Wesley Longman, Harlow.Google Scholar
Gilliam, C.E., Valley, J.W., 1998. Low δ18O magma, Isle of Skye, Scotland: Evidence from zircons. Geochimica et Cosmochimica Acta61, 4975–4981.CrossRefGoogle Scholar
Godefroy-Rodríguez, M., Hagemann, S., LaFlamme, C., Fiorentini, M., 2020. The multiple sulfur isotope architecture of the Golden Mile and Mount Charlotte deposits, Western Australia. Mineralium Deposita55, 797–822.CrossRefGoogle Scholar
Goldfarb, R.J., Groves, D.I., 2015. Orogenic gold: Common or evolving fluid and metal sources through time. Lithos233, 2–26.CrossRefGoogle Scholar
Goldschmidt, V.M., 1937. The principles of the distribution of chemical elements in minerals and rocks. Journal of the Chemical Society (London)140, 655–673.Google Scholar
Goldstein, S.L., 1988. Decoupled evolution of Nd and Sr isotopes in the continental crust. Nature336, 733–738.CrossRefGoogle Scholar
Goldstein, S.L., O’Nions, R.K., Hamilton, P.J., 1984. A Sm-Nd study of atmospheric dusts and particulates from major river systems. Earth and Planetary Science Letters70, 221–236.CrossRefGoogle Scholar
Grady, M.M., Wright, I.P., 2003. Elemental and isotopic abundances of carbon and nitrogen in meteorites. Space Science Reviews106, 231–248.CrossRefGoogle Scholar
Graham, C.M., Harmon, R.S., Sheppard, S.M.F., 1984. Experimental hydrogen isotope studies: Hydrogen isotope exchange between amphibole and water. American Mineralogist69, 128–138.Google Scholar
Graham, C.M., Sheppard, S.M.F., Heaton, T.H.E., 1980. Experimental hydrogen isotope studies I: Systematics of hydrogen isotope fractionation in the systems epidote–H2O, zoisite–H2O and AlO(OH)–H2O. Geochimica et Cosmochimica Acta44, 353–364.CrossRefGoogle Scholar
Graham, D.J., Midgley, N.G., 2000. Graphical representation of particle shape using triangular diagrams: An Excel spreadsheet method. Earth Surface Processes and Landforms25, 1473–1477.3.0.CO;2-C>CrossRefGoogle Scholar
Grandell, L., Lehtilä, A., Kivinen, M., Koljonen, T., Kihlman, S., Lauri, L.S., 2016. Role of critical metals in the future markets of clean energy technologies. Renewable Energy95, 53–62.CrossRefGoogle Scholar
Grant, K., Wood, B., J., 2010. Experimental study of the incorporation of Li, Sc, Al and other trace elements in olivine. Geochimica et Cosmochimica Acta74, 2412–2428.CrossRefGoogle Scholar
Grassineau, N.V., Appel, P.W.U., Fowler, C.M.R., Nisbet, E.G., 2005. Distinguishing biological from hydrothermal signatures via sulphur and carbon isotopes in Archaean mineralizations at 3.8 and 2.7 Ga. In: McDonald, I., Boyce, A.J., Butler, I.B., Herrington, R.J., Polya, D.A. (eds.), Mineral deposits and Earth evolution. Geological Society Special Publication 248. Geological Society, London. 195–212.Google Scholar
Green, T.H., Pearson, N.J., 1983. Effect of pressure on rare earth element partition coefficients in common magmas. Nature305, 414–416.CrossRefGoogle Scholar
Green, T.H., Pearson, N.J., 1986. Rare-earth element partitioning between sphene and coexisting silicate liquid at high pressure and temperature. Chemical Geology55, 105–119.CrossRefGoogle Scholar
Green, T.H., Blundy, J.D., Adam, J., Yaxley, G.M., 2000. SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2–7.5 GPa and 1080–1200°C. Lithos53, 165–187.CrossRefGoogle Scholar
Greenacre, M., 2010. Biplots in practice. Fundcion BBVA, Bilbao.Google Scholar
Gregory, R.T., Taylor, H.P., 1981. An oxygen isotope profile in a section of Cretaceous oceanic crust, Semail ophiolite Oman: Evidence for δ18O buffering of the oceans by deep (> 5 km) seawater-hydrothermal circulation at mid-ocean ridges. Journal of Geophysical Research86, 2737–2755.CrossRefGoogle Scholar
Gregory, R.T., Criss, R.E., Taylor, H.P., 1989. Oxygen isotope exchange kinetics of mineral pairs in close and open systems: Applications to problems of hydrothermal alteration of igneous rocks and Precambrian iron formations. Chemical Geology75, 1–42.CrossRefGoogle Scholar
Gromet, L.P., Dymek, R.F., Haskin, L.A., Korotev, R.L., 1984. The ‘North American Shale Composite’: Its compilation, major and trace element characteristics. Geochimica et Cosmochimica Acta48, 2469–2482.CrossRefGoogle Scholar
Grove, M., Harrison, T.M., 1996. 40Ar* diffusion in Fe-rich biotite. American Mineralogist81, 940–951.CrossRefGoogle Scholar
Grove, T.L., 1993. Corrections to expressions for calculating mineral components in ‘Origin of calc-alkaline series lavas at Medicine Lake Volcano by fractionation, assimilation and mixing’ and ‘Experimental petrology of normal MORB near the Kane Fracture Zone: 22°–25°N Mid-Atlantic Ridge’. Contributions to Mineralogy and Petrology114, 422–424.CrossRefGoogle Scholar
Grove, T.L., Gerlach, D.C, Sando, T.W., 1982. Origin of late calc-alkaline series lavas at Medicine Lake Volcano by fractionation, assimilation and mixing. Contributions to Mineralogy and Petrology80, 160–182.CrossRefGoogle Scholar
Grove, T.L., Kinzler, R.J., Bryan, W.B., 1992. Fractionation of mid-ocean ridge basalt (MORB). In: Phipps Morgan, J., Blackman, D.K., Sinton, J.M. (eds.), Mantle flow and melt generation at mid-ocean ridges. Geophysical Monograph, American Geophysical Union, 71, 281–310.Google Scholar
Groves, D.I., Golding, S.D., Rock, N.M.S., Barley, M.E., McNaughton, N.J., 1988. Archean carbon reservoirs and their relevance to the fluid source for gold deposits. Nature331, 254–257.CrossRefGoogle Scholar
Grunsky, E., de Caritat, P., 2019. State-of-the-art analysis of geochemical data for mineral exploration. Geochemistry: Exploration, Environment, Analysis, doi.org/10.1144/geochem2019–031.CrossRefGoogle Scholar
Gualda, G.A.R., Ghiorso, M.S., Lemons, R.V., Carley, T.L., 2012. Rhyolite-MELTS: A modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. Journal of Petrology53, 875–890.CrossRefGoogle Scholar
Guzman, S., Carniel, R., Caffe, P.J., 2014. AFC3D: A 3D graphical tool to model assimilation and fractional crystallization with and without recharge in the R environment. Lithos190–191, 264–278.CrossRefGoogle Scholar
Haase, K., Regelous, M., Schöbel, S, Gunther, T., de Wall, H., 2019. Variation of melting processes and magma sources of the early Deccan flood basalts, Malwa Plateau, India. Earth and Planetary Science Letters524, 115711.CrossRefGoogle Scholar
Hall, W.E., Friedman, I., and Nash, J.T., 1974. Fluid inclusion and light stable isotope study of the Climax molybdenum deposits, Colorado. Economic Geology69, 884–901.CrossRefGoogle Scholar
Hamilton, P.J., Evensen, N.M., O’Nions, R.K., Tarney, J., 1979a. Sm-Nd systematics of Lewisian gneisses: Implications for the origin of granulites. Nature277, 25–28.CrossRefGoogle Scholar
Hamilton, P.J, Evensen, N.M., O’Nions, R.K., Smith, H.S., Erlank, A.J., 1979b. Sm-Nd dating of Onverwacht group volcanics, southern Africa. Nature279, 298–300.CrossRefGoogle Scholar
Hammouda, T., Cherniak, D.J., 2000. Diffusion of Sr in fluorphlogopite determined by Rutherford backscattering spectrometry. Earth and Planetary Science Letters178, 339–349.CrossRefGoogle Scholar
Han, C., Xiao, W., Sua, B., Sayic, P.A., Aoa, S., Zhanga, J., Zhanga, Z., Wana, B., Songa, D., Wanga, Z., Zhaoal, N., 2018. Geology, Re-Os and U-Pb geochronology and sulfur isotope of the Donggebi porphyry Mo deposit, Xinjiang, NW China, Central Asian Orogenic Belt. Journal of Asian Earth Sciences165, 270–284.CrossRefGoogle Scholar
Hanan, B.B., Graham, D.1996. Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes. Science272, 991–995.CrossRefGoogle ScholarPubMed
Hanchar, J., van Westrenen, W., 2007. Rare earth element behaviour in zircon-melt systems. Elements3, 37–42.CrossRefGoogle Scholar
Hans, U., Kleine, T., Bourdon, B., 2013. Rb-Sr chronology of volatile depletion in differentiated protoplanets: BABI, ADOR and ALL revisited. Earth and Planetary Science Letters374, 204–214.CrossRefGoogle Scholar
Hansen, C.T., Meixner, A., Kasemann, S.A., Bach, W., 2017. New insight on Li and B isotope fractionation during serpentinization derived from batch reaction investigations. Geochimica et Cosmochimica Acta217, 51–79.CrossRefGoogle Scholar
Hanski, E., Huhma, H., Rastas, P., Kamenetsky, V.S., 2001. The Palaeoproterozoic komatiite-picrite association of Finnish Lapland. Journal of Petrology42, 855–876.CrossRefGoogle Scholar
Hanson, G.N., 1978. The application of trace elements to the petrogenesis of igneous rocks of granitic composition. Earth and Planetary Science Letters38, 26–43.CrossRefGoogle Scholar
Harker, A., 1909. The natural history of igneous rocks. Methuen, London.Google Scholar
Harmer, R.E., Eglington, B.M., 1987. The mathematics of geochronometry: Equations for use in regression calculations. National Physical research Laboratory, geochronology division, C.S.I.R., South Africa.Google Scholar
Harnois, L., 1988. The CIW index: A new chemical index of weathering. Sedimentary Geology55, 319–322.CrossRefGoogle Scholar
Harris, C., Faure, K., Diamond, R.E., Scheepers, R., 1997. Oxygen and hydrogen isotope geochemistry of S- and I-type granitoids: The Cape Granite suite, South Africa. Chemical Geology143, 95–114.CrossRefGoogle Scholar
Harris, N.B.W., Pearce, J.A., Tindle, A.G., 1986. Geochemical characteristics of collision-zone magmatism. In: Coward, M.P., Reis, A.C. (eds.), Collision tectonics. Geological Society Special Publication 19. Geological Society, London. 67–81.Google Scholar
Harris, P.G., 1974. Origin of alkaline magmas as a result of anatexis. In: Sorenson, H. (ed.), The alkaline rocks. J. Wiley & Sons, London. 427–436.Google Scholar
Harrison, L.N., Weis, D., Garcia, M.O., 2020. The multiple depleted mantle components in the Hawaiian-Emperor chain. Chemical Geology532, 119324.CrossRefGoogle Scholar
Harrison, T.M., 1981. Diffusion of 40Ar in hornblende. Contributions to Mineralogy and Petrology78, 324–331.CrossRefGoogle Scholar
Harrison, T.M., Watson, E.B., 1984. The behaviour of apatite during crustal anatexis: Equilibrium and kinetic considerations. Geochimica et Cosmochimica Acta48, 1467–1477.CrossRefGoogle Scholar
Hart, S.R., 1984. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature309, 753–757.CrossRefGoogle Scholar
Haskin, L.A., Haskin, M.A., Frey, F.A., Wildman, T.R., 1968. Relative and absolute terrestrial abundances of the rare earths. In: Pepin, R.O., Ahrens, L.H. (eds.), Origin and distribution of the elements. Pergamon, Oxford. 889–911.CrossRefGoogle Scholar
Hastings, M.G., Casciotti, K.L., Elliott, E.M., 2013. Stable isotopes as tracers of anthropogenic nitrogen sources, deposition, and impacts. Elements9, 339–344.CrossRefGoogle Scholar
Hauri, E.H., Hart, S., 1993. Re-Os isotope systematics of HIMU and EMII oceanic island basalts from the South Pacific Ocean. Earth and Planetary Science Letters114, 353–371.CrossRefGoogle Scholar
Hauri, E.H., Papineau, D., Wang, J., Hillion, F., 2016. High-precision analysis of multiple sulfur isotopes using NanoSIMS. Chemical Geology420, 418–161.CrossRefGoogle Scholar
Hawkesworth, C.J., van Calsteren, P.W.C., 1984, Radiogenic isotopes: Some geological applications. In: Henderson, P. (ed.), Rare earth element geochemistry. Elsevier, Amsterdam. 375–421.CrossRefGoogle Scholar
Heinonen, J.S., Luttinen, A.V., Bohrson, W.A., 2016. Enriched continental flood basalts from depleted mantle melts: Modeling the lithospheric contamination of Karoo lavas from Antarctica. Contributions to Mineralogy and Petrology171(1), 9.CrossRefGoogle Scholar
Heinonen, J.S., Luttinen, A.V., Spera, F.J., Bohrson, W.A., 2019. Deep open storage and shallow closed transport system for a continental flood basalt sequence revealed with Magma Chamber Simulator. Contributions to Mineralogy and Petrology174, 87.CrossRefGoogle Scholar
Hemming, S.R., McLennan, S.M., 2001. Pb isotope compositions of modern deep sea turbidites. Earth and Planetary Science Letters184, 489–503.CrossRefGoogle Scholar
Henchiri, S., Gaillardet, J., Dellinger, M., Bouchez, J., Spencer, R.G.M., 2016. Riverine dissolved lithium isotopic signatures in low-relief central Africa and their link to weathering regimes. Geophysical Research Letters43, 4391–4399.CrossRefGoogle Scholar
Herron, M.M., 1988. Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology58, 820–829.Google Scholar
Herron, M.M., Herron, S.L., 1990. Geological applications of geochemical well logging. In: Hurst, A., Lovell, M.A., Morton, A.C. (eds.), Geological applications of wireline logs. Geological Society Special Publication 48. Geological Society, London. 165–175.Google Scholar
Hertogen, J., Gijbels, R., 1976. Calculation of trace element fractionation during partial melting. Geochimica et Cosmochimica Acta40, 313–322.CrossRefGoogle Scholar
Herzberg, C., 2004. Geodynamic information in peridotite petrology. Journal of Petrology45, 2507–2530.CrossRefGoogle Scholar
Herzberg, C., O’Hara, M.J., 2002. Plume associated ultramafic magmas of Phanerozoic age. Journal of Petrology43, 1857–1883.CrossRefGoogle Scholar
Herzberg, C., Asimow, P.D., Arndt, N., Niu, Y., Lesher, C.M., Fitton, J.G., Cheadle, M.J., Saunders, A.D., 2007. Temperatures in ambient mantle and plumes: Constraints from basalts, picrites and komatiites. Geochemistry, Geophysics, Geosystems8, doi: 10.1029/2006GC001390.CrossRefGoogle Scholar
Herzberg, C., Condie, K., Korenaga, J., 2010. Thermal history of the Earth and its petrological expression. Earth and Planetary Science Letters292(1–2), 79–88.CrossRefGoogle Scholar
Hickson, C.J., Juras, S.J., 1986. Sample contamination and grinding. Canadian Mineralogist24, 585–589.Google Scholar
Hildreth, W., 1981. Gradients in silicic magma chambers: Implications for lithospheric magmatism. Journal of Geophysical Research86, B10153–B10192.CrossRefGoogle Scholar
Hill, P.S., Schauble, E.A., Tripati, A., 2020. Theoretical constraints on the effects of added cations on clumped, oxygen, and carbon isotope signatures of dissolved inorganic carbon species and minerals. Geochimica et Cosmochimica Acta269, 496–539.CrossRefGoogle Scholar
Hinton, R.W., 1994. Ion microprobe analysis in geology. In: Potts, P.J., Bowles, J.F.W., Reed, S.J.B., Cave, M.R. (eds.), Microprobe techniques in the Earth sciences. 235–289.CrossRefGoogle Scholar
Hoernle, K., Tilton, G., Schmincke, H.-U., 1991. Sr-Nd-Pb isotopic evolution of Gran Canaria: Evidence for shallow enriched mantle beneath the Canary Islands. Earth and Planetary Science Letters106, 44–63.CrossRefGoogle Scholar
Hofer, G., Wagreich, M., Neuhuber, S., 2013. Geochemistry of fine-grained sediments of the upper Cretaceous to Paleogene Gosau Group (Austria, Slovakia): Implications for paleoenvironmental and provenance studies. Geoscience Frontiers4, 449–468.CrossRefGoogle Scholar
Hoffman, E.L., 1992. Instrumental neutron activation in geoanalysis. Journal of Geochemical Exploration44, 297–319.CrossRefGoogle Scholar
Hoffmann, J.E., Münker, C., Polat, A., König, S., Mezger, K., Rosing, M.T., 2010. Highly depleted Hadean mantle reservoirs in the sources of early Archean arc-like rocks, Isua supracrustal belt, southern West Greenland. Geochimica et Cosmochimica Acta74, 7236–7260.CrossRefGoogle Scholar
Hoffmann, J.E., Münker, C., Polat, A., Rosing, M.T., Schulz, T., 2011. The origin of decoupled Hf–Nd isotope compositions in Eoarchean rocks from southern West Greenland. Geochimica et Cosmochimica Acta75, 6610–6628.CrossRefGoogle Scholar
Hofmann, A.W., 2014. Sampling mantle heterogeneity through oceanic basalts: Isotopes and trace elements. In: Holland, H., Turekian, K.K. (eds.), Treatise on geochemistry, 2nd ed.Elsevier, Oxford. 3: 67–101.CrossRefGoogle Scholar
Hofmann, A.W., Jochum, K.P., Seufert, M., White, W.M., 1986. Nb and Pb in oceanic basalts: New constraints on mantle evolution. Earth and Planetary Science Letters79, 33–45.CrossRefGoogle Scholar
Hoiland, C., Miller, E., Pease, V., 2018. Greenschist facies metamorphic zircon overgrowths as a constraint on exhumation of the Brooks Range metamorphic core, Alaska. Tectonics, doi: 10.1029/2018TC005006.CrossRefGoogle Scholar
Hoiland, C.W., Miller, E.L., Pease, V., Hourigan, J., 2017. Detrital zircon U–Pb geochronology and Hf isotope geochemistry of metasedimentary strata in the southern Brooks Range: Constraints on Neoproterozoic–Cretaceous evolution of Arctic Alaska. Geological Society Special Publication 460. Geological Society, London.Google Scholar
Holz, F., Pichavant, M., Barbey, P., Johannes, W., 1992. Effects of H2O on liquidus phase relations in the haplogranite system at 2 and 5 kbar. American Mineralogist77, 1223–1241.Google Scholar
Hooker, P.J., Hamilton, P.J., O’Nions, R.K., 1981. An estimate of the Nd isotopic composition of Iapetus seawater from ca. 490 Ma metalliferous sediments. Earth and Planetary Science Letters56, 180–188.CrossRefGoogle Scholar
Horita, J., 2005. Some perspectives on isotope biosignatures for early life. Chemical Geology218, 171–188.CrossRefGoogle Scholar
Horita, J., Polyakov, V.B., 2015. Carbon-bearing iron phases and the carbon isotope composition of the deep earth. Proceedings of the National Academy of Sciences112, 31–36.CrossRefGoogle ScholarPubMed
Hu, Y., Teng, F.-Z., Ionov, D.A., 2020. Magnesium isotopic composition of metasomatized upper sub-arc mantle and its implications to Mg cycling in subduction zones. Geochimica et Cosmochimica Acta278, 219–234.CrossRefGoogle Scholar
Huang, F., Lundstrom, C.C., McDonough, W.F., 2006. Effect of melt structure on trace-element partitioning between clinopyroxene and silicic, alkaline, aluminous melts. American Mineralogist91(8–9), 1385–1400.CrossRefGoogle Scholar
Huang, W.-L., Wyllie, P.J., 1975. Melting relations in the system NaAlSi3O8– KAlSi3O8–SiO2 to 35 kilobars, dry and excess water. Journal of Geology83, 737–748.CrossRefGoogle Scholar
Huebner, M., Kyser, T.K., Nisbet, E.G., 1986. Stable-isotope geochemistry of the high-grade metapelites from the Central zone of the Limpopo belt. American Mineralogist71, 1343–1353.Google Scholar
Hughes, H.S.R., McDonald, I., Goodenough, K.M., Ciborowsk, T.J.R., Kerr, A.C., Davies, J.H.F.L., Selby, D., 2014. Enriched lithospheric mantle keel below the Scottish margin of the North Atlantic Craton: Evidence from the Palaeoproterozoic Scourie Dyke Swarm and mantle xenoliths. Precambrian Research250, 97–126.CrossRefGoogle Scholar
Humphries, S.E., 1984. The mobility of the rare earth elements in the crust. In: Henderson, P. (ed.), Rare earth element geochemistry. Elsevier,Amsterdam. 315–341.Google Scholar
Iizuka, T., Yamaguchi, T., Hibiya, Y., Amelin, Y., 2015. Meteorite zircon constraints on the bulk Lu-Hf isotope composition and early differentiation of the Earth. Proceedings of the National Academy of Sciences112, 5331–5336.CrossRefGoogle Scholar
Ikin, N.P., Harmon, R.S., 1983. A stable isotope study of serpentinization and metamorphism in the Highland Border Suite, Scotland, U.K. Geochimica et Cosmochimica Acta47, 153–167.CrossRefGoogle Scholar
Ingersoll, R., 2011. Tectonics of sedimentary basins, with revised nomenclature. In: Busby, C., Azor, A. (eds.), Tectonics of sedimentary basins: Recent advances. Wiley, Chichester. 1–43.Google Scholar
Ionov, D.A., Shirey, S.B., Weis, D., Brügmann, G., 2006. Os–Hf–Sr–Nd isotope and PGE systematics of spinel peridotite xenoliths from Tok, SE Siberian craton: Effects of pervasive metasomatism in shallow refractory mantle. Earth and Planetary Science Letters241, 47–64.CrossRefGoogle Scholar
Ireland, T., 2014. Ion microscopes and microprobes. In: Holland, H.D., Turekian, K.K. (eds.), Treatise on geochemistry, 2nd ed.Elsevier, Oxford. 15: 385–409.CrossRefGoogle Scholar
Irvine, T.N., Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences8, 523–548.CrossRefGoogle Scholar
Irving, A.J., Frey, F.A., 1978. Distribution of trace elements between garnet megacrysts and host volcanic liquids of kimberlitic to rhyolitic composition. Geochimica et Cosmochimica Acta42, 771–787.CrossRefGoogle Scholar
Iveson, A.A., Rowe, M.C., Webster, J.D., Neil, O.K., 2018. Amphibole-, clinopyroxene- and plagioclase-melt partitioning of trace and economic metals in halogen-bearing rhyodacitic melts. Journal of Petrology59, 1597–1604.CrossRefGoogle Scholar
Jackson, D.H., Mattey, D.P., Harris, N.B.W., 1988. Carbon isotope compositions of fluid inclusions in charnockites from southern India. Nature333, 167–170.CrossRefGoogle Scholar
Jackson, M.G., Shirey, S.B., 2011. Re–Os isotope systematics in Samoan shield lavas and the use of Os-isotopes in olivine phenocrysts to determine primary magmatic compositions. Earth and Planetary Science Letters312, 91–101.CrossRefGoogle Scholar
Jackson, M.G., Hart, S.R., Koppers, A.P., Staudigel, H., Konter, J., Blusztajn, J., Kurz, M., Russell, J.A.2007. The return of subducted continental crust in Samoan lavas. Nature448, 684–687.CrossRefGoogle ScholarPubMed
Jackson, M.G., Shirey, S.B., Hauri, E.H., Kurz, M.D., Rizo, H., 2016. Peridotite xenoliths from the Polynesian Austral and Samoa hotspots: Implications for the destruction of ancient 187Os and 142Nd isotopic domains and the preservation of Hadean 129Xe in the modern convecting mantle. Geochimica et Cosmochimica Acta185, 21–43.CrossRefGoogle Scholar
Jacobsen, S.B., Wasserburg, G.J., 1980. Sm-Nd isotopic evolution of chondrites. Earth and Planetary Science Letters50, 139–155.CrossRefGoogle Scholar
Jagoutz, E., Palme, H., Baddenhausen, H., Blum, K., Cendales, M., Dreibus, G., Spottel, B., Lorenz, V., Wanke, H., 1979. The abundances of major, minor and trace elements in the Earth’s mantle as derived from primitive ultramafic nodules. Proceedings of the Lunar and Planetary Science Conference 10. Geochimica et Cosmochimica Acta Supplement11, 2031–2050.Google Scholar
James, D.E., 1981. The combined use of oxygen and radiogenic isotopes as indicators of crustal contamination. Annual Review of Earth and Planetary Sciences9, 311–344.CrossRefGoogle Scholar
James, R.S., Hamilton, D.L., 1969. Phase relations in the system NaAlSi3O8–KAlSi3O8–CaAlSi3O8–SiO2 at 1 kilobar water vapour pressure. Contributions to Mineralogy and Petrology21, 111–141.CrossRefGoogle Scholar
Janousek, V., Moyen, J.F., Martin, H., Erban, V., Farrow, C., 2016. Geochemical modelling of igneous processes – Principles and recipes in R language: Bringing the power of R to a geochemical community. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Jarvis, K.E., Williams, J.G., 1989. The analysis of geological samples by slurry nebulisation inductively coupled plasma-mass spectrometry (ICP-MS). Chemical Geology77, 53–63.CrossRefGoogle Scholar
Javoy, M., 1977. Stable isotopes and geothermometry. Journal of the Geological Society133, 609–636.CrossRefGoogle Scholar
Javoy, M., Fourcade, S., Allegre, C.J., 1970. Graphical method for examining 18O/16O fractionation in silicate rocks. Earth and Planetary Science Letters10, 12–16.CrossRefGoogle Scholar
Jenkin, G., 1997. Mode effects on cooling rate estimates from Rb–Sr data. Geology25, 907–910.2.3.CO;2>CrossRefGoogle Scholar
Jenkin, G., Roger, G., Fallick, A.E., Farrow, C.M., 1995. Rb–Sr closure temperatures in bi-mineralic rocks; a mode effect and test for different diffusion models. Chemical Geology (Isotope Geoscience)122, 227–240.CrossRefGoogle Scholar
Jenner, F.E., O’Neill, H.St.C., 2012. Analysis of 60 elements in 616 ocean floor basaltic glasses. Geochemistry, Geophysics, Geosystems13, doi: 10.1029/2011GC004009.CrossRefGoogle Scholar
Jensen, L.S., 1976. A new cation plot for classifying subalkalic volcanic rocks. Ontario Division of Mines Miscellaneous Paper 66.Google Scholar
Jensen, L.S., Pyke, D.R., 1982. Komatiites in the Ontario portion of the Abitibi belt. In: Arndt, N.T., Nisbet, E.G. (eds.), Komatiites. George Allen and Unwin, London. 147–157.Google Scholar
Jia, Y., Kerrich, R., 2015. N-isotope composition of the primitive mantle compared to diamonds. Lithos233, 131–138.CrossRefGoogle Scholar
Jochum, K.P., Enzweiler, J., 2014. Reference materials in geochemical and environmental research. In: Holland, H.D., Turekian, K.K. (eds.), Treatise on geochemistry, 2nd ed.Elsevier, Oxford. 15: 43–70.CrossRefGoogle Scholar
Jochum, K.P., Seufert, H.M., Thirlwall, M.F., 1990. High-sensitivity Nb analysis by spark source mass spectrometry (SSMS) and calibration of XRF Nb and Zr. Chemical Geology81, 1–16.CrossRefGoogle Scholar
Johannes, W., Holz, F., 1996. Petrogenesis and experimental petrology of granitic rocks. Springer, Berlin.CrossRefGoogle Scholar
Johnson, C.M., Beard, B.L., Albarede, F., 2004. Geochemistry of non-traditional stable isotopes. Reviews in Mineralogy and Geochemistry 55. Mineralogical Society of America, Washington DC.CrossRefGoogle Scholar
Johnson, C.M., Beard, B.L., Weyer, S., 2020. Iron geochemistry: An isotopic perspective. Springer-Nature,Cham.CrossRefGoogle Scholar
Johnsson, M.J., 1993. The system controlling the composition of clastic sediments. Geological Society of America, Special Paper 284.CrossRefGoogle Scholar
Johnston, D.T., 2011. Multiple sulfur isotopes and the evolution of the Earth’s surface sulfur cycle. Earth-Science Reviews106, 161–183.CrossRefGoogle Scholar
Jørgensen, B.B., Findlay, A.J., Pellerin, A., 2019. The biogeochemical sulfur cycle of marine sediments. Frontiers in Microbiology10, article 849.CrossRefGoogle ScholarPubMed
Jouzel, J., Koster, R.D., 1996. A reconsideration of the initial conditions used for stable water isotope models. Journal of Geophysical ResearchD101, 22933–22938.CrossRefGoogle Scholar
Jouzel, J., et al., 1997. Validity of the temperature reconstruction from water isotopes in ice cores. Journal of Geophysical Research102C, 471–487.Google Scholar
Kamber, B.S., 2015. The evolving nature of terrestrial crust from the Hadean, through the Archaean, into the Proterozoic. Precambrian Research258, 48–82.CrossRefGoogle Scholar
Kamber, B.S., Webb, G.E., 2001. The geochemistry of late Archaean microbial carbonate: Implications for ocean chemistry and continental erosion history. Geochimica et Cosmochimica Acta65, 2509–2525.CrossRefGoogle Scholar
Kamber, B.S., Bolhar, R., Webb, G.E., 2004. Geochemistry of late Archaean stromatolites from Zimbabwe: Evidence for microbial life in restricted epicontinental seas. Precambrian Research132, 379–399.CrossRefGoogle Scholar
Kamber, B.S., Greig, A., Collerson, K.D., 2005. A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia. Geochimica et Cosmochimica Acta69, 1041–1058.CrossRefGoogle Scholar
Kämpf, L., Plessen, B., Lauterbach, S., Nantke, C., Meyer, H., Chapligin, B., Brauer, A., 2020. Stable oxygen and carbon isotopes of carbonates in lake sediments as a paleoflood proxy. Geology48, doi: 10.1130/G46593.1.CrossRefGoogle Scholar
Keith, M., Haase, K.M., Klemd, R., Krumm, S., Strauss, H., 2016. Systematic variations of trace element and sulfur isotope compositions in pyrite with stratigraphic depth in the Skouriotissa volcanic-hosted massive sulfide deposit, Troodos ophiolite, Cyprus. Chemical Geology423, 7–18.CrossRefGoogle Scholar
Kelemen, P.B., 1990. Reaction between ultramafic rock and fractionating basaltic magma. I. Phase relations, the origin of calc-alkaline magma series, and the formation of discordant dunite. Journal of Petrology31, 51–98.CrossRefGoogle Scholar
Kelemen, P.B., Shimizu, N., Salters, V.J., 1995. Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature375, 747–753.CrossRefGoogle Scholar
Kelley, K.A., Cottrell, E., 2009. Water and the oxidation state of subduction zone magmas. Science325, 605–607.CrossRefGoogle ScholarPubMed
Kelsey, C.H., 1965. Calculation of the CIPW norm. Mineralogical Magazine34, 276–282.CrossRefGoogle Scholar
Kelsey, D.E., Clark, C., Hand, M., 2008. Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: Examples using model metapelitic and metapsammitic granulites. Journal of Metamorphic Geology26, 199–212.CrossRefGoogle Scholar
Kemp, A., Hawkesworth, C., 2014. Growth and differentiation of the continental crust from isotope studies of accessory minerals. In: Holland, H.D., Turekian, K.K. (eds.), Treatise on geochemistry, 2nd ed.Elsevier, Oxford. 4: 379–421.CrossRefGoogle Scholar
Kemp, A., Whitehouse, M., Vervoort, J., 2019. Deciphering the zircon Hf isotope systematics of Eoarchean gneisses from Greenland: Implications for ancient crust–mantle differentiation and Pb isotope controversies. Geochimica et Cosmochimica Acta250, 76–97.CrossRefGoogle Scholar
Kemp, A., Wilde, S., Hawkesworth, C., Coath, C., Nemchin, A., Pidgeon, T., Vervoort, J., DuFrane, S., 2010. Hadean crustal evolution revisited: New constraints from Pb–Hf isotope systematics of the Jack Hills zircons. Earth and Planetary Science Letters296, 45–56.CrossRefGoogle Scholar
Kendall, B., Creaser, R.A., Selby, D., 2006. Re-Os geochronology of postglacial black shales in Australia: Constraints on the timing of ‘Sturtian’ glaciation. Geology34, 729–732.CrossRefGoogle Scholar
Kesler, S.E., Vennemann, T.W., Frederickson, C., Breithaupt, A., Vazquez, R, Furman, F.C., 1997. Hydrogen and oxygen isotope evidence for origin of MVT-forming brines, southern Appalachians. Geochimica et Cosmochimica Acta61, 1513, 1523.CrossRefGoogle Scholar
Ketcham, R.A., Donelick, R.A., Carlson, W.D., 1999. Variability of apatite fission-track annealing kinetics: III. Extrapolation to geological time scales. American Mineralogist84, 1235–1255.CrossRefGoogle Scholar
Klein, M., Stosch, H.-G., Seck, H.A., 1997. Partitioning of high field-strength and rare-earth elements between amphibole and quartz-dioritic to tonalitic melts: An experimental study. Chemical Geology138, 257–271.CrossRefGoogle Scholar
Klein, M., Stosch, H.-G., Seck, H.A., Shimizu, N., 2000. Experimental partitioning of high field strength and rare earth elements between clinopyroxene and garnet in andesitic to tonalitic systems. Geochimica et Cosmochimica Acta64, 99–115.CrossRefGoogle Scholar
Klimm, K., Blundy, J.D., Green, T.H., 2008. Trace element partitioning and accessory phase saturation during H2O-saturated melting of basalt with implications for subduction zone chemical fluxes. Journal of Petrology49, 523–553.CrossRefGoogle Scholar
Koehler, K.J., Larnz, K., 1980. An empirical investigation of goodness-of-fit statistics for sparse multinomials. Journal of the American Statistical Association75, 336–344.CrossRefGoogle Scholar
Koga, K.T., Kelemen, P.B., Shimizuet, N., 2001. Petrogenesis of the crust–mantle transition zone and the origin of lower crustal wehrlite in the Oman ophiolite. Geochemisty, Geophysics, Geosystems2: 2000GC000132.Google Scholar
Kohn, M.J., 2010. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proceedings of the National Academy of Sciences107, 19691–19695.CrossRefGoogle ScholarPubMed
Konn, C., Charlou, J.L., Holm, N.G., Mousis, O., 2015. The production of methane, hydrogen, and organic compounds in ultramafic-hosted hydrothermal vents of the Mid-Atlantic Ridge. Astrobiology15, doi: 10.1089/ast.2014.1198.CrossRefGoogle ScholarPubMed
Korotev, R. L., 1996. A self-consistent compilation of elemental concentration data for 93 geochemical reference samples. Geostandards Newsletter20, 217–245.CrossRefGoogle Scholar
Košler, J., Fonneland, H., Sylvester, P., Tubrett, M., Pedersen, R.B., 2002. U–Pb dating of detrital zircons for sediment provenance studies: A comparison of laser ablation ICPMS and SIMS techniques. Chemical Geology182, 605–618.CrossRefGoogle Scholar
Kovacs, L.O., Kovacs, G.P., Martin-Fernandez, J.A., Barcelo-Vidal, C., et al., 2006. Major-oxide compositional discrimination in Cenozoic volcanites of Hungary. In: Buccianti, A., Mateu-Figueras, G., Pawlowsky-Glahn, V. (eds.), Compositional data analysis in the geosciences: From theory to practice. Geological Society Special Publication 264. Geological Society, London. 11–23.Google Scholar
Kramers, J.D., Tolstikhin, I.N., 1997. Two terrestrial lead isotope paradoxes, forward transport modelling, core formation and the history of the continental crust. Chemical Geology139(1–4), 75–110.CrossRefGoogle Scholar
Krissansen-Totton, J., Buick, R., Catling, D.C., 2015. A statistical analysis of the carbon isotope record from the Archean to Phanerozoic and implications for the rise of oxygen. American Journal of Science315, 275–316.CrossRefGoogle Scholar
Kroner, A., Williams, I.S., Compston, W., Baur, N., Vitanage, P.W., Perera, L.R.K., 1987. Zircon ion microprobe dating of high-grade rocks in Sri Lanka. Journal of Geology95, 775–791.CrossRefGoogle Scholar
Kroonenberg, S.B., 1990. Geochemistry of Quaternary fluvial sands from different tectonic regimes. Geochemistry of the Earth’s Surface and of Mineral Formation, 2nd International Symposium, July 2–8, Aix en Provence, France (extended abstracts), 88–91.CrossRefGoogle Scholar
Kulaksız, S., Bau, M., 2013. Anthropogenic dissolved and colloid/nanoparticle-bound samarium, lanthanum and gadolinium in the Rhine River and the impending destruction of the natural rare earth element distribution in rivers. Earth and Planetary Science Letters362, 43–50.CrossRefGoogle Scholar
Kuno, H., 1966. Lateral variation of basalt magma types across continental margins and island arcs. Bulletin of Volcanology29, 195–222.CrossRefGoogle Scholar
Kuno, H., 1968. Differentiation of basalt magmas. In: Hess, H.H., Poldervaart, A. (eds.), Basalts: The Poldervaart treatise on rocks of basaltic composition. Interscience, New York. 2: 623–688.Google Scholar
Kuritani, T., Kitgawa, H., Nakamura, E., 2005. Assimilation and fractional crystallisation controlled by transport process of crustal melt: Implications from an alkali basalt–daref suite from Rishiri volcano, Japan. Journal of Petrology46, 1421–1442.CrossRefGoogle Scholar
Kurz, M.D., Jenkins, W.J., 1981. The distribution of helium in oceanic basalt glasses. Earth and Planetary Science Letters53, 41–54.CrossRefGoogle Scholar
Kyser, T.K., Kerrich, R., 1991. Retrograde exchange of hydrogen isotopes between hydrous minerals and water at low temperatures. In: Taylor, H.P., O’Neill, J.R., Kaplan, I.R. (eds.), Stable isotope geochemistry: A tribute to Samuel Epstein. Geological Society Special Publication 3. Geological Society, London. 409–422.Google Scholar
Kyser, T.K., O’Neill, J.R., 1984. Hydrogen isotope systematics of submarine basalts. Geochimica et Cosmochimica Acta48, 2123–2133.CrossRefGoogle Scholar
Labidi, J., Cartigny, P., 2016. Negligible sulfur isotope fractionation during partial melting: Evidence from Garrett transform fault basalts, implications for the late-veneer and the Hadean matte. Earth and Planetary Science Letters451, 196–207.CrossRefGoogle Scholar
Lacan, F., Tachikawa, K., Jeandel, C., 2012. Neodymium isotopic composition of the oceans: A compilation of seawater data. Chemical Geology300, 177–184.CrossRefGoogle Scholar
Lacroix, B., Vennemann, T., 2015. Empirical calibration of the oxygen isotope fractionation between quartz and Fe–Mg–chlorite. Geochimica et Cosmochimica Acta149, 21–31.CrossRefGoogle Scholar
Lambrecht, G., Diamond, L.W., 2014. Morphological ripening of fluid inclusions and coupled zone-refining in quartz crystals revealed by cathodoluminescence imaging: Implications for CL-petrography, fluid inclusion analysis and trace-element geothermometry. Geochimica et Cosmochimica Acta141, 381–406.CrossRefGoogle Scholar
Langmuir, C.H., 1989. Geochemical consequences of in situ crystallisation. Nature340, 199–205.CrossRefGoogle Scholar
Langmuir, C.H., Vocke, R.D., Hanson, G.N., Hart, S.R., 1978. A general mixing equation with applications to Icelandic basalts. Earth and Planetary Science Letters37, 380–392.CrossRefGoogle Scholar
Lassiter, J.C., Blichert-Toft, J., Hauri, E.H., Barsczus, H.G., 2003. Isotope and trace element variations in lavas from Raivavae and Rapa, Cook–Austral Islands: Constraints on the nature of HIMU- and EM-mantle and the origin of mid-plate volcanism in French Polynesia. Chemical Geology202, 115–138.CrossRefGoogle Scholar
Laubier, M., Grove, T.L., Langmuir, C.H., 2014. Trace element mineral/melt partitioning for basaltic and basaltic andesitic melts: An experimental and laser ICP-MS study with application to the oxidation state of mantle source regions. Earth and Planetary Science Letters392, 265–278.CrossRefGoogle Scholar
Leake, B.E., Hendry, G.L., Kemp, A., Plant, A.G., Harvey, P.K., Wilson, J.R., Coats, J.S., Aucott, J.W., Lunel, T., Howarth, R.J., 1969. The chemical analysis of rock powders by automated X-ray fluorescence. Chemical Geology5, 7–86.CrossRefGoogle Scholar
Le Bas, M.J., 2000. IUGS reclassification of the high-Mg and picritic volcanic rocks. Journal of Petrology41, 1467–1470.CrossRefGoogle Scholar
Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., Zanettin, B., 1986. A chemical classification of volcanic rocks based on the total alkali–silica diagram. Journal of Petrology27, 745–750.CrossRefGoogle Scholar
Le Maitre, R.W., 1968. Chemical variation within and between volcanic rock series: A statistical approach. Journal of Petrology9, 220–252.CrossRefGoogle Scholar
Le Maitre, R.W., 1976. The chemical variability of some common igneous rocks. Journal of Petrology17, 589–637.CrossRefGoogle Scholar
Le Maitre, R.W., 1982. Numerical petrology: Statistical interpretation of geochemical data. Elsevier, Amsterdam.Google Scholar
Le Maitre, R.W., Bateman, P., Dudek, A., Keller, J., Lameyre, J., Le Bas, M.J., Sabine, P.A., Schmid, R., Sorensen, H., Streckeisen, A., Woolley, A.R., Zanettin, B., 1989. A classification of igneous rocks and glossary of terms. Blackwell, Oxford.Google Scholar
Le Maitre, R.W., Streckeisen, A., Zanettin, B., Le Bas, M., Bonin, B., Bateman, P. (eds.), 2002. Igneous rocks: A classification and glossary of terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press, Cambridge. doi: 10.1017/CBO9780511535581.CrossRefGoogle Scholar
Lechler, P.J., Desilets, M.O., 1987. A review of the use of loss on ignition as a measurement of total volatiles in whole rock analysis. Chemical Geology63, 341–344.CrossRefGoogle Scholar
Lécuyer, C., Gillet, P., Robert, F., 1998. The hydrogen isotope composition of seawater and the global water cycle. Chemical Geology145, 249–261.CrossRefGoogle Scholar
Ledevin, M., 2019. Archaean cherts: Formation, processes and palaeoenvironments. In: Van Kranendonk, M., Bennett, V.C., Hoffmann, J.E. (eds.), Earth’s oldest rocks, 2nd ed.Elsevier. 913–944.CrossRefGoogle Scholar
Lee, C.-T., 2016. Geochemical classification of elements. In: White, W.M. (ed.), Encyclopedia of geochemistry. Springer, Cham. 1–5.Google Scholar
Levasseur, S., Birck, J.L., Allegre, C.J., 1999. The osmium riverine flux and the oceanic mass balance of osmium. Earth and Planetary Science Letters174, 7–23.CrossRefGoogle Scholar
Lewis, J.B., Floss, C., Gyngard, F., 2018. Origin of nanodiamonds from Allende constrained by statistical analysis of C isotopes from small clusters of acid residue by NanoSIMS. Geochimica et Cosmochimica Acta221, 237–254.CrossRefGoogle Scholar
Li, J., Huang, X.-L., Wei, G.-J., Liu, Y., Ma, J.-L., Han, L., He, P.-L., 2018. Lithium isotope fractionation during magmatic differentiation and hydrothermal processes in rare-metal granites. Geochimica et Cosmochimica Acta240, 64–79.CrossRefGoogle Scholar
Li, J.-L., Schwarzenbach, E.M., John, T., Ague, J.J., Huang, F., Gao, J., Klemd, R., Whitehouse, M.J., Wang, X.-S., 2020. Uncovering and quantifying the subduction zone sulfur cycle from the slab perspective. Nature Communications, doi: 10.1038/s41467-019-14110-4.CrossRefGoogle Scholar
Li, K., Li, L., Pearson, D.G., Stachel, T., 2019. Diamond isotope compositions indicate altered igneous oceanic crust dominates deep carbon recycling. Earth and Planetary Science Letters516, 190–201.CrossRefGoogle Scholar
Liegeois, J.P., Navez, J., Hertogen, J., Black, R., 1998. Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization. Lithos45, 1–28.CrossRefGoogle Scholar
Liu, B., Liang, Y., 2017. An introduction of Markov chain Monte Carlo method to geochemical inverse problems: Reading melting parameters from REE abundances in abyssal peridotites. Geochimica et Cosmochimica Acta203, 216–234.CrossRefGoogle Scholar
Liu, X.M., Rudnick, R.L., 2011. Constraints on continental crustal mass loss via chemical weathering using lithium and its isotopes. Proceedings of the National Academy of Sciences108, 20873–20880.CrossRefGoogle ScholarPubMed
Lobach-Zhuchenko, S.B., Rollinson, H.R., Chekulaev, V.P, Savatenkov, V.M., Kovalenko, A.V., Martin, H., Guseva, N.S., Arestova, N.A., 2008. Petrology of a late Archaean, highly-potassic, sanukitoid pluton from the Baltic Shield: Insights into late Archaean mantle metasomatism. Journal of Petrology49, 393–420.CrossRefGoogle Scholar
Lodders, K., Palme, H., Gail, H.P., 2009. 4.4 Abundances of the elements in the solar system. In: Solar system. Springer-Verlag, Berlin.712–770.CrossRefGoogle Scholar
Long, J.V.P., 1994. Microanalysis from the 1950 to the 1990s. In: Potts, P.J., Bowles, J.F.W., Reed, S.J.B., Cave, M.R. (eds.), Microprobe techniques in the Earth sciences. Cambridge University Press, Cambridge. 1–48.Google Scholar
Lotout, C., Poujol, M., Pitra, P., Anczkiewicz, R., Van Den Driessche, J., 2020. From burial to exhumation: Emplacement and metamorphism of mafic eclogitic terranes constrained through multimethod petrochronology: A case study from the Lévézou massif (French Massif Central, Variscan belt). Journal of Petrology, doi: 10.1093/petrology/egaa046.CrossRefGoogle Scholar
Ludbrook, J., 1997. Comparing methods of measurement. Clinical and Experimental Pharmacology and Physiology24, 193–203.CrossRefGoogle Scholar
Luders, V., Pracejus, B., Halbach, P., 2001. Fluid inclusion and sulfur isotope studies in probable modern analogue Kuroko-type ores from the JADE hydrothermal field (Central Okinawa Trough, Japan). Chemical Geology173, 4558.CrossRefGoogle Scholar
Ludwig, K.R., 2009. Using Isoplot/Ex, Version 4.1: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 4.Google Scholar
Lugmair, G.W., Marti, K., 1978. Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters39, 349–357.CrossRefGoogle Scholar
Lugmair, G.W., Scheinin, N.B., Marti, K., 1975. Search for extinct 146Sm, 1. The isotopic abundance of 142Nd in the Juvinas meteorite. Earth and Planetary Science Letters27, 79–84.CrossRefGoogle Scholar
Luhr, J.F., Carmichael, I.S.E., 1980. The Colima Volcanic Complex, Mexico. Contributions to Mineralogy and Petrology71, 343–372.CrossRefGoogle Scholar
Lundstrom, C., 2009. Hypothesis for the origin of convergent margin granitoids and Earth’s continental crust by thermal migration zone refining. Geochimica et Cosmochimica Acta73, 5709–5729.CrossRefGoogle Scholar
Luth, W.C., Jahns, R.H., Tuttle, O.F., 1964. The granite system at pressures of 4–10 kbar. Journal of Geophysical Research69, 759