Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-8dvf2 Total loading time: 0.638 Render date: 2022-09-30T17:31:06.021Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

References and Further Reading

Published online by Cambridge University Press:  29 April 2021

Alessandro Minelli
Affiliation:
University of Padua
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

Textbooks on developmental biology: Wolpert, L., Tickle, C., and Martinez Arias, A. (2015). Principles of Development, 5th edn. Oxford: Oxford University Press; Gilbert, S. F., and Barresi, J. F. (2016). Developmental Biology, 11th edn. Sunderland, MA: Sinauer.Google Scholar
On a possible definition of development: Minelli, A. (2011). Development, an open-ended segment of life. Biological Theory 6: 415; Pradeu, T., Laplane, L., Prévot, K., et al. (2016). Defining “Development”. Current Topics in Developmental Biology 117: 171–183.CrossRefGoogle Scholar
On a theory of development: Minelli, A., and Pradeu, T. (eds.) (2014). Towards a Theory of Development. Oxford: Oxford University Press.CrossRefGoogle Scholar
The quotation on p. 2 is from Bernard, C. (1878). Leçons sur les phénomènes de la vie communs aux animaux et aux végétaux. Volume 1. Baillière, Paris (pp. 331333, my translation).Google Scholar
On adultocentrism: Minelli, A. (2003). The Development of Animal Form. Cambridge: Cambridge University Press. Davidson’s sentences quoted on p. 6 are from Davidson, E. H. (1991). Spatial mechanisms of gene regulation in metazoan embryos. Development 113: 1–26.CrossRefGoogle Scholar
On choanoflagellates: Hoffmeyer, T. T., and Burkhardt, P. (2016). Choanoflagellate models – Monosiga brevicollis and Salpingoeca rosetta. Current Opinion in Genetics and Development 39: 4247.CrossRefGoogle ScholarPubMed
On morphological and functional changes in python anatomy during and after feeding: Andersen, J. B., Rourke, B. C., Caiozzo, V. J., Bennett, A. F., and Hiàcks, J. W. (2005). Postprandial cardiac hypertrophy in pythons. Nature 434: 3738; Andrew, A. L., Card, D. C., Ruggiero, R. P., et al. (2015). Rapid changes in gene expression direct rapid shifts in intestinal form and function in the Burmese python after feeding. Physiological Genomics 47: 147–157.CrossRefGoogle ScholarPubMed
On Elysia chlorotica: Sultan, S. (2015). Organism and Environment: Ecological Development, Niche Construction, and Adaptation. New York: Oxford University Press.CrossRefGoogle Scholar
On the history of embryology: Needham, J. (1959). A History of Embryology, 2nd edn. Cambridge: Cambridge University Press; Gilbert, S. F. (ed.) (1991). A Conceptual History of Modern Embryology. New York: Plenum.Google Scholar
On the history of research on model organisms (Drosophila, Caenorhabditis elegans): Kohler, R. E. (1994). Lords of the Fly: Drosophila Genetics and the Experimental Life. Chicago: University of Chicago Press; de Chadarevian, S. (1998). Of worms and programs: Caenorhabditis elegans and the study of development. Studies in History and Philosophy of the Biological and Biomedical Sciences 29: 81–105; Minelli, A., and Baedke, J. (2014). Model organisms in evo-devo: Promises and pitfalls of the comparative approach. History and Philosophy of the Life Sciences 36: 42–59.Google Scholar
On the ABC model of flower parts specification: Coen, E. S., and Meyerowitz, E. M. (1991). The war of the whorls: Genetic interactions controlling flower development. Nature 353: 3137; Bowman, J. L., Smyth, D. R., and Meyerowitz, E. M. (1991). Genetic interactions among floral homeotic genes of Arabidopsis. Development 112: 1–20.CrossRefGoogle ScholarPubMed

Secondary Sources

Papers cited in the chapter’s opening paragraphs: Chandebois, R. (1977). Cell sociology and the problem of position effect: pattern formation, origin and role of gradients. Acta Biotheoretica 26: 203238; Wolpert, L., Ghysen, A., and García-Bellido, A. (1998). Debatable issues. International Journal of Developmental Biology 42: 511–518 (L. Wolpert, p. 515).CrossRefGoogle ScholarPubMed
On Loricifera: Kristensen, R. M. (2002). An introduction to Loricifera, Cycliophora, and Micrognathozoa. Integrative and Comparative Biology 42: 641651.CrossRefGoogle ScholarPubMed
On the Drosophila chico mutant: Böhni, R., Riesgo-Escovar, J., Oldham, S., et al. (1999). Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1–4. Cell 97: 865876.CrossRefGoogle ScholarPubMed
On the transcription of very large genes in early embryonic development: O’Farrell, P. H. (1992). Big genes and little genes and deadlines for transcription. Nature 359: 366367.CrossRefGoogle ScholarPubMed
On the hands and feet of Ichthyostega and Acanthostega: Coates, M. I., and Clack, J. A. (1990). Polydactyly and the earliest known tetrapod limbs. Nature 347: 6669.CrossRefGoogle Scholar
On developmental biology as the study of multicellularity: Bonner, J. T. (2001). First Signals: The Evolution of Multicellular Development. Princeton: Princeton University Press.CrossRefGoogle Scholar
On Trypanosoma: Matthews, K. R. (2005). The developmental cell biology of Trypanosoma brucei. Journal of Cell Science 118: 283290.CrossRefGoogle ScholarPubMed
On Acetabularia: Hämmerling, J. (1953). Nucleo-cytoplasmic relationships in the development of Acetabularia. International Review of Cytology 2: 475498; Berger, S., and Liddle, L. B. (2003). The life cycle of Acetabularia (Dasycladales, Chlorophyta): Textbook accounts are wrong. Phycologia 42: 204–207.CrossRefGoogle Scholar
On ciliates: Tartar, V. (1961). The Biology of Stentor. Oxford: Pergamon Press.Google Scholar
On anucleate animal cells: Polilov, A. A. (2012). The smallest insects evolve anucleate neurons. Arthropod Structure and Development 41: 2732.Google ScholarPubMed
On embryonic development in the fruit fly, including the syncytial phase: Lawrence, P. A. (1992). The Making of a Fly. Oxford: Blackwell.Google Scholar
On syncytia in glass sponges: Leys, S. P. (2003). The significance of syncytial tissues for the position of the Hexactinellida in the Metazoa. Integrative and Comparative Biology 43: 1927.CrossRefGoogle ScholarPubMed
On the cytoplasmic strands connecting plant cells: Lucas, W. J., Ding, B., and Van der Schoot, C. (1993). Plasmodesmata and the supracellular nature of plants. New Phytologist 125: 435476.CrossRefGoogle Scholar
On cellular slime moulds (Dictyostelium discoideum): Bonner, J. T. (1959). The Cellular Slime Molds. Princeton: Princeton University Press; Loomis, W. F. (ed.) (1982). The Development of Dictyostelium discoideum. New York: Academic Press.Google ScholarPubMed
On biological individuality: Buss, L. (1987). The Evolution of Individuality. Princeton: Princeton University Press; Santelices, B. (1999). How many kinds of individual are there? Trends in Ecology and Evolution 14: 152–155; Wilson, J. (1999). Biological Individuality: The Identity and Persistence of Living Entities. Cambridge: Cambridge University Press; Godfrey-Smith, P. (2009). Darwinian Populations and Natural Selection. Oxford University Press: New York; Bouchard, F., and Huneman, P. (eds.) (2013). From Groups to Individuals. Evolution and Emerging Individuality. Cambridge, MA: The MIT Press; Pradeu, T. (2016). Organisms or biological individuals? Combining physiological and evolutionary individuality. Biology and Philosophy 31: 797–817; Fields, C., and Levin, M. (2018). Are planaria individuals? What regenerative biology is telling us about the nature of multicellularity. Evolutionary Biology 45: 237–247.Google Scholar
On genet and ramet: Harper, J. L., and White, J. (1974). The demography of plants. Annual Review of Ecology and Systematics 5: 419463.CrossRefGoogle Scholar
On chimerism and mosaicism in stony corals: Schweinsberg, M., Weiss, L. C., Striewski, S., Tollrian, R., Lampert, K. P. (2015). More than one genotype: how common is intracolonial genetic variability in scleractinian corals? Molecular Ecology 24: 26732685.CrossRefGoogle ScholarPubMed
On mutation rates in humans: Kong, A., Frigge, M. L., Masson, G., et al. (2012). Rate of de novo mutations and the importance of father’s age to disease risk. Nature 488: 471475; Sun, J. X., Helgason, A., Masson, G., et al. (2012). A direct characterization of human mutation based on microsatellites. Nature Genetics 44: 1161–1165.CrossRefGoogle ScholarPubMed
On polyembryony: Craig, S. F., Slobodkin, L. B., Wray, G. A., and Biermann, C. H. (1997). The ‘paradox’ of polyembryony: A review of the cases and a hypothesis for its evolution. Evolutionary Ecology 11: 127143; Gordon, S. D., and Strand, M. R. (2009). The polyembryonic wasp Copidosoma floridanum produces two castes by differentially parceling the germ line during embryo proliferation. Development, Genes and Evolution 219: 445–454.CrossRefGoogle Scholar
On developmental scaffolds: Minelli, A. (2016). Scaffolded biology. Theory in Biosciences 135: 163173.CrossRefGoogle ScholarPubMed
On animals of Greek mythology revisited from the perspective of comparative morphology and morphogenetics: Minelli, A. (2015). Constraints on animal (and plant) form in nature and art. Art and Perception 3: 265281.CrossRefGoogle Scholar
On chimeric pairs and immune problems in angler fishes: Regan, C. T. (1925). Dwarfed males parasitic on the females of oceanic angler-fishes (Pediculati, Ceratioidea). Proceedings of the Royal Society of London B 97: 386400; Dubin, A., Jørgensen, T. E., Moum, T., Johansen, S. D., and Jakt, L. M. (2019). Complete loss of the MHC II pathway in an anglerfish, Lophius piscatorius. Biology Letters 15: 20190594.Google Scholar
On Sacculina carcini: Høeg, J. T. (1987). Male cypris metamorphosis and a new male larval form, the trichogon, in the parasitic barnacle Sacculina carcini (Crustacea: Cirripedia: Rhizocephala). Philosophical Transactions of the Royal Society of London 317B: 4763.Google Scholar
On lichens and plant galls: Sanders, W. (2006). A feeling for the superorganism: Expression of plant form in the lichen thallus. Botanical Journal of the Linnean Society 150: 8999; Minelli, A. (2017). Lichens and galls – two families of chimeras in the space of form. Azafea 19: 91–105.CrossRefGoogle Scholar
On inertial models in biology: Gayon, J. (1998). Darwinism’s Struggle for Survival. Cambridge: Cambridge University Press; Minelli, A. (2011). A principle of developmental inertia. In Hallgrímsson, B. and Hall, B. K. (eds.) Epigenetics: Linking Genotype and Phenotype in Development and Evolution. Berkeley–Los Angeles–London: University of California Press, pp. 116–133.Google Scholar
Darwin’s quotations about monsters and deformities are from Barrett, P. H., Gautrey, P. J., Herbert, S., Kohn, D. and Smith, S. (eds.) (1987). Charles Darwin’s Notebooks, 1836–1844. Cambridge: Cambridge University Press (Notebook B, p. 199; Notebook C, p. 259).Google Scholar
On the intertwining of genes, environment and epigenetic factors in development: Oyama, S. (2000). The Ontogeny of Information, 2nd edn. Durham, NC: Duke University Press; Kupiec, J. J. (2009). The Origin of Individuals. Singapore: World Scientific; Griesemer, J. (2019). Towards a theory of extended development. In Fusco, G. (ed.) Perspectives on Evolutionary and Developmental Biology. Padova: Padova University Press, pp. 319–334.Google Scholar
On extra-embryonic membranes and other annexes: Gilbert, S. F., and Raunio, A. M. (1997). Embryology: Constructing the Organism. Sunderland, MA: Sinauer; Panfilio, K. A. (2008). Extraembryonic development in insects and the acrobatics of blastokinesis. Developmental Biology 313: 471–491.Google Scholar
On Roux and Driesch in the context of the history of embryology since the last decades of the nineteenth century: Gilbert, S. F. (ed.) (1991). A Conceptual History of Modern Embryology. New York: Plenum.CrossRefGoogle Scholar
On the reaggregation of dissociated cells in sponges: Wilson, H. V. (1907). On some phenomena of coalescence and regeneration in sponges. Journal of Experimental Zoology 5: 245258; Custodio, M. R., Prokic, I., Steffen, R., et al. (1998). Primmorphs generated from dissociated cells of the sponge Suberites domuncula: A model system for studies of cell proliferation and cell death. Mechanisms of Ageing and Development 105: 45–59; Lavrov, A. I., and Kosevich, I. A. (2016). Sponge cell reaggregation: Cellular structure and morphogenetic potencies of multicellular aggregates. Journal of Experimental Zoology 325A: 158–177.CrossRefGoogle Scholar
On the cell lineage of Caenorhabditis elegans: Packer, J. S., Zhu, Q., Huynh, C., et al. (2019). A lineage-resolved molecular atlas of C. elegans embryogenesis at single cell resolution. Science 365, eaax1971.CrossRefGoogle ScholarPubMed
On the medusa-to-polyp transition in Turritopsis: Bavestrello, G., Sommer, C., Sarà, M., and Hughes, R. G. (1992). Bi-directional conversion in Turritopsis nutricula. In Bouillon, J., Boero, F., Cicogna, F., Gili, J. M., and Hughes, R. G. (eds.), Aspects of Hydrozoan Biology. Scientia Marina 56: 137140; Piraino, S., Boero, F., Aeschbach, B., and Schmid, V. (1996). Reversing the life cycle: medusae transforming into polyps and cell transdifferentiation in Turritopsis nutricula (Cnidaria, Hydrozoa). Biological Bulletin 190: 302–312.Google Scholar
On Lazarus developmental features: Minelli, A. (2003). The Development of Animal Form, cit.Google Scholar
On organogenesis as resulting from interwined, non-organ-specific mechanisms: Carmeliet, P., and Tessier-Lavigne, M. (2005). Common mechanisms of nerve and blood vessel wiring. Nature 436: 193200; Dunwoodie, S. L. (2007). Combinatorial signalling in the heart orchestrates cardiac induction, lineage specification and chamber formation. Seminars in Cell and Developmental Biology 18: 54–66; Tao, Y. and Schulz, R. A. (2007). Heart development in Drosophila. Seminars in Cell and Developmental Biology 18: 3–15; Minelli, A. (2009). Perspectives in Animal Phylogeny and Evolution. Oxford: Oxford University Press.CrossRefGoogle ScholarPubMed
On the development of the pilidium larva of nemertines: Maslakova, S. A. (2010). Development to metamorphosis of the nemertean pilidium larva. Frontiers in Zoology 7: 30.CrossRefGoogle ScholarPubMed
Von Baer’s law of development (p. 70) is found on p. 224 of von Baer, K. E. (1828). Über Entwickelungsgeschichte der Thiere: Beobachtung und Reflexion. Volume 1. Königsberg: Bornträger. Extensive discussion in Gould, S. J. (1977). Ontogeny and Phylogeny. Cambridge, MA: Belknap Press of Harvard University Press.Google Scholar
On phylotypic stage and zootype: Sander, K. (1983). The evolution of patterning mechanisms: gleanings from insect embryogenesis and spermatogenesis. In Goodwin, B. C., Holder, N., and Wylie, C. C. (eds.) Development and Evolution. Cambridge: Cambridge University Press, pp. 124137; Slack, J. M. W., Holland, P. W. H., and Graham, C. F. (1993). The zootype and the phylotypic stage. Nature 361: 490–492; Duboule, D. (1994). Temporal colinearity and the phylotypic progression: A basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Development (Supplement): 135–142; Richardson, M. K. (1995). Heterochrony and the phylotypic period. Developmental Biology 172: 412–421; Wu, L., Ferger, K. E., and Lambert, J. D. (2019). Gene expression does not support the developmental hourglass model in three animals with spiralian development. Molecular Biology and Evolution 36: 1373–1383.Google Scholar
On the embryonic and larval development of Heliocidaris tuberculata versus H. erythrogramma: Wray, G. A., and Raff, R. A. (1991). The evolution of developmental strategy in marine invertebrates. Trends in Ecology and Evolution 6: 4550.CrossRefGoogle ScholarPubMed
On the embryonic versus blastogenetic development in Botryllus schlosseri: Manni, L., and Burighel, P. (2006). Common and divergent pathways in alternative developmental processes of ascidians. BioEssays 28: 902912; Alié, A., Hiebert, L., Scelzo, M., and Tiozzo, S. (2020). The eventful history of non-embryonic development in colonial Tunicates. Journal of Experimental Zoology B Molecular and Developmental Evolution. DOI: 10.1002/jez.b.22940.CrossRefGoogle ScholarPubMed
On larval reproduction in the jellycomb Mertensia ovum: Jaspers, C., Haraldsson, M., Bolte, S., Reusch, T. B. H., Thygesen, U. H., and Kiørboe, T. (2012). Ctenophore population recruits entirely through larval reproduction in the central Baltic Sea. Biology Letters 8: 809812.CrossRefGoogle ScholarPubMed
On the history of preformism/pre-existence and epigenesis: Bowler, P. J. (1971). Preformation and pre-existence in the seventeenth century. Journal of the History of Biology 4: 221244; Roe, S. A. (1981). Matter, Life and Generation. Cambridge: Cambridge University Press; Pinto-Correia, C. (1997). The Ovary of Eve. Chicago: University of Chicago Press; Cobb, M. (2006). The Egg and Sperm Race. Bloomsbury: The Free Press; Pyle, A. (2006). Malebranche on animal generation. Preexistence and the microscope. In J. E. H. Smith (ed.) The Problem of Animal Generation in Early Modern Philosophy. Cambridge: Cambridge University Press, pp. 194–214.CrossRefGoogle ScholarPubMed
On the boxed generations of Gyrodactylus: Cable, J., and Harris, P. D. (2002). Gyrodactylid developmental biology: Historical review, current status, and future trends. International Journal of Parasitology 32: 255280.CrossRefGoogle ScholarPubMed
On recent proposals about the definition of generation: Gorelik, R. (2012). Mitosis circumscribes individuals; sex creates new individuals. Biology and Philosophy 27: 871890; Minelli, A. (2014). Developmental disparity. In Minelli, A. and Pradeu, T. (eds.) Towards a Theory of Development. Oxford: Oxford University Press, pp. 227–245.CrossRefGoogle Scholar
On planarian regeneration: Reddien, P. W., and Sánchez Alvarado, A. (2004). Fundamentals of planarian regeneration. Annual Review of Cell and Developmental Biology 20: 725757; Egger, B., Ladurner, P., Nimeth, K., Gschwentner, R., and Rieger, R. (2006). The regeneration capacity of the flatworm Macrostomum lignano – on repeated regeneration, rejuvenation, and the minimal size needed for regeneration. Development Genes and Evolution 216: 565–577; Sánchez Alvarado, A. (2012). What is regeneration, and why look to planarians for answers? BMC Biology 10: 88; Rink, J. C. (2013). Stem cell systems and regeneration in planaria. Development Genes and Evolution 223: 67–84; Reddien, P. W. (2018). The cellular and molecular basis for planarian regeneration. Cell 175: 327–345.CrossRefGoogle ScholarPubMed
On hydra regeneration: Bode, H. R., Berking, S., David, C. N., et al. (1973). Quantitative analysis of cell types during growth and morphogenesis in hydra. Wilhelm Roux’s Archives of Developmental Biology 171: 269285; Shimizu, H., Sawada, Y., and Sugiyama, T. (1993) Minimum tissue size required for hydra regeneration. Developmental Biology 155: 287–296; Martinez, D. E., and Bridge, D. (2012). Hydra, the everlasting embryo, confronts aging. International Journal of Developmental Biology 56: 479–487.CrossRefGoogle ScholarPubMed
On morphallaxis: Morgan, T. H. (1901). Regeneration. New York: Macmillan.CrossRefGoogle ScholarPubMed
On reproduction and development in monogonont rotifers: Gilbert, J. J. (2003). Environmental and endogenous control of sexuality in a rotifer life cycle: Developmental and population biology. Evolution and Development 5: 1924.CrossRefGoogle Scholar
On the transmissible Tasmanian devil tumour: Pearse, A. M., and Swift, K. (2006). Allograft theory: Transmission of devil facial-tumour disease. Nature 439: 549; Weiss, R. A. (2018). Open questions: Knowing who’s who in multicellular animals is not always as simple as we imagine. BMC Biology 16: 115.CrossRefGoogle ScholarPubMed
The classic papers revisiting in molecular terms É. Geoffroy Saint-Hilaire’s idea of inversion of the dorso-ventral axis between arthropods and vertebrates: Arendt, D., and Nübler-Jung, K. (1994). Inversion of dorsoventral axis? Nature 371: 26; De Robertis, E. M., and Sasai, Y. (1996). A common plan for dorsoventral patterning in Bilateria. Nature 380: 37–40.CrossRefGoogle ScholarPubMed
Critical views of the current gene programme paradigm: Nijhout, H. F. (1990). Metaphors and the role of genes in development. BioEssays 12: 441446; Keller, E. (2002). The Century of the Gene. Cambridge, MA: Harvard University Press.CrossRefGoogle ScholarPubMed
On the multiple products of alternative splicing: Wojtowicz, W. M., Flanagan, J. J., Millard, S. S., Zipursky, S. L., and Clemens, J. C. (2004). Alternative splicing of Drosophila Dscam generates axon guidance receptors that exhibit isoform-specific homophilic binding. Cell 118: 619633.CrossRefGoogle ScholarPubMed
On the embryo as a computable system: Wolpert, L. (1994). Do we understand development? Science 266: 571572; Rosenberg, A. (1997). Reductionism redux: computing the embryo. Biology and Philosophy 12: 445–470; Laublicher, M. S., and Wagner, G. P. (2001). How molecular is molecular developmental biology? A reply to Alex Rosenberg’s reductionism redux: computing the embryo. Biology and Philosophy 16: 53–68.CrossRefGoogle ScholarPubMed
On combined genetic and mechanical control of morphogenesis: Chen, Q., Jiang, L., Li, C., et al. (2012). Haemodynamics-driven developmental pruning of brain vasculature in zebrafish. PLoS Biology 10: e1001374.CrossRefGoogle ScholarPubMed
On master control genes: Gehring, W. J. (1998). Master Control Genes in Development and Evolution. New Haven: Yale University Press.Google Scholar
On alternative views on the role of genes in development: Akam, M. (1998). Hox genes: from master genes to micromanagers. Current Biology 8: R676R678; Davidson, E. H., Rast, J. P., Oliveri, P., et al. (2002). A genomic regulatory network for development. Science 295: 1669–1678; Davidson, E. H. (2006). The Regulatory Genome: Gene Regulatory Networks in Development and Evolution. San Diego: Academic Press.CrossRefGoogle ScholarPubMed
On gene expression throughout the whole development: Arbeitman, M. N., Furlong, E. E. M., Imam, F., et al. (2002). Gene expression during the life cycle of Drosophila melanogaster. Science 297: 22702275; Koutsos, A. C., Blass, C., Meister, S. et al. (2007). Life cycle transcriptome of the malaria mosquito Anopheles gambiae and comparison with the fruitfly Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America 104: 11304–11309; Graveley, B., Brooks, A., Carlson, J., et al. 2010. The developmental transcriptome of Drosophila melanogaster. Nature 471: 473–479; Gąsiorowski, L., and Hejnol, A. 2019. Hox gene expression in postmetamorphic juveniles of the brachiopod Terebratalia transversa. EvoDevo 10: 1.CrossRefGoogle ScholarPubMed
On morphostasis: Wagner, G. P., and Misof, B. Y. (1993). How can a character be developmentally constrained despite variation in developmental pathways? Journal of Evolutionary Biology 6: 449455.CrossRefGoogle Scholar
On pattern formation: Waddington, C. H. (1956). Principles of Embryology. New York: MacMillan; Meinhardt, H. (1982). Models of Biological Pattern Formation. London: Academic Press; Prusinkiewicz, P., and Lindenmayer, A. (1990). The Algorithmic Beauty of Plants. New York: Springer.Google Scholar
On the similarities between embryonic development and regeneration processes in planarians: Cardona, A., Hartenstein, V., and Romero, R. (2005). The embryonic development of the triclad Schmidtea polychroa. Development Genes and Evolution 215: 109131.CrossRefGoogle ScholarPubMed
On developmental modules: von Dassow, G., and Munro, E. M. (1999). Modularity in animal development and evolution: Elements of a conceptual framework for EvoDevo. Journal of Experimental Zoology (Molecular and Developmental Evolution) 285: 307325; Schlosser, G., and Wagner, G. P. (eds.) (2003). Modularity in Development and Evolution. Chicago: University of Chicago Press; Klingenberg, C. P. (2005). Developmental constraints, modules and evolvability. In B. Hallgrímsson and B. K. Hall (eds.) Variation: A Central Concept in Biology. Burlington, MA: Elsevier, pp. 219–247.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
On developing organisms as multigenomic systems: Dupré, J. (2010). The polygenomic organism. The Sociological Review, 58 (Supplement 1): 1931; Gilbert, S. F., Sapp, J., and Tauber, A. I. (2012). A symbiotic view of life: We have never been individuals. The Quarterly Review of Biology 87: 325–341; McFall-Ngai, M., Hadfield, M. G., Bosch, T. C. G., et al. (2013). Animals in a bacterial world, a new imperative for the life sciences. Proceedings of the National Academy of Sciences of the United States of America 110: 3229–3236; Bosch, T. C. G., and McFall-Ngai, M. J. (2011). Metaorganisms as the new frontier. Zoology 114: 185–190; Gilbert, S. F., and Epel, D. (2015). Ecological Developmental Biology: The Environmental Regulation of Development, Health, and Evolution. Sunderland, MA: Sinauer; Bull, M. J., and Plummer, N. T. (2014). The human gut microbiome in health and disease. Integrative Medicine (Encinitas) 13: 17–22.CrossRefGoogle Scholar
On the ‘inelegant’ production of serial structures in fruit flies and leeches: Akam, M. (1989). Making stripes inelegantly. Nature 341: 282283; Weisblat, D. A., and Kuo, D.-H. (2018) Developmental biology of the leech Helobdella. International Journal of Developmental Biology 58: 429–443.CrossRefGoogle ScholarPubMed
On the development of an animal’s main body axis: Slack, M. et al. (1993), cit.; Minelli, A. (2005). A morphologist’s perspectives on terminal growth and segmentation. Evolution and Development 7: 568573.CrossRefGoogle Scholar
On the neural crest: Hall, B. K. (1998). Germ layers and the germ-layer theory revisited: Primary and secondary germ layers, neural crest as a fourth germ layer, homology, demise of the germ-layer theory. Evolutionary Biology 30: 121186.Google Scholar
On growth and polarity of fungal hyphae: Schmieder, S. S., Stanley, C. E., Rzepiela, A., et al. (2019). Bidirectional propagation of signals and nutrients in fungal networks via specialized hyphae. Current Biology 29: 217228.CrossRefGoogle ScholarPubMed
On axon growth: Tessier-Lavigne, M., and Goodman, C. S. (1996). The molecular biology of axon guidance. Science 274: 11231133.CrossRefGoogle ScholarPubMed
On left–right asymmetry in snails: Grande, C., and Patel, N. H. (2009). Nodal signalling is involved in left–right asymmetry in snails. Nature 457: 10071011.CrossRefGoogle ScholarPubMed
On autotomy not followed by regeneration: Emberts, Z., St. Mary, C. M., and Miller, C. W. (2016). Coreidae (Insecta: Hemiptera) limb loss and autotomy. Annals of the Entomological Society of America 109: 678683.CrossRefGoogle Scholar
On asymmetry: Palmer, A. R. (2016). What determines direction of asymmetry: Genes, environment or chance? Philosophical Transactions of the Royal Society B 371: 20150417.CrossRefGoogle ScholarPubMed
On deer antlers and vertebrate teeth: Goss, R. J. (1983). Deer Antlers: Regeneration, Function and Evolution. New York: Academic Press; Hall, B. K. (2005). Bones and Cartilage: Developmental and Evolutionary Skeletal Biology. London: Elsevier/Academic Press; Berkovitz, B. K., and Shellis, R. P. (2017). The Teeth of Non-Mammalian Vertebrates. London: Elsevier/Academic Press.Google Scholar
On fractals and paramorphism: M’Cosh, J. (1851). Some remarks on the plant morphologically considered. Transactions of the Botanical Society 4: 127132; Arber, A. (1950). The Natural Philosophy of Plant Form. Cambridge: Cambridge University Press; Mandelbrot, B. B. (1982). The Fractal Geometry of Nature. San Francisco: Freeman; Minelli, A. (2003). The origin and evolution of appendages. International Journal of Developmental Biology 47: 573–581; Glasby, C. J., Schroeder, P. C., and Aguado, M. T. (2012) Branching out: A remarkable new branching syllid (Annelida) living in a Petrosia sponge (Porifera: Demospongiae). Zoological Journal of the Linnean Society 164: 481–497.Google Scholar
On developmental robustness: Bateson, P., and Gluckman, P. (2011). Plasticity, Robustness, Development and Evolution. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
On reversible versus irreversible developmental switches: Greene, E. (1989). Diet-induced developmental polymorphism in a caterpillar. Science 243: 643646; Sunobe, T., and Nakazono, A. (1993). Sex change in both directions by alternation of social dominance in Trimma okinawae. Ethology 94: 339–345.CrossRefGoogle Scholar
On phenotypic plasticity: Fusco, G. and Minelli, A. (2010). Phenotypic plasticity in development and evolution. Philosophical Transactions of the Royal Society of London B 365: 547556.CrossRefGoogle ScholarPubMed
On periodical cicadas: Williams, K. S., and Simon, C. (1995). The ecology, behavior, and evolution of periodical cicadas. Annual Review of Entomology 40: 269295.CrossRefGoogle Scholar
On plant temporal phenotypes: Klimešová, J., Martínková, J., and Kočvarová, M. (2004). Biological flora of Central Europe: Rorippa palustris (L.) Besser. Flora 199: 453463.CrossRefGoogle Scholar
On the periodization of arthropod development: Minelli, A., Brena, C., Deflorian, G., Maruzzo, D., and Fusco, G. (2006). From embryo to adult – beyond the conventional periodization of arthropod development. Development, Genes and Evolution 216: 373383.CrossRefGoogle ScholarPubMed
Examples of standard tables of development: Theiler, K. (1989). The House Mouse: Atlas of Mouse Development. New York: Springer; Campos-Ortega, J. A., and Hartenstein, V. (1985). The Embryonic Development of Drosophila melanogaster. Berlin: Springer.CrossRefGoogle Scholar
Quotation on p. 146 from p. 111 of Ptolemy, C. (1822). Ptolemy’s Tetrabiblos, Or Quadripartite, trans. by Ashmand, J. M.. Davis and Dickson, London.Google Scholar
On embryonic diapause: Renfree, M. B., and Fenelon, J. C. (2017). The enigma of embryonic diapause. Development 144: 31993210.CrossRefGoogle ScholarPubMed
On the Dauer larva of Caenorhabditis elegans: Blaxter, M. (2011) Nematodes: The worm and its relatives. PLoS Biology 9: e1001050.CrossRefGoogle ScholarPubMed
On the contrasting age of male versus female body parts in Hemioniscus: Goudeau, M. (1977). Contribution à la biologie d’un crustacé parasite: Hemioniscus balani Buchholz, isopode epicaride. Nutrition, mues et croissance de la femelle et des embryons. Cahiers de Biologie Marine 18: 201242.Google Scholar
On senescence: Fahy, G. M. (2010). Precedents for the biological control of aging: experimental postponement, prevention, and reversal of aging processes. In Fahy, G. M. (ed.) The Future of Aging. Pathways to Human Life Extension. Dordrecht: Springer, pp. 127225; Shefferson, R. P., Jones, O. R. and Salguero-Gómez, R. (2017). The Evolution of Senescence in the Tree of Life. Cambridge: Cambridge University Press; Fusco, G., and Minelli, A. (2019). The Biology of Reproduction. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
On Dioscorea pyrenaica: García, M. B., Dahlgren, J. P., and Ehrlén, J. (2011). No evidence of senescence in a 300-year-old mountain herb. Journal of Ecology 99: 14241430.CrossRefGoogle Scholar
Quoted sentences from Bateson, W. (1908). The Methods and Scope of Genetics. An Inaugural Lecture delivered 23 October 1908. Cambridge: Cambridge University Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×