Skip to main content Accessibility help
Hostname: page-component-7d684dbfc8-zgpz2 Total loading time: 0 Render date: 2023-09-29T20:28:13.074Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Chapter 22 - Surgical Therapies for Epilepsy

Published online by Cambridge University Press:  11 October 2019

Vibhangini S. Wasade
Henry Ford Medical Group HFHS, Michigan
Marianna V. Spanaki
Wayne State University, Michigan
Get access


The International League Against Epilepsy (ILAE) put forth the definition for intractable epilepsy as the persistence of seizures despite “adequate trials of two tolerated, appropriately chosen and used antiseizure drug [ASD] schedules (whether as monotherapies or in combination).”1 The definition of medically refractory epilepsy has been debated for many years,2 and expert opinion remains divergent from common practice.3 It has been well-documented that the chances of achieving seizure freedom are minimal with additional trials of ASDs and that increased duration of seizures before surgery is associated with decreased chance of long-term seizure freedom.4 The American Association of Neurology 2015 Epilepsy Quality Measures recommend that each patient should have their diagnosis and treatment plan evaluated, and a referral for presurgical evaluation should be considered to a level 4 epilepsy center for those who are medically refractory about once every 2 years.5 As part of this referral and reassessment, surgery should be considered.

Understanding Epilepsy
A Study Guide for the Boards
, pp. 417 - 431
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Kwan, P, Arzimanoglou, A, Berg, AT, et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc task torce of the ILAE Commission on Therapeutic Strategies. Epilepsia. 2010;51(6):10691077.CrossRefGoogle Scholar
Tellez-Zenteno, JF, Hernandez-Ronquillo, L, Buckley, S, Zahagun, R, Rizvi, S. A validation of the new definition of drug-resistant epilepsy by the International League Against Epilepsy. Epilepsia. 2014;55(6):829834.CrossRefGoogle ScholarPubMed
Wasade, VS, Spanaki, M, Iyengar, R, Barkley, GL, Schultz, L. AAN Epilepsy Quality Measures in clinical practice: a survey of neurologists. Epilepsy Behav. 2012;24(4):468473.CrossRefGoogle ScholarPubMed
Yoon, HH, Kwon, HL, Mattson, RH, Spencer, DD, Spencer, SS. Long-term seizure outcome in patients initially seizure-free after resective epilepsy surgery. Neurology. 2003;61(4):445450.CrossRefGoogle ScholarPubMed
Fountain, NB, Van Ness, PC, Bennett, A, et al. Quality improvement in neurology: Epilepsy Update Quality Measurement Set. Neurology. 2015;84(14):14831487.CrossRefGoogle ScholarPubMed
Berg, AT, Vickrey, BG, Testa, FM, et al. How long does it take for epilepsy to become intractable?: a prospective investigation. Ann Neurol. 2006;60(1):7379.CrossRefGoogle ScholarPubMed
Kaiboriboon, K, Malkhachroum, AM, Zrik, A, et al. Epilepsy surgery in the United States: analysis of data from the National Association of Epilepsy Centers. Epilepsy Res. 2015;116:105109.CrossRefGoogle ScholarPubMed
Harden, C, Tomson, T, Gloss, D, et al. Practice guideline summary: sudden unexpected death in epilepsy incidence rates and risk factors. Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology. 2017;88(17):16741680.CrossRefGoogle ScholarPubMed
Jones, LA, Thomas, RH. Sudden death in epilepsy: insights from the last 25 years. Seizure. 2017;44:232236.CrossRefGoogle ScholarPubMed
Rayner, G, Jackson, GD, Wilson, SJ. Mechanisms of memory impairment in epilepsy depend on age at disease onset. Neurology. 2016;87(16):16421649.CrossRefGoogle ScholarPubMed
Kampf, C, Walter, U, Rosche, J. The impact of anxiety, seizure severity, executive dysfunction, subjectively perceived psychological deficits, and depression on social function in patients with epilepsy. Epilepsy Behav. 2016;57(Pt A):58.CrossRefGoogle ScholarPubMed
Shaefi, S, Harkness, W. Current status of surgery in the management of epilepsy. Epilepsia. 2003;44 Suppl 1:4347.CrossRefGoogle ScholarPubMed
Willoughby, JO. Mechanisms underlying partial (focal, or lesional) epilepsy. J Clin Neurosci. 2000;7(4):291294.CrossRefGoogle ScholarPubMed
Tellez-Zenteno, JF, Hernandez, Ronquillo L, Moien-Afshari, F, Wiebe, S. Surgical outcomes in lesional and non-lesional epilepsy: a systematic review and meta-analysis. Epilepsy Res. 2010;89(2–3):310318.CrossRefGoogle ScholarPubMed
Connolly, PJ, Baltuch, GH. Temporal lobectomy and amygdalohippocampectomy. In: Baltuch, GH, Villemure, J, eds., Operative Techniques in Epilepsy Surgery. New York: Thieme Medical Publishers; 2009:3340.Google Scholar
Wheatley, BM. Selective amygdalohippocampectomy: the trans-middle temporal gyrus approach. Neurosurg Focus. 2008;25(3):E4.CrossRefGoogle ScholarPubMed
Adada, B. Selective amygdalohippocampectomy via the transsylvian approach. Neurosurg Focus. 2008;25(3):E5.CrossRefGoogle ScholarPubMed
von Rhein, B, Nelles, M, Urbach, H, et al. Neuropsychological outcome after selective amygdalohippocampectomy: subtemporal versus transsylvian approach. J Neurol Neurosurg Psychiatry. 2012;83(9):887893.CrossRefGoogle ScholarPubMed
Josephson, CB, Dykeman, J, Fiest, KM, et al. Systematic review and meta-analysis of standard vs selective temporal lobe epilepsy surgery. Neurology. 2013;80(18):16691676.CrossRefGoogle ScholarPubMed
Hu, WH, Zhang, C, Zhang, K, et al. Selective amygdalohippocampectomy versus anterior temporal lobectomy in the management of mesial temporal lobe epilepsy: a meta-analysis of comparative studies. J Neurosurg. 2013;119(5):10891097.CrossRefGoogle ScholarPubMed
Joo, EY, Han, HJ, Lee, EK, et al. Resection extent versus postoperative outcomes of seizure and memory in mesial temporal lobe epilepsy. Seizure. 2005;14(8):541551.CrossRefGoogle ScholarPubMed
Sagher, O, Thawani, JP, Etame, AB, Gomez-Hassan, DM. Seizure outcomes and mesial resection volumes following selective amygdalohippocampectomy and temporal lobectomy. Neurosurg Focus. 2012;32(3):E8.CrossRefGoogle ScholarPubMed
Stroup, E, Langfitt, J, Berg, M, et al. Predicting verbal memory decline following anterior temporal lobectomy (ATL). Neurology. 2003;60(8):12661273.CrossRefGoogle Scholar
Georgiadis, I, Kapsalaki, EZ, Fountas, KN. Temporal lobe resective surgery for medically intractable epilepsy: a review of complications and side effects. Epilepsy Res Treat. 2013;2013:752195.Google ScholarPubMed
Vives, K, Lee, G, Doyle, W, Spencer, DD. Anterior temporal rexection. In: Engel, J Jr., Pedley, TA, eds., Epilepsy: A Comprehensive Textbook. 2nd edn. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2008:18591867.Google Scholar
Schramm, J, Kral, T, Kurthen, M, Blumcke, I. Surgery to treat focal frontal lobe epilepsy in adults. Neurosurgery. 2002;51(3):644654; discussion 654–645.CrossRefGoogle ScholarPubMed
Roper, SN. Surgical treatment of the extratemporal epilepsies. Epilepsia. 2009;50 Suppl 8:6974.CrossRefGoogle ScholarPubMed
Olivier, A. Surgery of epilepsy: methods. Acta Neurol Scand Suppl. 1988;117:103113.CrossRefGoogle ScholarPubMed
Zakaria, T, Noe, K, So, E, et al. Scalp and intracranial EEG in medically intractable extratemporal epilepsy with normal MRI. ISRN Neurol. 2012;2012:942849.CrossRefGoogle ScholarPubMed
O’Brien, TJ, So, EL, Mullan, BP, et al. Subtraction peri-ictal SPECT is predictive of extratemporal epilepsy surgery outcome. Neurology. 2000;55(11):16681677.CrossRefGoogle ScholarPubMed
Comair, YG, Van Ness, PC, Chamoun, RB, Bouclaous, CH. Neocortical resections. In: Engel, J Jr., Pedley, TA, eds., Epilepsy: A Comprehensive Textbook. 2nd edn. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2008:18691878.Google Scholar
Bower, RS, Wirrell, E, Nwojo, M, et al. Seizure outcomes after corpus callosotomy for drop attacks. Neurosurgery. 2013;73(6):9931000.CrossRefGoogle ScholarPubMed
Liang, S, Li, A, Jiang, H, et al. Anterior corpus callosotomy in patients with intractable generalized epilepsy and mental retardation. Stereotact Funct Neurosurg. 2010;88(4):246252.CrossRefGoogle ScholarPubMed
Graham, D, Tisdall, MM, Gill, D. Corpus callosotomy outcomes in pediatric patients: a systematic review. Epilepsia. 2016;57(7):10531068.CrossRefGoogle ScholarPubMed
Malmgren, K, Rydenhag, B, Hallbook, T. Reappraisal of corpus callosotomy. Curr Opin Neurol. 2015;28(2):175181.CrossRefGoogle ScholarPubMed
Gates, JR, Rosenfeld, WE, Maxwell, RE, Lyons, RE. Response of multiple seizure types to corpus callosum section. Epilepsia. 1987;28(1):2834.CrossRefGoogle ScholarPubMed
Kasasbeh, AS, Smyth, MD, Steger-May, K, et al. Outcomes after anterior or complete corpus callosotomy in children. Neurosurgery. 2014;74(1):1728; discussion 28.CrossRefGoogle ScholarPubMed
Lancman, G, Virk, M, Shao, H, et al. Vagus nerve stimulation vs. corpus callosotomy in the treatment of Lennox-Gastaut syndrome: a meta-analysis. Seizure. 2013;22(1):38.CrossRefGoogle ScholarPubMed
Purves, SJ, Wada, JA, Woodhurst, WB, et al. Results of anterior corpus callosum section in 24 patients with medically intractable seizures. Neurology. 1988;38(8):11941201.CrossRefGoogle ScholarPubMed
Rolston, JD, Englot, DJ, Wang, DD, Garcia, PA, Chang, EF. Corpus callosotomy versus vagus nerve stimulation for atonic seizures and drop attacks: a systematic review. Epilepsy Behav. 2015;51:1317.CrossRefGoogle ScholarPubMed
Peacock, WJ. Hemispherectomy for the treatment of intractable seizures in childhood. Neurosurg Clin N Am. 1995;6(3):549563.CrossRefGoogle Scholar
Oppenheimer, DR, Griffith, HB. Persistent intracranial bleeding as a complication of hemispherectomy. J Neurol Neurosurg Psychiatry. 1966;29(3):229240.CrossRefGoogle ScholarPubMed
Villemure, J, Daniel, RT. Functional hemispherectomy and periinsular hemispherotomy. In: Baltuch, GH, Villemure, J, eds., Operative Techniques in Epilepsy Surgery. New York: Thieme Medical Publishers; 2009:138145.Google Scholar
Danielpour, M, von Koch, CS, Ojemann, SG, Peacock, WJ. Disconnective hemispherectomy. Pediatr Neurosurg. 2001;35(4):169172.CrossRefGoogle ScholarPubMed
Schusse, CM, Smith, K, Drees, C. Outcomes after hemispherectomy in adult patients with intractable epilepsy: institutional experience and systematic review of the literature. J Neurosurg. 2018;128(3):853861.CrossRefGoogle ScholarPubMed
Moosa, AN, Jehi, L, Marashly, A, et al. Long-term functional outcomes and their predictors after hemispherectomy in 115 children. Epilepsia. 2013;54(10):17711779.CrossRefGoogle ScholarPubMed
Jonas, R, Nguyen, S, Hu, B, et al. Cerebral hemispherectomy: hospital course, seizure, developmental, language, and motor outcomes. Neurology. 2004;62(10):17121721.CrossRefGoogle ScholarPubMed
Morrell, F, Hanbery, JW. A new surgical technique for the treatment of focal cortical epilepsy. Electroencephalogr Clin Neurophysiol. 1969;26(1):120.Google ScholarPubMed
Morrell, F, Whisler, WW, Bleck, TP. Multiple subpial transection: a new approach to the surgical treatment of focal epilepsy. J Neurosurg. 1989;70(2):231239.CrossRefGoogle ScholarPubMed
Hufnagel, A, Zentner, J, Fernandez, G, et al. Multiple subpial transection for control of epileptic seizures: effectiveness and safety. Epilepsia. 1997;38(6):678688.CrossRefGoogle ScholarPubMed
Spencer, SS, Schramm, J, Wyler, A, et al. Multiple subpial transection for intractable partial epilepsy: an international meta-analysis. Epilepsia. 2002;43(2):141145.CrossRefGoogle ScholarPubMed
Schauble, B, Cascino, GD, Pollock, BE, et al. Seizure outcomes after stereotactic radiosurgery for cerebral arteriovenous malformations. Neurology. 2004;63(4):683687.CrossRefGoogle ScholarPubMed
Schrottner, O, Eder, HG, Unger, F, Feichtinger, K, Pendl, G. Radiosurgery in lesional epilepsy: brain tumors. Stereotact Funct Neurosurg. 1998;70 Suppl 1(1):5056.CrossRefGoogle ScholarPubMed
Drees, C, Chapman, K, Prenger, E, et al. Seizure outcome and complications following hypothalamic hamartoma treatment in adults: endoscopic, open, and Gamma Knife procedures. J Neurosurg. 2012;117(2):255261.CrossRefGoogle ScholarPubMed
Regis, J, Scavarda, D, Tamura, M, et al. Gamma knife surgery for epilepsy related to hypothalamic hamartomas. Semin Pediatr Neurol. 2007;14(2):7379.CrossRefGoogle ScholarPubMed
Bartolomei, F, Hayashi, M, Tamura, M, et al. Long-term efficacy of gamma knife radiosurgery in mesial temporal lobe epilepsy. Neurology. 2008;70(19):16581663.CrossRefGoogle ScholarPubMed
Quigg, M, Harden, C. Minimally invasive techniques for epilepsy surgery: stereotactic radiosurgery and other technologies. J Neurosurg. 2014;121 Suppl:232240.CrossRefGoogle ScholarPubMed
Barbaro, NM, Quigg, M, Ward, MM, et al. Radiosurgery versus open surgery for mesial temporal lobe epilepsy: the randomized, controlled ROSE trial. Epilepsia. 2018;59(6):11981207.CrossRefGoogle ScholarPubMed
Feichtinger, M, Schrottner, O, Eder, H, et al. Efficacy and safety of radiosurgical callosotomy: a retrospective analysis. Epilepsia. 2006;47(7):11841191.CrossRefGoogle ScholarPubMed
Hoppe, C, Witt, JA, Helmstaedter, C, et al. Laser interstitial thermotherapy (LiTT) in epilepsy surgery. Seizure. 2017;48:4552.CrossRefGoogle Scholar
Barber, SM, Tomycz, L, George, T, Clarke, DF, Lee, M. Delayed intraparenchymal and intraventricular hemorrhage requiring surgical evacuation after MRI-guided laser interstitial thermal therapy for lesional epilepsy. Stereotact Funct Neurosurg. 2017;95(2):7378.CrossRefGoogle ScholarPubMed
Wicks, RT, Jermakowicz, WJ, Jagid, JR, et al. Laser interstitial thermal therapy for mesial temporal lobe epilepsy. Neurosurgery. 2016;79 Suppl 1:S83S91.CrossRefGoogle ScholarPubMed
Jermakowicz, WJ, Kanner, AM, Sur, S, et al. Laser thermal ablation for mesiotemporal epilepsy: analysis of ablation volumes and trajectories. Epilepsia. 2017;58(5):801810.CrossRefGoogle ScholarPubMed
Rolston, JD, Chang, EF. Stereotactic laser ablation for hypothalamic hamartoma. Neurosurg Clin N Am. 2016;27(1):5967.CrossRefGoogle ScholarPubMed
Medvid, R, Ruiz, A, Komotar, RJ, et al. Current applications of MRI-guided laser interstitial thermal therapy in the treatment of brain neoplasms and epilepsy: a radiologic and neurosurgical overview. Am J Neuroradiol. 2015;36(11):19982006.CrossRefGoogle ScholarPubMed
Barba, C, Rheims, S, Minotti, L, et al. Temporal plus epilepsy is a major determinant of temporal lobe surgery failures. Brain. 2016;139(Pt 2):444451.CrossRefGoogle ScholarPubMed
Najm, I, Jehi, L, Palmini, A, et al. Temporal patterns and mechanisms of epilepsy surgery failure. Epilepsia. 2013;54(5):772782.CrossRefGoogle ScholarPubMed
Vale, FL, Pollock, G, Benbadis, SR. Failed epilepsy surgery for mesial temporal lobe sclerosis: a review of the pathophysiology. Neurosurg Focus. 2012;32(3):E9.CrossRefGoogle ScholarPubMed
Grote, A, Witt, JA, Surges, R, et al. A second chance – reoperation in patients with failed surgery for intractable epilepsy: long-term outcome, neuropsychology and complications. J Neurol Neurosurg Psychiatry. 2016;87(4):379385.CrossRefGoogle ScholarPubMed
Fauser, S, Essang, C, Altenmuller, DM, et al. Long-term seizure outcome in 211 patients with focal cortical dysplasia. Epilepsia. 2015;56(1):6676.CrossRefGoogle ScholarPubMed
Ramantani, G, Strobl, K, Stathi, A, et al. Reoperation for refractory epilepsy in childhood: a second chance for selected patients. Neurosurgery. 2013;73(4):695704; discussion 704.CrossRefGoogle ScholarPubMed
Palmini, A, Gambardella, A, Andermann, F, et al. Intrinsic epileptogenicity of human dysplastic cortex as suggested by corticography and surgical results. Ann Neurol. 1995;37(4):476487.CrossRefGoogle ScholarPubMed
Bower, RS, Wirrell, EC, Eckel, LJ, et al. Repeat resective surgery in complex pediatric refractory epilepsy: lessons learned. J Neurosurg Pediatr. 2015;16(1):94100.CrossRefGoogle ScholarPubMed
Gonzalez-Martinez, J, Bulacio, J, Alexopoulos, A, et al. Stereoelectroencephalography in the “difficult to localize” refractory focal epilepsy: early experience from a North American epilepsy center. Epilepsia. 2013;54(2):323330.CrossRefGoogle ScholarPubMed
Engel, J Jr., Wiebe, S, French, J, et al. Practice parameter: temporal lobe and localized neocortical resections for epilepsy. Report of the Quality Standards Subcommittee of the American Academy of Neurology, in association with the American Epilepsy Society and the American Association of Neurological Surgeons. Neurology. 2003;60(4):538547.CrossRefGoogle ScholarPubMed
Effectiveness, Efficiency of Surgery for Temporal Lobe Epilepsy Study Group: Wiebe, S, Blume, WT, Girvin, JP, Eliasziw, M. A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med. 2001;345(5):311318.CrossRefGoogle ScholarPubMed
Engel, J Jr., Van Ness, P, Rasmussen, TB, Ojemann, LM. Outcome with respect to epileptic seizures. In: Engel, J Jr., ed., Surgical Treatment of the Epilepsies. 2nd edn. New York: Raven Press; 1993:609621.Google ScholarPubMed
Wieser, HG, Blume, WT, Fish, D, et al. ILAE Commission Report: proposal for a new classification of outcome with respect to epileptic seizures following epilepsy surgery. Epilepsia. 2001;42(2):282286.CrossRefGoogle ScholarPubMed
West, S, Nolan, SJ, Cotton, J, et al. Surgery for epilepsy. Cochrane Database Syst Rev. 2015(7):CD010541.Google Scholar
Salanova, V, Markand, O, Worth, R. Longitudinal follow-up in 145 patients with medically refractory temporal lobe epilepsy treated surgically between 1984 and 1995. Epilepsia. 1999;40(10):14171423.CrossRefGoogle ScholarPubMed
Fong, JS, Jehi, L, Najm, I, et al. Seizure outcome and its predictors after temporal lobe epilepsy surgery in patients with normal MRI. Epilepsia. 2011;52(8):13931401.CrossRefGoogle ScholarPubMed
McIntosh, AM, Kalnins, RM, Mitchell, LA, et al. Temporal lobectomy: long-term seizure outcome, late recurrence and risks for seizure recurrence. Brain. 2004;127(Pt 9):20182030.CrossRefGoogle ScholarPubMed
Holmes, MD, Born, DE, Kutsy, RL, et al. Outcome after surgery in patients with refractory temporal lobe epilepsy and normal MRI. Seizure. 2000;9(6):407411.CrossRefGoogle ScholarPubMed
Bell, ML, Rao, S, So, EL, et al. Epilepsy surgery outcomes in temporal lobe epilepsy with a normal MRI. Epilepsia. 2009;50(9):20532060.CrossRefGoogle ScholarPubMed
Bien, CG, Szinay, M, Wagner, J, et al. Characteristics and surgical outcomes of patients with refractory magnetic resonance imaging-negative epilepsies. Arch Neurol. 2009;66(12):14911499.CrossRefGoogle ScholarPubMed
Jeha, LE, Najm, I, Bingaman, W, et al. Surgical outcome and prognostic factors of frontal lobe epilepsy surgery. Brain. 2007;130(Pt 2):574584.CrossRefGoogle ScholarPubMed
Piepgras, DG, Sundt, TM Jr., Ragoowansi, AT, Stevens, L. Seizure outcome in patients with surgically treated cerebral arteriovenous malformations. J Neurosurg. 1993;78(1):511.CrossRefGoogle ScholarPubMed
Edwards, JC, Wyllie, E, Ruggeri, PM, et al. Seizure outcome after surgery for epilepsy due to malformation of cortical development. Neurology. 2000;55(8):11101114.CrossRefGoogle ScholarPubMed
Kral, T, Clusmann, H, Blumcke, I, et al. Outcome of epilepsy surgery in focal cortical dysplasia. J Neurol Neurosurg Psychiatry. 2003;74(2):183188.CrossRefGoogle ScholarPubMed
Blume, WT, Ganapathy, GR, Munoz, D, Lee, DH. Indices of resective surgery effectiveness for intractable nonlesional focal epilepsy. Epilepsia. 2004;45(1):4653.CrossRefGoogle ScholarPubMed
Cascino, GD, Jack, CR Jr., Parisi, JE, et al. MRI in the presurgical evaluation of patients with frontal lobe epilepsy and children with temporal lobe epilepsy: pathologic correlation and prognostic importance. Epilepsy Res. 1992;11(1):5159.CrossRefGoogle ScholarPubMed
McIntosh, AM, Averill, CA, Kalnins, RM, et al. Long-term seizure outcome and risk factors for recurrence after extratemporal epilepsy surgery. Epilepsia. 2012;53(6):970978.CrossRefGoogle ScholarPubMed
Holmes, MD, Kutsy, RL, Ojemann, GA, Wilensky, AJ, Ojemann, LM. Interictal, unifocal spikes in refractory extratemporal epilepsy predict ictal origin and postsurgical outcome. Clin Neurophysiol. 2000;111(10):18021808.CrossRefGoogle ScholarPubMed
Menon, R, Rathore, C, Sarma, SP, Radhakrishnan, K. Feasibility of antiepileptic drug withdrawal following extratemporal resective epilepsy surgery. Neurology. 2012;79(8):770776.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats