Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T12:15:19.727Z Has data issue: false hasContentIssue false

5 - Developmental Origins of Neurobiological Vulnerability for PTSD

Published online by Cambridge University Press:  27 July 2009

Rosemary Bagot
Affiliation:
Graduate student Neuroscience, McGill University, Montréal, Québec
Carine Parent
Affiliation:
Graduate student Neurological Sciences Program, McGill University, Montréal, Québec
Timothy W. Bredy
Affiliation:
Postdoctoral Fellow Department of Psychiatry and Biobehavioral Sciences and Brain Research Institute, University of California, Los Angeles
Tieyuan Zhang
Affiliation:
Postdoctoral Fellow Program for the Study of Behaviour, Genes and Environment, McGill University, Montréal, Québec
Alain Gratton
Affiliation:
Associate Professor Department of Psychiatry, McGill University; Researcher, Douglas Hospital Research Centre, Montréal, Québec
Michael J. Meaney
Affiliation:
James McGill Professor of Medicine Departments of Psychiatry and Neurology and Neurosurgery; Director Program for the Study of Behaviour, Genes and Environment, McGill University; Associate Director of Research Researcher, Douglas Hospital Research Centre, Montréal, Québec
Laurence J. Kirmayer
Affiliation:
McGill University, Montréal
Robert Lemelson
Affiliation:
University of California, Los Angeles
Mark Barad
Affiliation:
University of California, Los Angeles
Get access

Summary

The question of vulnerability lies very much at the heart of research on anxiety disorders, such as PTSD (Yehuda, Schmeidler, Wainberg, Binder-Brynes, & Duvdevani, 1998). Surprisingly, only a minority (∼25–30%) of humans subjected to even such a profound trauma as rape develop PTSD (Ressnick, Kilpatrick, Dansky, Saunders, & Best, 1993), and early family life serves as a highly significant predictor of vulnerability to PTSD following trauma (Udwin, Boyle, Yule, Bolton, & O'Ryan, 2000). Moreover, many cases of PTSD derive from events that might not be considered as necessarily traumatic by the general population (Breslau et al., 1998), a finding that further underscores the importance of vulnerability. Moreover, there is evidence for the familial transmission of vulnerability to PTSD that is related to alterations in parent–offspring interactions. These findings are not surprising because anxiety reduces parental responsiveness to offspring (e.g., Fleming, 1988, 1999). These findings suggest that early life events might alter the development of neural systems that mediate cognitive and emotional responses to trauma, and thus contribute to individual differences in vulnerability to PTSD.

The question can be rendered more precise in light of the remarkable advances in human clinical studies. First, PTSD research suggests that the probability of chronic PTSD following trauma is related to the magnitude of the initial reaction to the event (Shalev, this volume). Hence, factors that influence the development of individual differences in reactivity are likely of considerable relevance.

Type
Chapter
Information
Understanding Trauma
Integrating Biological, Clinical, and Cultural Perspectives
, pp. 98 - 117
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnsten, A. F. T. (2001). Stress impairs prefrontal cortical function in rats and monkeys: Role of dopamine D1 and norepinephrine α-1 receptor mechanisms. Progress in Brain Research, 126, 183–192.CrossRefGoogle Scholar
Bakshi, V. P., Shelton, S. E., & Kalin, N. H. (2000). Neurobiological correlates of defensive behaviors. Progress in Brain Research, 122, 105–115.CrossRefGoogle ScholarPubMed
Bechara, A., Tranel, D., Damasio, H., Adolphs, R., Rockland, C., & Damasio, A. R. (1995). Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science, 269(5227), 1115–1118.CrossRefGoogle ScholarPubMed
Brake, W. G., Zhang, T. Y., Diorio, J., Meaney, M. J., & Gratton, A. (2004). Influence of early postnatal rearing conditions on mesocorticolimbic dopamine and behavioral responses to psychostimulants and stress in adult rats. European Journal of Neuroscience, 19, 1863–1874.CrossRefGoogle ScholarPubMed
Bredy, T. W., Diorio, J., Grant, R., & Meaney, M. J. (2003). Maternal care influences hippocampal neuron survival in the rat. European Journal of Neuroscience, 18, 2903–2909.CrossRefGoogle ScholarPubMed
Bredy, T. W., Humpartzoomian, R. A., Cain, D. P., & Meaney, M. J. (2003). Partial reversal of the effect of maternal care on cognitive function through environmental enrichment. Neuroscience, 118, 571–576.CrossRefGoogle ScholarPubMed
Bredy, T. W., Zhang, T.-Y., Grant, R. J., Diorio, J., & Meaney, M. J. (2004). Peripubertal environmental enrichment reverses the effects of maternal care on hippocampal development and glutamate receptor subunit expression. European Journal of Neuroscience, 20, 1355–1362.CrossRefGoogle ScholarPubMed
Breslau, N., Kessler, R. C., Chilcoat, H. D., Schultz, L. R., Davis, G. C., & Andreski, P. (1998). Trauma and posttraumatic stress disorder in the community: The 1996 Detroit Area Survey of Trauma. Archives of General Psychiatry, 55(7), 626–632.CrossRefGoogle ScholarPubMed
Brown, G. R., & Anderson, B. (1993). Psychiatric morbidity in adult patients with childhood histories of sexual and physical abuse. American Journal of Psychiatry, 148, 55–61.Google Scholar
Butler, P. D., Weiss, J. M., Stout, J. C., & Nemeroff, C. B. (1990). Corticotropin-releasing factor produces fear-enhancing and behavioral activating effects following infusion into the locus coeruleus. Journal of Neuroscience, 10(1), 176–183.CrossRefGoogle ScholarPubMed
Cahill, L., & McGaugh, J. L. (1998). Mechanisms of emotional arousal and lasting declarative memory. Trends in Neurosciences, 21(7), 294–299.CrossRefGoogle ScholarPubMed
Caldji, C., Diorio, J., Anisman, H., & Meaney, M. J. (2004). Maternal behavior regulates benzodiazepine/gamma-aminobutyric acidA receptor subunit expression in brain regions associated with fear in BALB/c and C57BL/6 mice. Neuropsychopharmacology, 29(7), 1344–1352.CrossRefGoogle Scholar
Caldji, C., Diorio, J., & Meaney, M. J. (2003). Variations in maternal care alter gamma-aminobutyric acidA receptor subunit expression in brain regions associated with fear. Neuropsychopharmacology, 28(11), 1950–1959.CrossRefGoogle Scholar
Caldji, C., Francis, D., Sharma, S., Plotsky, P. M., & Meaney, M. J. (2000). The effects of rearing environment on the development of gamma-aminobutyric acidA and central benzodiazepine receptor levels and novelty-induced fearfulness in the rat. Neuropsychopharmacology, 22(3), 219–229.CrossRefGoogle Scholar
Caldji, C., Plotsky, P. M., & Meaney, M. J. (1999, October). Maternal behavior in infancy regulates the in vivo release of noradrenaline in the paraventricular nucleus of the hypothalamus. Paper presented at Society for Neuroscience Conference, Miami, FL.Google Scholar
Caldji, C., Tannenbaum, B., Sharma, S., Francis, D., Plotsky, P. M., & Meaney, M. J. (1998). Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. Proceedings of the National Academy of Sciences of the United States of America, 95(9), 5335–5340.CrossRefGoogle ScholarPubMed
Champagne, F. A., Francis, D., Mar, A., & Meaney, M. J. (2003). Variations in maternal care in the rat as a mediating influence for the effects of environment on development. Physiology & Behavior, 79, 359–371.CrossRefGoogle ScholarPubMed
Chourbaji, S., Hellweg, R., Brandis, D., Zorner, B., Zacher, C., Lang, U. E.. (2004). Mice with reduced brain-derived neurotrophic factor expression show decreased choline acetyltransferase activity, but regular brain monoamine levels and unaltered emotional behavior. Molecular Brain Research, 121(1–2), 28–36.CrossRefGoogle ScholarPubMed
Cilia, J., Reavill, C., Hagan, J. J., & Jones, D. N. (2001). Long-term evaluation of isolation-rearing induced prepulse inhibition deficits in rats. Psychopharmacology, 156, 327–337.CrossRefGoogle ScholarPubMed
Crestani, F., Lorez, M., Baer, K., Essrich, C., Benke, D., Laurent, J., et al. (1999). Decreased gamma-aminobutyric acidA-receptor clustering results in enhanced anxiety and a bias for threat cues. Nature Neuroscience, 2(9), 833–839.CrossRefGoogle Scholar
Davis, M., & Whalen, P. J. (2001). The amygdala: Vigilance and emotion. Molecular Psychiatry, 6(1), 13–34.CrossRefGoogle ScholarPubMed
Denenberg, V. H. (1964). Critical periods, stimulus input, and emotional reactivity: A theory of infantile stimulation. Psychological Review, 71, 335–351.CrossRefGoogle ScholarPubMed
Diorio, J., Weaver, I. C. G., & Meaney, M. J. (2000). A DNA array study of hippocampal gene expression regulated by maternal behavior in infancy. Paper presented at the Society for Neuroscience, New Orleans, LA.Google Scholar
Ellenbroek, B. A., Budde, S., & Cools, A. R. (1996). Prepulse inhibition and latent inhibition: The role of dopamine in the medial prefrontal cortex. Neuroscience, 75(2), 535–542.CrossRefGoogle ScholarPubMed
Ellenbroek, B. A., Kroonenberg, P. T., & Cools, A. R. (1998). The effects of an early stressful life event on sensorimotor gating in adult rats. Schizophrenia Research, 30, 251–260.CrossRefGoogle ScholarPubMed
Escorihuela, R. M. (1992). Infantile stimulation and the role of benzodiazepine receptor system in adult acquisition of two-way avoidance behavior. Psychopharmacology, 106, 282–284.CrossRefGoogle ScholarPubMed
Felitti, V. J., Anda, R. F., Nordenberg, D., Williamson, D. F., Spitz, A. M., Edwards, V., et al. (1998). Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults. The Adverse Childhood Experiences (ACE) Study. American Journal of Preventive Medicine, 14, 245–258.CrossRefGoogle ScholarPubMed
Fleming, A. S. (1988). Factors influencing maternal responsiveness in humans: Usefulness of an animal model. Psychoneuroendocrinology, 13, 189–212.CrossRefGoogle ScholarPubMed
Fleming, A. S. (1999). The neurobiology of mother–infant interactions: Experience and central nervous system plasticity across development and generations. Neuroscience & Biobehavioral Reviews, 23, 673–685.CrossRefGoogle ScholarPubMed
Francis, D. D., Diorio, J., Liu, D., & Meaney, M. J. (1999). Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science, 286, 1155–1158.CrossRefGoogle ScholarPubMed
Francis, D. D., Diorio, J., & Meaney, M. J. (2000). [Corticotrophin-releasing factor expression and function in the amygdala as a function of maternal care]. Unpublished raw data.
Fries, E., Moragues, N., Caldji, C., Hellhammer, D. H., & Meaney, M. J. (2004). Preliminary evidence of altered sensitivity to benzodiazepines as a function of maternal care in the rat. Annals of the New York Academy of Sciences, 1032, 320–323.CrossRefGoogle ScholarPubMed
Furmark, T., Fischer, H., Wik, G., Larsson, M., & Fredrikson, M. (1997). The amygdala and individual differences in human fear conditioning. Neuroreport, 8(18), 3957–3960.CrossRefGoogle ScholarPubMed
Fuster, J. M. (1997). Network memory. Trends in Neurosciences, 20, 451–459.CrossRefGoogle ScholarPubMed
Geyer, M. A., Krebs-Thomson, K., Braff, D. L., & Swerdlow, N. R. (2001). Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: A decade in review. Psychopharmacology, 156, 117–154.CrossRefGoogle Scholar
Geyer, M. A., Swerdlow, N. R., Mansbach, R. S., & Braff, D. L. (1990). Startle response models of sensorimotor gating and habituation deficits in schizophrenia. Brain Research Bulletin, 25, 485–498.CrossRefGoogle Scholar
Glue, P., Wilson, S., Coupland, N., Ball, D., & Nutt, D. (1995). The relationship between benzodiazepine receptor sensitivity and neuroticism. Journal of Anxiety Disorders, 9, 33–45.CrossRefGoogle Scholar
Goddard, A. W., Mason, G. F., Appel, M., Rothman, D. L., Gueorguieva, R., & Behar, K. L. (2004). Impaired gamma-aminobutyric acid neuronal response to acute benzodiazepine administration in panic disorder. American Journal of Psychiatry, 161(12), 2186–2193.CrossRefGoogle ScholarPubMed
Gogos, J. A., Morgan, M., Luine, V., Santha, M., Ogawa, S., Pfaff, D., & Karaviorgou, M. (1998). Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proceedings of the National Academy of Sciences of the United States of America, 95(17), 9991–9996.CrossRefGoogle ScholarPubMed
Gorman, J. M., Kent, J. M., Sullivan, G. M., & Coplan, J. D. (2000). Neuroanatomical hypothesis of panic disorder, revised. American Journal of Psychiatry, 157(4), 493–505.CrossRefGoogle ScholarPubMed
Gunther, U., Benson, J., Benke, D., Fritschy, J. M., Reyes, G., Knoflach, F.. (1995). Benzodiazepine-insensitive mice generated by targeted disruption of the gamma 2 subunit of gamma-aminobutyric acid type A receptors. Proceedings of the National Academy of Sciences of the United States of America, 92(17), 7749–7753.CrossRefGoogle ScholarPubMed
Habib, R., McIntosh, A. R., Wheeler, M. A., & Tulving, E. (2003). Memory encoding and hippocampally-based novelty/familiarity discrimination networks. Neuropsychologia, 41, 271–279.CrossRefGoogle ScholarPubMed
Heim, C., Newport, D. J., Heit, S., Graham, Y. P., Wilcox, M., Bonsall, R., et al. (2000). Pituitary-adrenal and autonomic responses to stress in women after sexual and physical abuse in childhood. Journal of the American Medical Association, 284(5), 592–597.CrossRefGoogle ScholarPubMed
Jablonski, B., Kossut, M., & Skangiel-Kramska, J. (1996). Transient increase of AMPA and N-methyl d-aspartate (receptors) receptor binding in the barrel cortex of mice after tactile stimulation. Neurobiology of Learning & Memory, 66, 36–43.CrossRefGoogle Scholar
Kim, J. J., & Diamond, D. M. (2002). The stressed hippocampus, synaptic plasticity and lost memories. Nature Reviews Neuroscience, 3(6), 453–462.CrossRefGoogle ScholarPubMed
LaBar, K. S., Gatenby, J. C., Gore, J. C., LeDoux, J. E., & Phelps, E. A. (1998). Human amygdala activation during conditioned fear acquisition and extinction: A mixed-trial fMRI study. Neuron, 20(5), 937–945.CrossRefGoogle ScholarPubMed
LaBar, K. S., LeDoux, J. E., Spencer, D. D., & Phelps, E. A. (1995). Impaired fear conditioning following unilateral temporal lobectomy in humans. Journal of Neuroscience, 15(10), 6846–6855.CrossRefGoogle ScholarPubMed
Lee, M. H., & Williams, D. I. (1975). Long term changes in nest condition and pup grouping following handling of rat litters. Developmental Psychobiology, 8(1), 91–95.CrossRefGoogle ScholarPubMed
Lemaire, V., Aurousseau, C., Moal, M., & Abrous, D. N. (1999). Behavioural trait of reactivity to novelty is related to hippocampal neurogenesis. European Journal of Neuroscience, 11, 4006–4014.CrossRefGoogle ScholarPubMed
Pen, G., & Moreau, J. L (2002). Disruption of prepulse inhibition of startle reflex in a neurodevelopmental model of schizophrenia: Reversal by clozapine, olanzapine and risperidone but not by haloperidol. Neuropsychopharmacology, 27(1), 1–11.CrossRefGoogle Scholar
Levine, S. (1994). The ontogeny of the hypothalamic-pituitary-adrenal axis. The influence of maternal factors. Annals of the New York Academy of Sciences, 746, 275–288; discussion 289–293.CrossRefGoogle ScholarPubMed
Liang, K. C., Melia, K. R., Campeau, S., Falls, W. A., Miserendino, M. J., & Davis, M. (1992). Lesions of the central nucleus of the amygdala but not the paraventricular nucleus of the hypothalamus, block the excitatory effects of corticotrophin-releasing factor on the acoustic startle reflex. Journal of Neuroscience, 12(6), 2313–2320.CrossRefGoogle Scholar
Liu, D., Caldji, C., Sharma, S., Plotsky, P. M., & Meaney, M. J. (2000). Influence of neonatal rearing conditions on stress-induced adrenocorticotropin responses and norepinephrine release in the hypothalamic paraventricular nucleus. Journal of Neuroendocrinology, 12(1), 5–12.CrossRefGoogle ScholarPubMed
Liu, D., Diorio, J., Tannenbaum, B., Caldji, C., Francis, D., Freedman, A., Sharma, S., Pearson, D., Plotsky, P. M., & Meaney, M. J. (1997). Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science, 277(5332), 1659–1662.CrossRefGoogle ScholarPubMed
Lovic, V., & Fleming, A. S. (2004). Artificially-reared female rats show reduced prepulse inhibition and deficits in the attentional set shifting task – Reversal of effects with maternal-like licking stimulation. Behavioural Brain Research, 148(1–2), 209–219.CrossRefGoogle ScholarPubMed
Malizia, A. L., Cunningham, V. J., Bell, C. J., Liddle, P. F., Jones, T., & Nutt, D. J. (1998). Decreased brain gamma-aminobutyric acidA-benzodiazepine receptor binding in panic disorder: Preliminary results from a quantitative positron emission tomography study. Archives of General Psychiatry, 55(8), 715–720.CrossRefGoogle Scholar
Matsumoto, M., Weickert, C. S., Akil, M., Lipska, B. K., Hyde, T. M., Herman, M. M. et al. (2003). Catechol O-methyltransferase mRNA expression in human and rat brain: Evidence for a role in cortical neuronal function. Neuroscience, 116(1), 127–137.CrossRefGoogle ScholarPubMed
McHugh, T. J., Blum, K. I., Tsien, J. Z., Tonegawa, S., & Wilson, M. A. (1996). Impaired hippocampal representation of space in CA1-specific NMDAR1 knockout mice. Cell, 87(7), 1339–1349.CrossRefGoogle ScholarPubMed
Paula, Melo A. J. (1984). A comparative study of lormetazepam and flurazepam in the treatment of insomnia. Clinical Therapeutics, 64, 500–508.Google Scholar
Menard, J. L., Champagne, D. L., & Meaney, M. J. (2004). Variations of maternal care differentially influence ‘fear’ reactivity and regional patterns of cFos immunoreactivity in response to the shock-probe burying test. Neuroscience, 129(2), 297–308.CrossRefGoogle ScholarPubMed
Minichiello, L., Korte, M., Wolfer, D., Kuhn, R., Unsicker, K., Cestari, V., Rossi-Arnaud, D., Lipp, H. P., Bonhoeffer, T., & Klein, R. (1999). Essential role for TrkB receptors in hippocampus-mediated learning. Neuron, 24(2), 401–414.CrossRefGoogle ScholarPubMed
Morris, R. G., Garrud, P., Rawlins, J. N., & O'Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297(5868), 681–683.CrossRefGoogle ScholarPubMed
Murphy, B. L., Arnsten, A. F., Goldman-Rakic, P. S., & Roth, R. H. (1996). Increased dopamine turnover in the prefrontal cortex impairs spatial working memory performance in rats and monkeys. Proceedings of the National Academy of Sciences of the United States of America, 93(3), 1325–1329.CrossRefGoogle ScholarPubMed
Oblowitz, H., & Robins, A. H. (1983). The effect of clobazam and lorazepam on the psychomotor performance of anxious patients. British Journal of Clinical Pharmacology, 16(1), 95–99.CrossRefGoogle ScholarPubMed
Pruessner, J. C., Champagne, F., Meaney, M. J., & Dagher, A. (2004). Dopamine release in response to a psychological stress in humans and its relationship to early life maternal care: A positron emission tomography study using [11C]raclopride. Journal of Neuroscience, 24(11), 2825–2831.CrossRefGoogle ScholarPubMed
Quirion, R., Wilson, A., Rowe, W., Aubert, I., Richard, J., Doods, H. et al. (1995). Facilitation of acetylcholine release and cognitive performance by an M(2)-muscarinic receptor antagonist in aged memory-impaired. Journal of Neuroscience, 15(2), 1455–1462.CrossRefGoogle Scholar
Ressnick, H. S., Kilpatrick, D. G., Dansky, B. S., Saunders, B. E., & Best, C. L. (1993). Prevalence of civilian trauma and posttraumatic stress disorder in representative national sample of women. Journal of Consulting and Clinical Psychology, 61(6), 984–991.CrossRefGoogle Scholar
Roceri, M., Hendriks, W., Racagni, G., Ellenbroek, B. A., & Riva, M. A. (2002). Early maternal deprivation reduces the expression of brain-derived neurotrophic factor and N-methyl d-aspartate (receptors) receptor subunits in the rat hippocampus. Molecular Psychiatry, 7(6), 609–616.CrossRefGoogle ScholarPubMed
Roy-Byrne, P., Wingerson, D. K., Radant, A., Greenblatt, D. J., & Cowley, D. S. (1996). Reduced benzodiazepine sensitivity in patients with panic disorder: Comparison with patients with obsessive-compulsive disorder and normal subjects. American Journal of Psychiatry, 153(11), 1444–1449.Google ScholarPubMed
Roy-Byrne, P. P., Cowley, D. S., Greenblatt, D. J., Shader, R. I., & Hommer, D. (1990). Reduced benzodiazepine sensitivity in panic disorder. Archives of General Psychiatry, 47(6), 534–538.CrossRefGoogle ScholarPubMed
Rudolph, U., & Mohler, H. (2004). Analysis of gamma-aminobutyric acidA receptor function and dissection of the pharmacology of benzodiazepines and general anesthetics through mouse genetics. Annual Review of Pharmacology & Toxicology, 44, 475–498.CrossRefGoogle Scholar
Schanberg, S. M., Evoniuk, G., & Kuhn, C. M. (1984). Tactile and nutritional aspects of maternal care: Specific regulators of neuroendocrine function and cellular development. Proceedings of the Society for Experimental Biology & Medicine, 175(2), 135–146.CrossRefGoogle ScholarPubMed
Schatz, C. J. (1990). Impulse activity and the patterning of connections during CNS development. Neuron, 5, 745–756.CrossRefGoogle Scholar
Schulkin, J., McEwen, B. S., & Gold, P. W. (1994). Allostasis, amygdala, and anticipatory angst. Neuroscience & Biobehavioral Reviews, 18(3), 385–396.CrossRefGoogle ScholarPubMed
Smythe, J. W., Bhatnagar, S., Murphy, D., Timothy, C., & Costall, B. (1998). The effects of intrahippocampal scopolamine infusions on anxiety in rats as measured by the black–white box test. Brain Research Bulletin, 45(1), 89–93.CrossRefGoogle ScholarPubMed
Smythe, J. W., Murphy, D., & Costall, B. (1996). Benzodiazepine receptor stimulation blocks scopolamine-induced learning impairments in a water maze task. Brain Research Bulletin, 41(5), 299–304.CrossRefGoogle Scholar
Soghomonian, J. J., & Martin, D. L. (1998). Two isoforms of glutamate decarboxylase: Why?Trends in Pharmacological Sciences, 19(12), 500–505.CrossRefGoogle ScholarPubMed
Stein, M. B., Walker, J. R., Anderson, G., Hazen, A. L., Ross, C. A., Eldridge, G. et al. (1996). Childhood physical and sexual abuse in patients with anxiety disorders and in a community sample. American Journal of Psychiatry, 153(2), 275–277.Google Scholar
Stenzel-Poore, M. P., Heinrichs, S. C., Rivest, S., Koob, G. F., & Vale, W. W. (1994). Overproduction of corticotropin-releasing factor in transgenic mice: A genetic model of anxiogenic behavior. Journal of Neuroscience, 14(5 Pt 1), 2579–2584.CrossRefGoogle ScholarPubMed
Stern, J. M. (1997). Offspring-induced nurturance: Animal-human parallels. Developmental Psychobiology, 31(1), 19–37.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Swerdlow, N. R., Geyer, M. A., & Braff, D. L. (2001). Neural circuit regulation of prepulse inhibition of startle in the rat: Current knowledge and future challenges. Psychopharmacology (Berl), 156(2–3), 194–215.CrossRefGoogle ScholarPubMed
Swiergiel, A. H., Takahashi, L. K., & Kalin, N. H. (1993). Attenutation of stress-induced behavior by antagonism of corticotropin-releasing factor receptors in the central amygdala in the rat. Brain Research, 623(2), 229–234.CrossRefGoogle Scholar
Tang, Y. P., Shimizu, E., Dube, G. R., Rampon, C., Kerchner, G. A., Zhuo, M., Liu, G., Tsien, J. Z. (1999). Genetic enhancement of learning and memory in mice. Nature, 401(6748), 63–69.CrossRefGoogle ScholarPubMed
Tang, Y. P., Wang, H., Feng, R., Kyin, M., & Tsien, J. Z. (2001). Differential effects of enrichment on learning and memory function in NR2B transgenic mice. Neuropharmacology, 41(6), 779–790.CrossRefGoogle ScholarPubMed
Tweed, J. L., Schoenbach, V. J., George, L. K., & Blazer, D. G. (1989). The effects of childhood parental death and divorce on six-month history of anxiety disorders. British Journal of Psychiatry, 154, 823–828.CrossRefGoogle ScholarPubMed
Udwin, O., Boyle, S., Yule, W., Bolton, D., & O'Ryan, D. (2000). Risk factors for long-term psychological effects of a disaster experienced in adolescence: Predictors of post traumatic stress disorder. Journal of Child Psychology and Psychiatry, 41(8), 969–979.CrossRefGoogle ScholarPubMed
Valentino, R. J., Curtis, A. L., Page, M. E., Pavcovich, L. A., & Florin-Lechner, S. M. (1998). Activation of the locus ceruleus brain noradrenergic system during stress: Circuitry, consequences, and regulation. Advances in Pharmacology, 42, 781–784.CrossRefGoogle ScholarPubMed
Weaver, I. C., Cervoni, N., Champagne, F. A., D'Alessio, A. C., Sharma, S., Seckl, J. R., et al. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7(8), 847–854.CrossRefGoogle ScholarPubMed
Weiss, I. C., Domeney, A. M., Moreau, J. L., Russig, H., & Feldon, J. (2001). Dissociation between the effects of pre-weaning and/or post-weaning social isolation on prepulse inhibition and latent inhibition in adult Sprague–Dawley rats. Behavioural Brain Research, 121(1–2), 207–218.CrossRefGoogle ScholarPubMed
Whishaw, I. Q. (1998). Place learning in hippocampal rats and the path integration hypothesis. Neuroscience & Biobehavioral Reviews, 22(2), 209–220.CrossRefGoogle ScholarPubMed
Williams, G. V., & Goldman-Rakic, P. S. (1995). Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature, 376(6541), 572–575.CrossRefGoogle ScholarPubMed
Yehuda, R., Schmeidler, J., Wainberg, M., Binder-Brynes, K., & Duvdevani, T. (1998). Vulnerability to posttraumatic stress disorder in adult offspring of Holocaust survivors. American Journal of Psychiatry, 56(11), 1838–11839.Google Scholar
Zhang, J., Forkstam, C., Engel, J. A., & Svensson, L. (2000). Role of dopamine in prepulse inhibition of acoustic startle. Psychopharmacology (Berl), 149(2), 181–188.CrossRefGoogle ScholarPubMed
Zhang, L. X., Xing, G. O., Levine, S., Post, R. M., & Smith, M. A. (1997, October). Maternal deprivation induces neuronal death. Paper presented at the Society for Neuroscience Conference, New Orleans, LA.Google Scholar
Zhang, T. Y., Chretien, P., Meaney, M. J., & Gratton, A. (2005). Influence of naturally occurring variations in maternal care on prepulse inhibition of acoustic startle and the medial prefrontal cortical dopamine response to stress in adult rats. Journal of Neuroscience, 25(6), 1493–1502.CrossRefGoogle ScholarPubMed
Zorner, B., Wolfer, D. P., Brandis, D., Kretz, O., Zacher, C., Madani, R., et al. (2003). Forebrain-specific trkB-receptor knockout mice: Behaviorally more hyperactive than “depressive.”Biological Psychiatry, 54(10), 972–982.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Developmental Origins of Neurobiological Vulnerability for PTSD
    • By Rosemary Bagot, Graduate student Neuroscience, McGill University, Montréal, Québec, Carine Parent, Graduate student Neurological Sciences Program, McGill University, Montréal, Québec, Timothy W. Bredy, Postdoctoral Fellow Department of Psychiatry and Biobehavioral Sciences and Brain Research Institute, University of California, Los Angeles, Tieyuan Zhang, Postdoctoral Fellow Program for the Study of Behaviour, Genes and Environment, McGill University, Montréal, Québec, Alain Gratton, Associate Professor Department of Psychiatry, McGill University; Researcher, Douglas Hospital Research Centre, Montréal, Québec, Michael J. Meaney, James McGill Professor of Medicine Departments of Psychiatry and Neurology and Neurosurgery; Director Program for the Study of Behaviour, Genes and Environment, McGill University; Associate Director of Research Researcher, Douglas Hospital Research Centre, Montréal, Québec
  • Edited by Laurence J. Kirmayer, McGill University, Montréal, Robert Lemelson, University of California, Los Angeles, Mark Barad, University of California, Los Angeles
  • Book: Understanding Trauma
  • Online publication: 27 July 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511500008.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Developmental Origins of Neurobiological Vulnerability for PTSD
    • By Rosemary Bagot, Graduate student Neuroscience, McGill University, Montréal, Québec, Carine Parent, Graduate student Neurological Sciences Program, McGill University, Montréal, Québec, Timothy W. Bredy, Postdoctoral Fellow Department of Psychiatry and Biobehavioral Sciences and Brain Research Institute, University of California, Los Angeles, Tieyuan Zhang, Postdoctoral Fellow Program for the Study of Behaviour, Genes and Environment, McGill University, Montréal, Québec, Alain Gratton, Associate Professor Department of Psychiatry, McGill University; Researcher, Douglas Hospital Research Centre, Montréal, Québec, Michael J. Meaney, James McGill Professor of Medicine Departments of Psychiatry and Neurology and Neurosurgery; Director Program for the Study of Behaviour, Genes and Environment, McGill University; Associate Director of Research Researcher, Douglas Hospital Research Centre, Montréal, Québec
  • Edited by Laurence J. Kirmayer, McGill University, Montréal, Robert Lemelson, University of California, Los Angeles, Mark Barad, University of California, Los Angeles
  • Book: Understanding Trauma
  • Online publication: 27 July 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511500008.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Developmental Origins of Neurobiological Vulnerability for PTSD
    • By Rosemary Bagot, Graduate student Neuroscience, McGill University, Montréal, Québec, Carine Parent, Graduate student Neurological Sciences Program, McGill University, Montréal, Québec, Timothy W. Bredy, Postdoctoral Fellow Department of Psychiatry and Biobehavioral Sciences and Brain Research Institute, University of California, Los Angeles, Tieyuan Zhang, Postdoctoral Fellow Program for the Study of Behaviour, Genes and Environment, McGill University, Montréal, Québec, Alain Gratton, Associate Professor Department of Psychiatry, McGill University; Researcher, Douglas Hospital Research Centre, Montréal, Québec, Michael J. Meaney, James McGill Professor of Medicine Departments of Psychiatry and Neurology and Neurosurgery; Director Program for the Study of Behaviour, Genes and Environment, McGill University; Associate Director of Research Researcher, Douglas Hospital Research Centre, Montréal, Québec
  • Edited by Laurence J. Kirmayer, McGill University, Montréal, Robert Lemelson, University of California, Los Angeles, Mark Barad, University of California, Los Angeles
  • Book: Understanding Trauma
  • Online publication: 27 July 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511500008.009
Available formats
×