Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-d2wc8 Total loading time: 0.431 Render date: 2021-10-19T06:06:18.998Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

12 - Management of spasticity in children

Published online by Cambridge University Press:  22 August 2009

Rachael Hutchinson
Affiliation:
Consultant Paediatric Orthopaedic Surgeon Norfolk and Norwich University Hospital NHS Trust, Norfolk, UK
H. Kerr Graham
Affiliation:
Professor of Orthopaedic Surgery Royal Children's Hospital, Melbourne, Australia
Michael P. Barnes
Affiliation:
University of Newcastle upon Tyne
Garth R. Johnson
Affiliation:
University of Newcastle upon Tyne
Get access

Summary

Introduction

Spasticity can be defined as a velocity-dependent resistance to passive movement of a joint and its associated musculature (Lance, 1980; Rymer & Powers, 1989; Massagli, 1991). Although spasticity is usually present before contracture in children with cerebral palsy, true muscle shortening or contracture also appears at an early stage. The majority of children will have a mixture of spasticity and contracture. Distinguishing spasticity from contracture is important from a management point of view.

  1. ‘Dynamic’ shortening is most commonly caused by spasticity but may also be associated with dystonia and mixed movement disorders. Typically, ‘dynamic’ contracture is recognized in younger children with cerebral palsy or spasticity of recent onset. Such children are likely to exhibit hyperreflexia, clonus, co-contraction and a velocity-dependent resistance to passive joint motion. Children who exhibit ‘dynamic’ calf shortening may walk on their toes with an equinus gait, but on the examination couch the range of passive ankle dorsiflexion may be full or almost full.

  2. ‘Fixed’ shortening or ‘myostatic’ contracture describes the typical stiffness found in muscles of older children with cerebral palsy or spasticity of longer duration. The stiffness is much less velocity dependent and is still present during couch examination and under anaesthesia.

Causes of spasticity in children

With the eradication of poliomyelitis and the dramatic fall in the prevalence of spina bifida, the most common motor disorder in children in developed countries is cerebral palsy. The incidence of cerebral palsy in developed countries is static or even rising.

Type
Chapter
Information
Upper Motor Neurone Syndrome and Spasticity
Clinical Management and Neurophysiology
, pp. 214 - 240
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albright, A. L. (1996). Baclofen in the treatment of cerebral palsy. J Child Neurol, 11: 77–83.Google Scholar
Albright, A. L., Barron, W. B., Fasick, M. P., Polinko, P. & Janosky, J. (1993). Continuous intrathecal baclofen infusion for spasticity of cerebral origin. JAMA, 270: 2475–7.Google Scholar
Albright, A. L., Barry, M. J., Shafton, D. H. & Ferson, S. S. (2001). Intrathecal baclofen for generalized dystonia. Dev Med Child Neurol, 43: 652–7.Google Scholar
Albright, A. L. & Neville, B. (2000). Pharmacological management of spasticity. In: Albright, A. L. & Neville, B. (eds.), The Management of Spasticity Associated with the Cerebral Palsies in Children and Adolescents. Guildfort, UK: Churchill Communications, Biddles Ltd., pp. 121–33.
American Academy of Neurology. (1990). Assessment: the clinical usefulness of botulinum toxin-A in treating neurologic disorders. Report of the therapeutics and technology assessment subcommittee of the American Academy of Neurology. Neurology, 40: 1332–6.
Arens, J. F. & McKinnon, W. M. P. (1971). Malignant hyperpyrexia during anaesthesia. JAMA, 215: 919–22.Google Scholar
Arens, L. J., Peacock, W. J. & Peter, J. (1989). Selective posterior rhizotomy: a long-term follow-up study. Child's Nerv Syst, 5: 148–52.Google Scholar
Ashworth, B. (1964). Preliminary trial of cardisoprodol in multiple sclerosis. Practitioner, 192: 540–2.Google Scholar
Bache, C. E., Selber, P. & Graham, H. K. (2003). Mini-symposium: cerebral palsy: the management of spastic diplegia. Curr Orthop, 17: 88–104.Google Scholar
Baillieu, C. E., Barwood, S. A., Boyd, R. N., Nattrass, G. & Graham, H. K. (1997). The analgesic effects of botulinum toxin A in adductor release surgery in children with cerebral palsy: a pilot study. Dev Med Child Neurol, 39(suppl. 75): 13.Google Scholar
Bakheit, A. M. O., Badwan, D. A. H. & McLellan, D. L. (1996). The effectiveness of chemical neurolysis in the treatment of lower limb spasticity. Clin Rehabil, 10: 40–3.Google Scholar
Beckerman, H., Becker, J., Lankhorst, G. J. & Verbeek, A. L. M. (1996). Walking ability of stroke patients – efficacy of tibial nerve blocking and a polypropylene ankle-foot orthosis. Arch Phys Med, 77: 1144–51.Google Scholar
Blackman, J. A., Reed, M. D. & Roberts, C. D. (1992). Muscle relaxant drugs for children with cerebral palsy. In: Sussman, M. D. (ed.), The Diplegic Child: Evaluation and Management. Rosemont, IL: American Academy of Orthopaedic Surgeons, pp. 229–40.
Bohannon, R. W. & Smith, M. B. (1987). Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther, 67: 206–7.Google Scholar
Booth, M. Y., Yates, C. C., Edgar, T. S. & Bandy, W. D. (2003). Serial casting versus combined intervention with botulinum toxin A and serial casting in the treatment of spastic equinus in children. Pediatr Phys Ther, 15: 216–20.Google Scholar
Boyd, R. N. & Graham, H. K. (1997). Botulinum toxin A in the management of children with cerebral palsy: indications and outcomes. Eur J Neurol, 4(suppl 2): S15–22.Google Scholar
Brouwer, B., Davidson, L. K. & Olney, S. J. (2000). Serial casting in idiopathic toe-walkers and children with spastic cerebral palsy. J Pediatr Orthop, 20: 221–5.Google Scholar
Brunner, R. & Baumann, J. U. (1997). Long-term effects of intertrochanteric varus-derotation osteotomy on femur and acetabulaum in spastic cerebral palsy: an 11- to 18-year follow-up study. J Pediatr Orthop, 17: 585–91.Google Scholar
Cahan, L. D., Adams, J. M., Beeler, L. & Perry, J. (1989). Clinical electrophysiologic and kinesiologic observations in selective dorsal rhizotomy in cerebral palsy. Neurosurg State Art Rev, 4: 477–84.Google Scholar
Calta, R. G. & Santomauro, E. T. (1976). The use of baclofen in children with cerebral palsy. Folia Med, 73: 199.Google Scholar
Carpenter, E. B. (1983). Role of nerve blocks in the foot and ankle in cerebral palsy: therapeutic and diagnostic. Foot Ankle, 4: 164–6.Google Scholar
Chan, C. H. (1990). Dantrolene sodium and hepatic injury. Neurology, 40: 1427–32.Google Scholar
Chin, T. Y. P., Duncan, J. A., Johnstone, B. R. & Graham, H. K. (2005). Management of the upper limb in cerebral palsy. J Pediatr Orthop-B, 14: 389–404.Google Scholar
Coffey, R. J., Cahill, D., Steers, W.et al. (1993). Intrathecal baclofen for severe spasticity of spinal origin: results of a long-term multicenter study. J Neurosurg, 78: 226–32.Google Scholar
Corry, I. S. (1994). Use of a Motion Analysis Laboratory in Assessing the Effects of Botulinum Toxin A in Cerebral Palsy. Thesis. Belfast: Queen's University.
Corry, I. S., Cosgrove, A. P., Duffy, C. M.et al. (1995). Botulinum toxin A as an alternative to serial casting in the conservative management of equinus in cerebral palsy. Dev Med Child Neurol, 37: 20–1.Google Scholar
Corry, I. S., Cosgrove, A. P., Duffy, C. M.et al. (1998). Botulinum toxin A compared with stretching casts in the treatment of spastic equinus: a randomized prospective trial. J Pediatr Orthop, 18: 304–11.Google Scholar
Corry, I. S., Cosgrove, A. P., Duffy, C. M., Taylor, T. C. & Graham, H. K. (1999). Botulinum toxin A in the hamstring spasticity: Gait Posture, 10: 206–10.Google Scholar
Corry, I. S., Cosgrove, A. P., Walsh, E. G., McClean, D. & Graham, H. K. (1997). Botulinum toxin A in the hemiplegic upper limb: a double blind trial. Dev Med Child Neurol, 39: 185–93.Google Scholar
Corry, I. S. & Graham, H. K. (1997). Botulinum toxin A as an alternative to serial casting in the management of dynamic equinus in cerebral palsy – a randomised prospective trial. J Bone Joint Surg Br, 79(suppl. IV): 418.Google Scholar
Cosgrove, A. P., Corry, I. S. & Graham, H. K. (1994). Botulinum toxin in the management of the lower limb in cerebral palsy. Dev Med Child Neurol, 36: 386–96.Google Scholar
Cosgrove, A. P. & Graham, H. K. (1994). Botulinum toxin A prevents the development of contractures in the hereditary spastic mouse. Dev Med Child Neurol, 36: 379–85.Google Scholar
Costa, E. & Guidoffi, A. (1979). Molecular mechanisms in the receptor action of benzodiazepines. Annu Rev Pharmacol Toxicol, 19: 531–45.Google Scholar
Couper-Brash, J. (1955). Neurovascular Hila of Limb Muscles. Edinburgh: E. and S. Livingstone.
Davidoff, R. A. (1989). Mode of action of antispasticity drugs. Neurosurg State Art Rev, 4: 315–24.Google Scholar
DeLateur, B. (1972). A new technique of intramuscular phenol neurolysis. Arch Phys Med Rehabil, 53: 179–85.Google Scholar
Desmedt, J. E. & Hainaut, K. (1979). Dantrolene and A23187 ionophore: specific action on calcium channels revealed by the aequorin method. Biochem Pharmacol, 28: 957–64.Google Scholar
Dodgin, D. A., Swart, R. J., Stefko, R. M., Wenger, D. R. & Ko, J-Y. (1998). Distal tibial/fibular derotation osteotomy for correction of tibial torsion: review of technique and results in 63 cases. J Pediatr Orthop, 18: 95–101.Google Scholar
Dolphin, A. C. & Scott, R. Y. (1986). Inhibition of calcium currents in cultured rat dorsal root ganglion neurons by baclofen. Br J Pharmacol, 88: 213–20.Google Scholar
Dormans, J. P. & Copley, L. A. (1998). Orthopedic approaches to treatment. In: Dormans, J. P. & Pellegrino, L. (eds.), Caring for Children with Cerebral Palsy: A Team Approach. Baltimore: Brookes Publishing Co.
Dralle, D., Muller, H., Zierski, J. & Klug, N. (1985). Intrathecal baclofen for spasticity. Lancet, 2: 1003.Google Scholar
Eames, N. W. A., Barker, R., Hill, N., Graham H. K., Taylor, T. & Cosgrove, A. (1999). The effect of botulinum toxin A on gastrocnemius length. The magnitude and duration of the response. Dev Med Child Neurol, 41: 226–32.Google Scholar
Easton, J., Ozel, T. & Halpern, D. (1979). Intramuscular neurolysis for spasticity in children. Arch Phys Med Rehabil, 60: 155–8.Google Scholar
Fehlings, D., Rang, M., Glazier, J. & Steele, C. (2000). An evaluation of botulinum-A toxin injections to improve upper extremity function in children with hemiplegic cerebral palsy. J Pediatr, 137: 331–7.Google Scholar
Felsenthal,, G. (1974). Pharmacology of phenol in peripheral nerve blocks: a review. Arch Phys Med Rehabil, 55: 13–16.Google Scholar
Fischer, E., Cress, R. H., Haines, G., Pannin, N. & Paul, B. J. (1970). Evoked nerve conduction after nerve block by chemical means. Am J Phys Med, 49: 333–47.Google Scholar
Flett, P. J. & Graham, H. K. (2006). Cerebral palsy and paediatric neurorehabilitation. In: Selzer, M., Clarke, S., Cohen, L., Duncan, P. & Gage, F. (eds.), Textbook of Neural Repair and Rehabilitation. Cambridge, UK: Cambridge University Press, pp. 636–56.
Flett, P. J., Stern, L. M., Waddy, H.et al. (1999). Botulinum toxin A versus fixed cast stretching for dynamic calf tightness in cerebral palsy. J Paediatr Child Health, 35: 71–7.Google Scholar
Fosang, A. L., Galea, M. P., McCoy, A. T., Reddihough, D. S. & Story, I. (2003). Measures of muscle and joint performance in the lower limb of children with cerebral palsy. Dev Med Child Neurol, 45: 664–70.Google Scholar
Fromm, F. G. & Terrence, C. F. (1987). Comparison of l-baclofen and racemic baclofen in trigeminal neuralgia. Neurology, 37: 1725–8.Google Scholar
Gage, J. R., Deluca, P. A. & Renshaw, T. (1995). Gait analysis: principles and applications. Emphasis on its use in cerebral palsy. (Instructional Course Lectures). J Bone Joint Surg Am, 77: 1607–23.Google Scholar
Gilman, A. G., Goodman, L. S. & Gilman, A. (1990). Goodman and Gilman's The Pharmaceutical Basis of Therapeutics, 8th edn. New York: Macmillan.
Glasgow, J. F. T. & Graham, H. K. (1997). Management of Injuries in Children. Plymouth, UK: BMJ Publishing Group, pp. 345–78.
Glenn, M. B. (1990). Nerve blocks. In: Glen M. B. & Whyte, J. (eds.), The Practical Management of Spasticity in Children and Adults. Philadelphia: Lea & Febiger, pp. 227–58.
Gough, M., Fairhurst, C. & Shortland, A. P. (2005). Botulinum toxin and cerebral palsy: time for reflection?Dev Med Child Neurol, 47: 709–12.Google Scholar
Graham, H. K. (1995). Management of spasticity associated with cerebral palsy. In: O'Brien, C. O. & Yablon, S. (eds.), Management of Spasticity with Botulinum Toxin: A Clinical Monograph. Englewood: Colorado Postgraduate Institute for Medicine, pp. 17–23.
Graham, H. K., Aoki, K. R., Autti-Ramo, I.et al. (2000). Recommendations for the use of botulinum toxin type A in the management of cerebral palsy. Gait Posture, 11: 67–79.Google Scholar
Graham, H. K., Harvey, A., Rodda, J., Nattrass, G. R. & Pirpiris, M. (2004). The functional mobility scale. J Pediatr Orthop, 24: 514–20.Google Scholar
Graham, H. K. & Selber, P. (2003). Musculoskeletal aspects of cerebral palsy. J Bone Joint Surg Br, 85: 157–66.Google Scholar
Greenblatt, D. J., Allen, M. D., Harmatz, J. S. & Shader, R. J. (1980). Diazepam disposition determinants. Clin Pharmacol Ther, 27: 301–12.Google Scholar
Griffiths, E. & Melampy, C. (1977). General anaesthesia use in phenol intramuscular neurosis in children with spasticity. Arch Phys Med Rehabil, 58: 154–7.Google Scholar
Hoffer, M. M., Felwell, E., Perry, R., Perry, J. & Bonnet, C. (1973). Functional ambulation in children with myelomeningocoele. J Bone Joint Surg Am, 55: 137–48.Google Scholar
Houltram, J., Noble, I., Boyd, R. N.et al. (2001). Botulinum toxin type A in the management of equinus in children with cerebral palsy: an evidence-based economic evaluation. Eur J Neurol, 8(suppl. 5): 194–202.Google Scholar
Jankovic, J. & Brin, M. F. (1991). Therapeutic use of botulinum toxin. N Engl J Med, 324: 1186–94.Google Scholar
Johnson, M. B., Goldstein, L., Thomas, S. S.et al. (2004). Spinal deformity after selective dorsal rhizotomy in ambulatory patients with cerebral palsy. J Pediatr Orthop, 24: 529–36.Google Scholar
Kay, R. M., Rethlefsen, S. A., Fern-Buneo, A., Wren, T. A. L. & Skaggs, D. L. (2004). Botulinum toxin as an adjunct to serial casting treatment in children with cerebral palsy. J Bone Joint Surg Am, 86: 2377–84.Google Scholar
Keenan, W. N., Rodda, J., Wolfe, R.et al. (2004). The static examination of children and young adults with cerebral palsy in the gait analysis laboratory: technique and observer agreement. J Paediatr Orthop B, 13: 1–8.Google Scholar
Ketalaar, M., Dehmen, A., Vermeer, J. & Helders, P. J. (1998). Functional motor abilities of children with cerebral palsy: a systematic literature review of assessment measures. Clin Rehabil, 12: 369–80.Google Scholar
Khalili, A. A. & Benton, J. G. (1966). A physiologic approach to the evaluation and the management of spasticity with procaine and phenol nerve block: including a review of the physiology of the stretch reflex. CORR, 47: 97–104.Google Scholar
King, H. A. & Staheli, L. T. (1984). Torsional problems in cerebral palsy. Foot Ankle, 4: 180–4.Google Scholar
Knutson, E., Lindblom, U. & Martensson, A. (1974). Plasma and cerebrospinal fluid levels of baclofen (Lioresal) at optimal therapeutic responses in spastic paresis. J Neurol Sci, 23: 473–84.Google Scholar
Koman, L. A., Mooney, J. F. & Smith, B. P. (1996). Neuromuscular blockade in the management of cerebral palsy. J Child Neurol, 11(suppl. 1): S23–8.Google Scholar
Koman, L. A., Mooney, J. F., Smith, B., Goodman, A. & Mulvaney, T. (1983). Management of cerebral palsy with botulinum-A toxin: preliminary investigation. J Pediatr Orthop, 13: 489–95.Google Scholar
Koman, L. A., Mooney, J. F., Smith, B. P., Goodman, A. & Mulvaney, T. (1994). Management of spasticity in cerebral palsy with botulinum-A toxin: report of a preliminary, randomized, double-blind trial. J Pediatr Orthop, 14: 299–303.Google Scholar
Kroin, J. S., Ali, A., York, M. & Penn, R. D. (1993). The distribution of medication along the spinal canal after chronic intrathecal administration. Neurosurgery, 33: 226–30.Google Scholar
Lance, J. W. (1980). Symposium synopsis. In: Feldman, R. G., Young, R. R. & Koella, W. P. (eds.), Spasticity: Disordered Motor Control. Chicago: Year Book Medical Publishers, pp. 485–94.
Lazorthes, Y. R. (2006). Continuous intrathecal baclofen Infusion in the treatment of spastic cerebral palsy: a prospective multicenter study (abstr). Neurosurgery, 59: 484.Google Scholar
Lerman, J., McLeod, M. E. & Strong, H. A. (1989). Pharmacokinetics and intravenous dantrolene in children. Anaesthesiology, 70: 625–9.Google Scholar
Lietman, P. S., Haslam, R. H. A. & Walcher, J. R. (1974). Pharmacology of dantrolene sodium in children. Arch Phys Med Rehabil, 55: 388–92.Google Scholar
Lowe, K., Novak, I. & Cusick, A. (2006). Low-dose/high-concentration localized botulinum toxin A improves upper limb movement and function in children with hemiplegic cerebral palsy. Dev Med Child Neurol, 48: 170–5.Google Scholar
Lundkvist, A. & Hagglund, G. (2006). Orthopaedic surgery after selective dorsal rhizotomy. J Pediatr Orthop B, 15: 244–6.Google Scholar
Marlow, N., Wolke, D,. Bracewell, M. A. & Samwa, M. (2005). Neurologic and developemental disablility at six years of age after extremely preterm birth. N Engl J Med, 352: 9–19.Google Scholar
Massagli, T. L. (1991). Spasticity and its management in children. Phys Med Rehab Clin North Am, 2: 867–89.Google Scholar
McKinlay, I., Hyde, E. & Gordon, N. (1980). Baclofen: a team approach to drug evaluation of spasticity in childhood. Scot Med J, 25: 526–8.Google Scholar
McLaughlin, J., Bjornson, K., Temkin., N., Steinbok, P.et al. (2002). Selective dorsal rhizotomy: meta-analysis of three randomized controlled trials. Dev Med Child Neurol, 44: 17–25.Google Scholar
McLaughlin, J. F., Bjornson, K. F., Astley, S. J.et al. (1998). Selective dorsal rhizotomy: efficacy and safety in an investigator-masked randomized clinical trial. Dev Med Child Neurol, 40: 220–32.Google Scholar
Milla, P. J. & Jackson, A. D. (1977). A controlled trial of baclofen in children with cerebral palsy. J Int Med Res, 5: 398–404.Google Scholar
Miller, F., Dabney, K. W. & Rang, M. (1995). Complications in cerebral palsy treatment. In: Epps, C. H., & Bowen, J. R. (eds.), Complications in Pediatric Orthopaedic Surgery. Philadelphia: Lippincott, pp. 477–544.
Molenaers, G., Desloovere, K., Cat, J.et al. (2001). Single event multilevel botulinum toxin type A treatment and surgery: similarities and differences. Eur J Neurol, 8(suppl. 5): 88–97.Google Scholar
Molenaers, G., Desloovere, K., Fabry, G. & Cock, P. (2006). The effects of quantitative gait assessment and botulinum toxin a on musculoskeletal surgery in children with cerebral palsy. J Bone Joint Surg Am, 88: 161–70.Google Scholar
Molnar, G. E. & Kathirithamby, R. (1979). Lioresal in the treatment of cerebral palsy. Arch Phys Med Rehabil, 60: 540.Google Scholar
Moseley, C. (1992). Physiologic effects of soft-tissue surgery. In: Sussman, M. D. (ed.), The Diplegic Child, Evaluation and Management. Rosemont, IL: American Academy of Orthopedic Surgeons.
Muller, H. (1992). Treatment of severe spasticity: results of a multicenter trial conducted in Germany involving the intrathecal infusion of baclofen by an implantable drug delivery system. Dev Med Child Neurol, 34: 739–45.Google Scholar
National Institutes of Health Consensus Developmental Conference. (1990). Consensus statement. Clinical use of botulinum toxin. NIH Consensus Dev Conf, 8: 12–14.
Nicol, R. O. & Menelaus, M. B. (1983). Correction of combined tibial torsion and valgus deformity of the foot. J Bone Joint Surg Br, 65: 641–5.Google Scholar
O'Brien, C. (1995). Clinical pharmacology of botulinum toxin. In: O'Brien, C., & Yablon, S. (eds.), Management of Spasticity with Botulinum Toxin: A Clinical Monograph. Englewood: Colorado Postgraduate Institute for Medicine, pp. 3–6.
Oppenheim, W. L. (1990). Selective posterior rhizotomy for spastic cerebral palsy: a review. Clin Orthop, 253: 20–9.Google Scholar
Oppenheim, W. L., Standt, L. A. & Peacock, W. J. (1992). The rationale for rhizotomy. In: Sussman, M. D. (ed.), The Diplegic Child: Evaluation and Management. Rosemont, IL: American Academy of Orthopaedic Surgeons.
Ounpuu, S., Bell, K. J., Davis, R. B. & DeLuca, P. A. (1993). An evaluation of the posterior leaf spring orthosis using gait analysis. Dev Med Child Neurol, 35(suppl. 69): S8.Google Scholar
Palisano, R., Rosenbaum, P., Walker, S.et al. (1997). Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol, 39: 214–23.Google Scholar
Peacock, W. J. & Arens, L. J. (1982). Selective posterior rhizotomy for the relief of spasticity in cerebral palsy. S Afr Med J, 62: 119–24.Google Scholar
Peacock, W. J., Arens, L. J. & Berman, B. (1987). Cerebral palsy spasticity: selective posterior rhizotomy. Paediatr Neurosurg, 13: 61–6.Google Scholar
Peacock, W. J. & Standt, L. A. (1990). Spasticity in cerebral palsy and the selective posterior rhizotomy procedure. J Child Neurol, 5: 179–85.Google Scholar
Peacock, W. J. & Standt, L. A. (1991). Functional outcomes following selective posterior rhizotomy in children with cerebral palsy. J Neurosurg, 74: 380–5.Google Scholar
Pedersen, E., Arlien-Soborg, P. & Mai, J. (1974). The mode of action of the GABA derivative baclofen in human spasticity. Acta Neurol Scand, 50: 665–80.Google Scholar
Pellegrino, L. & Dormans, J. P. (1998). Definitions, etiology and epidemiology of cerebral palsy. In: Dormans, J. P. & Pellegrino, L. (eds.), Caring for Children with Cerebral Palsy: A Team Approach. Baltimore: Brookes Publishing, pp. 3–30.
Penn, R. D. (1992). Intrathecal baclofen for spasticity of spinal origin: seven years of experience. J Neurosurg, 77: 236–40.Google Scholar
Penn, R. D. & Kroin, J. S. (1985). Continuous intrathecal baclofen for severe spasticity. Lancet, 2: 125–7.Google Scholar
Perry, J. (1992). ‘Phases of Gait’, Gait Analysis: Normal and Pathological Function. New Jersey: Slack.
Perry, J. (1985). Normal and pathological gait. Atlas of Orthotics, 2nd edn. St. Louis: C. V. Mosby, pp. 76–111.
Perry, J., Adams, J. & Cahan, L. D. (1989). Foot-floor contact patterns following selective dorsal rhizotomy (abstr). Dev Med Neurol, 31(suppl. 59): S19.Google Scholar
Perry, J., Giovan, P., Harris, L. J., Montgomery, R. P. T. & Azaria, M. (1978). The determinants of muscle action in the hemiplegic lower extremity and their effect on the examination procedure. Clin Orthop, 131: 71–89.Google Scholar
Perry, J., Hoffer, M. M., Giovan, P., Antonelli, D. & Greenberg, R. (1974). Gait analysis of the triceps surae in cerebral palsy: a preoperative and postoperative clinical and electromyographic study. J Bone Joint Surg Am, 56: 511–20.Google Scholar
Perry, J., Hoffer, M. M., Antonelli, D., Plut, J., Lewis, G. & Greenberg, R. (1976). Electromyography before and after surgery for hip deformity in children with cerebral palsy. J Bone Joint Surg Am, 58: 201–8.Google Scholar
Petrillo, C., Chu, D. & Sanders, W. (1980). Phenol block of the tibial nerve in the hemiplegic patient. Orthopaedics, 3: 871–4.Google Scholar
Petterson, B., Nelson, K. B., Watson, L. & Stanley, F. J. (1993a). Twins, triplets, and cerebral palsy in births in Western Australia in the 1980s. BMJ, 307: 1239–43.Google Scholar
Petterson, B., Stanley, F. J. & Garner, B. J. (1993b). Spastic quadriplegia in Western Australia: II pedigrees and family patterns of birthweight and gestational age. Dev Med Child Neurol, 35: 202–15.Google Scholar
Pirpiris, M., Trivett, A., Baker, R.et al. (2003). Femoral derotation osteotomy in spastic diplegia. Proximal or distal?J Bone Joint Surg Br, 85: 265–72.Google Scholar
Preiss, R. A.., Rowley, D. I. & Graham, H.. (2003). Aspects of current management. The effects of botulinum toxin (BTX-A) on spasticity of the lower limb and on gait in cerebral palsy. J Bone Joint Surg Br, 85: 943–8.Google Scholar
Rang, M. (1990). Cerebral palsy. In: Morrissey, R. T. (ed.), Lovell and Winter's Paediatric Orthopaedics, 3rd edn., vol. 1. Philadelphia: J. B. Lippincott, pp. 465–506.
Rice, G. P. A. (1987). Pharmacotherapy of spasticity: some theoretical and practical considerations. Can J Neurol Sci, 14(suppl. 3): S510–12.Google Scholar
Ried, S., Pellegrino, L., Albinson-Scull, S. & Dormans, J. P. (1998). The management of spasticity. In: Dormans, J. P. & Pellegrino, L. (eds.), Caring for Children with Cerebral Palsy. Baltimore: Brookes Publishing, pp. 99–123.
Rodda, J. & Graham, H. K. (2001). Classification of gait patterns in spastic hemiplegia and spastic diplegia: a basis for a management algorithm. Eur J Neurol, 8(suppl. 5): 98–108.Google Scholar
Rodda, J. M. & Graham, H.K. (2006). Correction of severe crouch gait in patients with spastic diplegia with use of multilevel orthopaedic surgery. J Bone Joint Surg Am. In press.
Rodda, J. M., Graham, H. K., Carson, L., Galea, M. P. & Wolfe, R. (2004). Sagittal gait patterns in spastic diplegia. J Bone Joint Surg Br, 86: 251–8.Google Scholar
Rose, S. A., Ounpuu, S. & DeLuca, P. A. (1991). Strategies for the assessment of paediatric gait in the clinical setting. Phys Ther, 71: 961–80.Google Scholar
Rosenbaum, P. L., Walter, S. D., Hanna, S. E.et al. (2002). Prognosis for gross motor function in cerebral palsy: creation of motor development curves. JAMA, 288: 1357–63.Google Scholar
Russell, D., Rosenbaum, P., Cadman, D.et al. (1989). The gross motor function measure: a means to evaluate the effects of physical therapy. Dev Med Child Neurol, 31: 341–52.Google Scholar
Rymer, W. Z. & Powers, R. K. (1989). Pathophysiology of muscular hypertonia in spasticity. Neurosurg State Art Rev, 4: 291–301.Google Scholar
Scott, A. B. (1980). Botulinum toxin injection into extraocular muscles as an alternative to strabismus surgery. Ophthalmology, 87: 1044–9.Google Scholar
Scott, A. B., Magoon, E. H., McNeer, K. W. & Stager, D. R. (1990). Botulinum treatment for childhood strabismus. Ophthalmology, 97: 1434–8.Google Scholar
Scrutton, D. & Baird, G. (1997). Surveillance measures of the hips of children with bilateral cerebral palsy. Arch Disease Child, 76: 381–4.Google Scholar
Selber, P., Filho, E. R., Dallalana, R.et al. (2004). Supramalleolar derotation osteotomy of the tibia, with T plate fixation. Technique and results in patients with neuromuscular disease. J Bone Joint Surg Br, 86: 1170–5.Google Scholar
Silfverskiold, N. (1924). Reduction of the uncrossed two-joint muscles of the leg to one-joint muscles in spastic conditions. Acta Chir Scand, 56: 315–30.Google Scholar
Soo, B., Howard, J., Boyd, R. N.et al. (2006). Hip displacement in cerebral palsy: a population based study of incidence in relation to motor type, topographical distribution and gross motor function. J Bone Joint Surg Am, 88: 121–9.Google Scholar
Spiegel, D. A., Loder, R. T., Alley, K. A.et al. (2004). Spinal deformity following selective dorsal rhizotomy. J Pediatr Orthop, 24: 30–6.Google Scholar
Spira, R. (1971). Management of spasticity in cerebral palsied children by peripheral nerve block with phenol. Dev Med Child Neurol, 13: 164–73.Google Scholar
Staheli, L. T., Duncan, W. R. & Schaefer, E. (1968). Growth alterations in the hemiplegic child. Clin Orthop, 60: 205–12.Google Scholar
Stanley, F. J. & Alberman, E. (1984). The Epidemiology of the Cerebral Palsies. Philadelphia: J. B. Lippincott.
Stefko, R. M., Swart, R. J., Dodgin, D. A.et al. (1998). Kinematic and kinetic analysis of distal derotation osteotomy of the leg in children with cerebral palsy. J Paediatr Orthop, 18: 81–7.Google Scholar
Steinbok, P., Reiner, A. M., Beauchamp, R.et al. (1997). A randomized clinical trial to compare selective posterior rhizotomy plus physiotherapy with physiotherapy alone in children with spastic diplegic cerebral palsy. Dev Med Child Neurol, 39: 178–84.Google Scholar
Stoffel, A. (1913). The treatment of spastic contractures. Am J Orthop Surg, 10: 611–44.Google Scholar
Tardieu, G., Centaur, S. & Delarue, R. (1954). A la recherche d'une technique de mesure de la spastiref ‘imprime’ avec le periodique. Rev Neurol, 91: 143–4.Google Scholar
Utili, R., Boitnott, J. K. & Zimmerman, H. J. (1977). Dantrolene-associated hepatic injury: incidence and character. Gastroenterology, 72: 610–16.Google Scholar
Van Schaeybroeck P., Nuttin, B., Lagae, L. et al. (2000). Intrathecal baclofen for intractable cerebral palsy spasticity: a prospective placebo-controlled, double-blind study. Neurosurgery, 46: 603–12.
VanWinkle, W. B. (1976). Calcium release from skeletal muscle sarcoplasmic reticulum: site of action of dantrolene sodium?Science, 193: 1130–1.Google Scholar
Vaughan, C. L., Berman, B. & Peacock, W. J. (1988). Gait analysis of spastic children before and after selective lumbar rhizotomy. Paediatr Neurosci, 14: 297–300.Google Scholar
Vaughan, C. L., Berman, B. & Peacock, W. J. (1991). Cerebral palsy and rhizotomy. A three year follow-up and evaluation with gait analysis. J Neurosurg, 74: 178–84.Google Scholar
Walsh, E. G. (1988). Assessment of human hemiplegic spasticity by a resonant frequency method. Clin Biomech, 3: 173–8.Google Scholar
Waterman, P. M., Albin, M. S. & Smith, R. B. (1980). Malignant hyperthermia: a case report. Anesth Analg, 59: 220–1.Google Scholar
Wei, S., Su-Juan, W., Yuan-Gui, L.et al. (2006). Reliability and validity of the GMFM-66 in 0 to 3 year old children with cerebral palsy. Am J Phys Med Rehab, 85: 141–7.Google Scholar
Wilkinson, S. P., Portman, B. & Williams, R. (1979). Hepatitis from dantrolene sodium. Gut, 20: 33–6.Google Scholar
Wright, F. V., Sheil, E. M. H., Drake, J. M., Wedge, J. H. & Naumann, S. (1988). Evaluation of selective dorsal rhizotomy for the reduction of spasticity in cerebral palsy: a randomized control trial. Dev Med Child Neurol, 40: 239–47.Google Scholar
Young, R. R. & Delwaide, P. J. (1981a). Drug therapy: spasticity (first of two parts). N Engl J Med, 304: 28–33.Google Scholar
Young, R. R. & Delwaide, P. J. (1981b). Drug therapy: spasticity (second of two parts). N Engl J Med, 304: 96–9.Google Scholar
Zieglgansberger, W., Howe, J. R. & Sutor, B. (1988). The neuropharmacology of baclofen. In: Muller, H., Zierski, J. & Penn, R. D. (eds.), Local-Spinal Therapy of Spasticity. New York: Springer-Verlag, pp. 37–49.
Ziv, I., Blackburn, N., Rang, M. & Koreska, J. (1984). Muscle growth in normal and spastic mice. Dev Med Child Neurol, 26: 941–84.Google Scholar
Dormans, J. P. & Pellegrino, L. (eds.). (1998). Caring for Children with Cerebral Palsy: A Team Approach. Baltimore: Paul H. Brookes.
Miller, G. & Clark, G. D. (eds.). (1988). The Cerebral Palsies: Causes, Consequences and Management. Boston: Butterworth-Heinemann.
Sussman, M. D. (ed.). (1992). The Diplegic Child. Rosemont, IL: American Academy of Orthopaedic Surgeons.
3
Cited by

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Management of spasticity in children
    • By Rachael Hutchinson, Consultant Paediatric Orthopaedic Surgeon Norfolk and Norwich University Hospital NHS Trust, Norfolk, UK, H. Kerr Graham, Professor of Orthopaedic Surgery Royal Children's Hospital, Melbourne, Australia
  • Edited by Michael P. Barnes, University of Newcastle upon Tyne, Garth R. Johnson, University of Newcastle upon Tyne
  • Book: Upper Motor Neurone Syndrome and Spasticity
  • Online publication: 22 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544866.013
Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

  • Management of spasticity in children
    • By Rachael Hutchinson, Consultant Paediatric Orthopaedic Surgeon Norfolk and Norwich University Hospital NHS Trust, Norfolk, UK, H. Kerr Graham, Professor of Orthopaedic Surgery Royal Children's Hospital, Melbourne, Australia
  • Edited by Michael P. Barnes, University of Newcastle upon Tyne, Garth R. Johnson, University of Newcastle upon Tyne
  • Book: Upper Motor Neurone Syndrome and Spasticity
  • Online publication: 22 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544866.013
Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

  • Management of spasticity in children
    • By Rachael Hutchinson, Consultant Paediatric Orthopaedic Surgeon Norfolk and Norwich University Hospital NHS Trust, Norfolk, UK, H. Kerr Graham, Professor of Orthopaedic Surgery Royal Children's Hospital, Melbourne, Australia
  • Edited by Michael P. Barnes, University of Newcastle upon Tyne, Garth R. Johnson, University of Newcastle upon Tyne
  • Book: Upper Motor Neurone Syndrome and Spasticity
  • Online publication: 22 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544866.013
Available formats
×