Skip to main content Accessibility help
×
Home
Hostname: page-component-7f7b94f6bd-lv2sk Total loading time: 0.932 Render date: 2022-06-30T12:01:23.654Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

6 - Global and local variations in tropical montane cloud forest soils

from Part I - General perspectives

Published online by Cambridge University Press:  03 May 2011

L. Roman
Affiliation:
University of Pennsylvania, USA
F.N. Scatena
Affiliation:
University of Pennsylvania, USA
L.A. Bruijnzeel
Affiliation:
VU University, the Netherlands
L. A. Bruijnzeel
Affiliation:
Vrije Universiteit, Amsterdam
F. N. Scatena
Affiliation:
University of Pennsylvania
L. S. Hamilton
Affiliation:
Cornell University, New York
Get access

Summary

ABSTRACT

Although soil resources are widely considered as a major factor that reduces the productivity, stature, and diversity of tropical montane cloud forests (TMCF), systematic comparisons of soil resources within and between TMCF are lacking. This study combines published reports on TMCF soils with new data on the soils and forest structure of the Luquillo Mountains in Puerto Rico to assess the current state of knowledge regarding global and local-scale variation in TMCF soils. At the global scale, soils from 33 TMCF sites and over 150 pedons are reviewed. Compared to soils in humid lowland tropical forests, TMCF soils are relatively acidic, have higher organic matter content, and are relatively high in total nitrogen and extractable phosphorus. Across all sites, significant correlations also exist between mean annual precipitation and soil pH and base saturation, but not between any soil chemical factor and canopy height, site elevation, or air temperature. Although comparisons between TMCF are limited by inconsistent sampling protocols, analysis of available data does indicates that lower montane cloud forests (LMCF) have taller canopies, higher soil pH, lower soil nitrogen, and higher C/N ratios than upper montane cloud forests (UMCF). Within an UMCF in NE Puerto Rico, the abundance of soil nitrogen, carbon, and potassium accounted for 25% to 54% of the variation in canopy height. However, as much as 68% of the variation in stand height could be accounted for when site exposure, slope gradient, and the percent coverage of surface roots were also included in the analysis. […]

Type
Chapter
Information
Tropical Montane Cloud Forests
Science for Conservation and Management
, pp. 77 - 89
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez Arteaga, G., Garcia Calderon, N. E., Krasilnikov, P. V., et al. (2008). Soil altitudinal sequence on base-poor parent material in a montane cloud forest in Sierra Juarez, Southern Mexico. Geoderma 144: 593–612.CrossRefGoogle Scholar
Austin, A. T. (2002). Differential effects of precipitation on production and decomposition along a rainfall gradient in Hawai'i. Ecology 83: 328–338.Google Scholar
Austin, A. T., and Vitousek, P. M. (1998). Nutrient dynamics on a precipitation gradient in Hawai'i. Oecologia 113: 519–529.CrossRefGoogle ScholarPubMed
Bautista-Cruz, A., and del Castillo, R. F. (2005). Soil changes during secondary succession in a tropical montane cloud forest area. Soil Science Society of America Journal 69: 906–914, doi:10.2136/sssaj2004.0130CrossRefGoogle Scholar
Bohlman, S. A., Matelson, T.J., and Nadkarni, N. M. (1995). Moisture and temperature patterns of canopy humus and forest floor soil of a montane cloud forest, Costa Rica. Biotropica 27: 13–19.CrossRefGoogle Scholar
Bruijnzeel, L. A. (2005). Tropical montane cloud forests: a unique hydrological case. In Forests, Water and People in the Humid Tropics, eds. Bonell, M. and Bruijnzeel, L. A., pp. 462–483. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Bruijnzeel, L. A. and Hamilton, L. S. (2000). Decision Time for Cloud Forests, IHP Humid Tropics Programme Series No. 13. Paris: IHP-UNESCO, Amsterdam: IUCN-NL, and Gland, Switzerland: WWF.Google Scholar
Bruijnzeel, L. A., and Proctor, J. (1995). Hydrology and biogeochemistry of TMCF: what do we really know? In Tropical Montane Cloud Forests, eds. Hamilton, L. S., Juvik, J. O., and Scatena, F. N., pp. 38–45. New York: Springer-Verlag.CrossRefGoogle Scholar
Bruijnzeel, L. A., and Veneklaas, E. J.. (1998). Climatic conditions and tropical montane forest productivity: the fog has not lifted yet. Ecology 79: 3–9.CrossRefGoogle Scholar
Bruijnzeel, L. A., Waterloo, M. J., Proctor, J., Kuiters, A. T., and Kotterink, B. (1993). Hydrological observations in montane rain forests on Gunung Silam, Sabah, Malaysia, with special reference to the ‘Massenerhebung’ effect. Journal of Ecology 81: 145–167.CrossRefGoogle Scholar
Cavelier, J. (1988). The ecology of elfin rain forests in northern South America. Dissertation submitted for the annual research fellowship competition, Trinity College, University of Cambridge, Cambridge, UK.
Cavelier, J., and Peñuela, M. C. (1990). Soil respiration in the cloud forest and dry deciduous forest of Serrania de Macuira, Colombia. Biotropica 22: 346–352.CrossRefGoogle Scholar
Cox, S. B., Willig, M. R., and Scatena, F. N. (2002). Variation in nutrient characteristics of surface soils from the Luquillo Experimental Forest of Puerto Rico: a multivariate perspective. Plant and Soil 247: 189–198.CrossRefGoogle Scholar
Coxson, D. S., McIntyre, D. D., and Vogel, H. J. (1992). Pulse release of sugars and polyols from canopy bryophytes in tropical montane rain forest (Guadeloupe, French West Indies). Biotropica 24: 121–133.CrossRefGoogle Scholar
Edwards, I. D., Macdonald, A. A., and Proctor, J. (eds.) (1993). Natural History of Seram, Maluku, Indonesia. Andover, UK: Intercept.
Edwards, P. J. (1982). Studies of mineral cycling in a montane rain forest in New Guinea. V. Rates of cycling in throughfall and litter fall. Journal of Ecology 70: 807–827.CrossRefGoogle Scholar
Flenley, J. R. (1993). Cloud forest, the Massenerhebung effect, and ultraviolet insolation. In Tropical Montane Cloud Forests, eds. Hamilton, L. S., Juvik, J. O., and Scatena, F. N., pp. 150–155. New York: Springer-Verlag.Google Scholar
Frahm, J. P. (1990). The ecology of epiphytic bryophytes on Mt. Kinabalu, Sabah (Malaysia). Nova Hedwigia 51: 121–132.Google Scholar
Frahm, J. P., and Gradstein, S. R. (1991). An altitudinal zonation of tropical rain forests using bryophytes. Journal of Biogeography 18: 669–676.CrossRefGoogle Scholar
Grieve, I. C., Proctor, J., and Cousins, S. A. (1990). Soil variation with altitude on Volcán Barva, Costa Rica. Catena 17: 525–534.CrossRefGoogle Scholar
Grimm, U., and Fassbender, H. W. (1981). Ciclos bioquímicos en un ecosistema forestal de los Andes Occidentales de Venezuela. II. Producción y descomposición de los residuos vegetales. Turrialba 31: 39–48.Google Scholar
Grubb, P. J. (1977). Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. Annual Review of Ecology and Systematics 8: 83–107.CrossRefGoogle Scholar
Hafkenscheid, R. L. L. J. (2000). Hydrology and biogeochemistry of tropical montane rain forests of contrasting stature in the Blue Mountains, Jamaica. Ph.D. thesis, VU University Amsterdam, Amsterdam, The Netherlands. Also available at http://dare.ubvu.vu.nl/bitstream/1871/12734/1/ tekst.pdf.
Hafkenscheid, R. L. L. J., Bruijnzeel, L. A., Jeu, R. A., and Bink, N. J. (2002). Water budgets of two upper montane rain forests of contrasting stature in the Blue Mountains, Jamaica. In Hydrology and Water Management in the Humid Tropics, ed. Gladwell, J. S., pp. 399–424. Paris: IHP-UNESCO, and Panamá City: CATHALAC.Google Scholar
Hamilton, L. S., Juvik, J. O., and Scatena, F. N. (1995). The Puerto Rico tropical cloud forest symposium: Introduction and workshop synthesis. In Tropical Montane Cloud Forests, eds. Hamilton, L. S., Juvik, J. O., and Scatena, F. N., pp. 1–23. New York: Springer-Verlag.CrossRefGoogle Scholar
Hättenschwiler, S., and Vitousek, P. M. (2000). The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends in Ecology and Evolution 15: 238–243.CrossRefGoogle ScholarPubMed
Heaney, A., and Proctor, J. (1990). Preliminary studies on forest structure and floristics on Volcan Barva, Costa Rica. Journal of Tropical Ecology 6: 307–320.CrossRefGoogle Scholar
Herrmann, R. (1971). Die zeitlichen Anderung der Wasserbindung im Boden unter verschiedenen Vegetationsformationen der Höhenstufen eines tropischen Hochgebirges (Sierra Nevada de Sta. Marta, Kolumbien). Erdkunde 25: 90–102.CrossRefGoogle Scholar
Hetsch, W., and Hoheisel, H. (1976). Standorts- und Vegetationsgliederung in einem tropischen Nebelwald. Allgemeine Forst- und Jagdzeitung 147: 200–207.Google Scholar
Johnson, C. E., Johnson, A. H., and Huntington, T. G. (1991). Sample pool requirements for the determinations of change in soil nutrient pools. Soil Science 150: 637–644.CrossRefGoogle Scholar
Kapos, V., and Tanner, E. V. J. (1985). Water relations of Jamaican upper montane rain forest trees. Ecology 66: 241–250.CrossRefGoogle Scholar
Kitayama, K. (1992). An altitudinal transect study of the vegetation on Mount Kinabalu, Borneo. Vegetatio 102: 149–171.CrossRefGoogle Scholar
Kitayama, K. and Aiba, S. (2002). Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. Journal of Ecology 90: 37–51.CrossRefGoogle Scholar
Kitayama, K., Aiba, S., Majalap-Lee, N., and Ohsawa, M. (1998). Soil nitrogen mineralization rates of rainforests in a matrix of elevations and geological substrates on Mount Kinabalu, Borneo. Ecological Research 13: 301–312.CrossRefGoogle Scholar
Lawton, R. O. (1982). Wind stress and elfin stature in a montane rain forest tree: an adaptive explanation. American Journal of Botany 69: 1224–1230.CrossRefGoogle Scholar
Leuschner, C., Moser, G., Bertsch, C., Röderstein, M., and Hertel, D. (2007). Large altitudinal increase in tree root/shoot ratio in tropical mountain forests in Ecuador. Basic and Applied Ecology 8: 219–230.CrossRefGoogle Scholar
Liebermann, D., Liebermann, M., Peralta, R., and Hartshorn, G. S. (1996). Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. Journal of Ecology 84: 137–152.CrossRefGoogle Scholar
Lugo, A. E., Brinson, M., and Brown, S. (eds). (1990). Forested Wetlands. Amsterdam: Elsevier.Google Scholar
Marrs, R., Proctor, J., Heaney, A., and Mountford, M. (1988). Changes in soil nitrogen mineralization and nitrification along an altitudinal transect in tropical rain forest in Costa Rica, Journal of Ecology 76: 466–482.CrossRefGoogle Scholar
Martin, P. J. (1977). The Altitudinal Zonation of Forests along the West Ridge of Gunong Mulu. Kuching, Malaysia: Sarawak Forest Department.Google Scholar
Moser, G., Hertel, D., and Leuschner, C h. (2007). Altitudinal change in LAI and stand leaf biomass in tropical montane forests: a transect study in Ecuador and a pan-tropical meta-analysis. Ecosystems 10: 924–935.CrossRefGoogle Scholar
Moser, G., Röderstein, M., Soethe, N., Hertel, D., and Leuschner, C h. (2008). Altitudinal changes in stand structure and biomass allocation of tropical mountain forest in relation to microclimate and soil chemistry. In Gradients in a Tropical Mountain Ecosystem of Ecuador, eds. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., pp. 229–242. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Myers, R. H. (1990). Classical and Modern Regression with Applications, 2nd edn. Pacific Grove, CA: Duxbury Press.Google Scholar
Nadkarni, N. M., and Longino, J. T. (1990). Invertebrates in canopy and ground organic matter in a Neotropical montane forest, Costa Rica. Biotropica 22: 286–289.CrossRefGoogle Scholar
Nadkarni, N. M., and Matelson, T. J. (1992). Biomass and nutrient dynamics of fine litter of terrestrially rooted material in a Neotropical montane forest, Costa Rica. Biotropica 24: 113–120.CrossRefGoogle Scholar
Newsome, D. (1986). Aspects of soil surface characteristics on Rakata and Anak Krakatau. In Krakatoa Centenary Expedition 1983 Final Report, eds. Bush, M., Jones, P., and Richards, K., pp. 134–156. Hull, UK: Department of Geography, University of Hull.Google Scholar
Northup, R., Dahlgren, R. A., and Yu, Z. (1995). Intraspecific variation of conifer phenolic concentration on a marine terrace soil acidity gradient: a new interpretation. Plant and Soil 171: 255–262.CrossRefGoogle Scholar
Olander, L. P., Scatena, F. N., and Silver, W. L. (1998). Impacts of disturbance initiated by road contruction in a subtropical cloud forest in the Luquillo Experimental Forest, Puerto Rico. Forest Ecology and Management 109: 33–49.CrossRefGoogle Scholar
Paoletti, M. G., Taylor, R. A. J., Stinner, B. R., Stinner, D. H., and Benzing, D. H. (1991). Diversity of soil fauna in the canopy and forest floor of a Venezuelan cloud forest. Journal of Tropical Ecology 7: 373–383.CrossRefGoogle Scholar
Payton, R. O. (1993). Soils of the Manusela National Park. In Natural History of Seram, Maluku, Indonesia, eds. Edwards, I. D., MacDonald, A., and Proctor, J., pp. 19–61. Andover, UK: Intercept Publishers.Google Scholar
Proctor, J., Lee, Y. F., Langley, A. M., Munro, W. R. C., and Nelson, T. (1988). Ecological studies on Gunung Silam, a small ultrabasic mountain in Sabah, Malaysia. I. Environment, forest structure, and floristics. Journal of Ecology 76: 320–340.CrossRefGoogle Scholar
Raich, J. W. (1998). Aboveground productivity and soil respiration in three Hawaiian rain forests. Forest Ecology and Management 107: 309–318.CrossRefGoogle Scholar
Raich, J. W., Russel, A. E., and Vitousek, P. M. (1997). Primary productivity and ecosystem development along an elevational gradient on Mauna Loa, Hawai'i. Ecology 78: 707–721.Google Scholar
Röderstein, M., Hertel, D., and Leuschner, C. (2005). Above- and below-ground litter production in three tropical mountain forests (South Ecuador). Journal of Tropical Ecology 21: 483–492.CrossRefGoogle Scholar
Santiago, L. S., Goldstein, G., Meinzer, F. C., Fownes, J. H., and Mueller-Dombois, D. (2000). Transpiration and forest structure in relation to soil waterlogging in a Hawaiian montane cloud forest. Tree Physiology 20: 673–681.CrossRefGoogle Scholar
Scatena, F. N. (1995). The management of Luquillo elfin cloud forest ecosystems: irreversible decisions in a nonsubstitutable ecosystem. In Tropical Montane Cloud Forests, eds. Hamilton, L. S., Juvik, J. O., and Scatena, F. N., pp. 296–308. New York: Springer-Verlag.CrossRefGoogle Scholar
Schlesinger, W. H., Bruijnzeel, L. A., Bush, M. B., et al. (1998). The biogeochemistry of phosphorus after the first century of soil development on Rakata island, Krakatau, Indonesia. Biogeochemistry 40: 37–55.CrossRefGoogle Scholar
Schrumpf, M. (2004). Biogeochemical investigations in old-growth and disturbed forest sites at Mount Kilimanjaro. Ph.D. thesis, University of Bayreuth, Bayreuth, Germany.
Schrumpf, M., Guggenberger, G., Valarezo, C., and Zech, W. (2001). Tropical montane rain forest soils: development and nutrient status along an altitudinal gradient in the south Ecuadorian Andes. Die Erde 132: 43–59.Google Scholar
Schuur, E. A. G., and Matson, P. A. (2001). Net primary productivity and nutrient cycling across a mesic to wet precipitation gradient in Hawaiian montane forest. Oecologia 128: 431–442.CrossRefGoogle ScholarPubMed
Schwarzkopf, T. (2003). Biophysical characterization of Cloud Forest Vegetation in the Venezuelan Andes. Ph.D. thesis, Cornell University, Ithaca, New York.
Shinagawa, A., Miyauchi, N., Higashi, T., Djuwansah, M. R., and Sule, A. (1986). The soils on the Krakatau Islands. Memoirs of the Faculty of Agriculture, Kagoshima University 22: 101–130.Google Scholar
Sieders, V. M. (1971). Geologic Map of the El Yunque Quadrangle, Puerto Rico, U.S. Geological Survey Miscellaneous Geological Investigations Map I-658. Washington, DC: U.S. Department of the Interior.Google Scholar
Silver, W. L. (1994). Is nutrient availability related to plant nutrient use in humid tropical forests?Oecologia 98: 336–343.CrossRefGoogle ScholarPubMed
Silver, W. L., Lugo, A. E., and Keller, M. (1999). Soil oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soils. Biogeochemistry 44: 301–328.CrossRefGoogle Scholar
Soethe, N., Lehmann, J., and Engels, C. (2006). The vertical pattern of rooting and nutrient uptake at different altitudes of a south Ecuadorian montane forest. Plant and Soil 286: 287–299.CrossRefGoogle Scholar
Soethe, N., Lehmann, J., and Engels, C. (2008a). Nutrient availability at different altitudes in a tropical montane forest in Ecuador. Journal of Tropical Ecology 24: 397–406.CrossRefGoogle Scholar
Soethe, N., Wilcke, W., Homeier, J., Lehmann, J., and Engels, C. (2008b). Plant growth along the altitudinal gradient: role of plant nutritional status, fine root activity, and soil properties. In Gradients in a Tropical Mountain Ecosystem of Ecuador, eds. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., pp. 259–266. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Sollins, P. (1998). Factors influencing species composition in tropical lowland rain forests: does soil matter?Ecology 79: 23–30.CrossRefGoogle Scholar
Stadtmüller, T. (1987). Cloud Forests in the Humid Tropics: A Bibliographic Review. Tokyo: United Nations University, and Turrialba, Costa Rica: CATIE.Google Scholar
Steinhardt, V. (1979). Untersuchungen über deu Wasser- und Nährstoffhaushalt eines andinen Wolkenwaldes in Venezuela. Göttinger Bodenkundliche Berichte 56: 1–185.
Sugden, A. M. (1986). The montane vegetation and flora of Margarita Island, Venezuela. Journal of the Arnold Arboretum 67: 187–232.Google Scholar
Tanner, E. V. J. (1977). Four montane rain forests of Jamaica: a quantitative characterization of the floristics, the soils, ad the foliar mineral levels, and a discussion of the interrelations. Journal of Ecology 65: 883–918.CrossRefGoogle Scholar
Tanner, E. V. J., Kapos, V., Freskos, S., Healey, J. R., and Theobald, A. M. (1990). Nitrogen and phosphorus fertilization of Jamaican montane forest trees. Journal of Tropical Ecology 6: 231–238.CrossRefGoogle Scholar
Tanner, E. V. J., Kapos, V., and Franco, W. (1992). Nitrogen and phosphorous fertilization effects on Venezuelan montane forest trunk growth and litterfall. Ecology 73: 78–86.CrossRefGoogle Scholar
Tanner, E. V. J., Vitousek, P. M., and Cuevas, E. (1998). Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79: 10–22.CrossRefGoogle Scholar
Tie, Y. L., Baille, I. C., Phang, C. M. S., and Lim, C. P. (1979). Soils of Gunung Mulu National Park. Kuching, Sarawak, Malaysia: Department of Agriculture.Google Scholar
Vance, E. D., and Nadkarni, N. M. (1990). Microbial biomass and activity in canopy organic matter and the forest floor of a tropical cloud forest. Soil Biology and Biochemistry 22: 677–684.CrossRefGoogle Scholar
Reuler, H. (1987). Soil studies in the Bukit Raya nature reserve. In Report of the 1982–1983 Bukit Raya Expedition, ed. Nooteboom, H. P., pp. 7–23. Leiden, the Netherlands: Rijksherbarium.Google Scholar
Veneklaas, E. J. (1990). Rainfall interception and above-ground nutrient fluxes in Colombian montane tropical forest. Ph.D. thesis, University of Utrecht, Utrecht, the Netherlands.
Vitousek, P. M. (1984). Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65: 285–298.CrossRefGoogle Scholar
Vitousek, P. M., and Sanford, R. L. (1986). Nutrient cycling in moist tropical forest. Annual Review of Ecology and Systematics 17: 137–167.CrossRefGoogle Scholar
Vitousek, P. M., Matson, P. A., and Turner, R. A. (1988). Elevation and age gradients in Hawaiian montane rainforest: foliar and soil nutrients. Oecologia 77: 565–570.CrossRefGoogle ScholarPubMed
Wang, H., Hall, C. A. S., Scatena, F. N., Fetcher, N., and Wu, W. (2002). Modeling the spatial and temporal variability in climate and primary productivity across the Luquillo Mountains, Puerto Rico. Forest Ecology and Management 61: 1018–1026.Google Scholar
Waterloo, M. J. (1989). A hydrological study of the mass elevation effect on Gunung Silam, a small coastal ultrabasic mountain in Sabah, East Malaysia. M.Sc. thesis, VU University Amsterdam, Amsterdam, the Netherlands.
Weaver, P. L., Medina, E., Pool, D., et al. (1986). Ecological observations in the dwarf cloud forest of the Luquillo Mountains in Puerto Rico. Biotropica 18: 79–85.CrossRefGoogle Scholar
Whitmore, T. C. (1990). An Introduction to Tropical Rain Forests. Oxford, UK: Clarendon Press.Google Scholar
Wilcke, W., Yasin, S., Valerezo, C., and Zech, W. (2001). Change in water quality during the passage through a tropical montane rain forest in Ecuador. Biogeochemistry 55: 45–72.CrossRefGoogle Scholar
Wilcke, W., Yasin, S., Abramowski, U., Valerezo, C., and Zech, W. (2002). Nutrient storage and turnover in organic layers under tropical montane rain forest in Ecuador. European Journal of Soil Science 53: 15–27.CrossRefGoogle Scholar
Wilcke, W., Balladares, H., Stoyan, R., et al. (2003). Soil properties on a chronosequence of landslides in montane rain forest, Ecuador. Catena 53: 79–95.CrossRefGoogle Scholar
Williams-Linera, G. (2002). Tree species richness, complementarity, disturbance and fragmentation in a Mexican tropical montane cloud forest. Biodiversity and Conservation 11: 1825–1843.CrossRefGoogle Scholar
Williams-Linera, G., Manson, R. H., and Vera, E. I. (2002). La fragmentación del bosque mesófilo de montaña y patrones de uso del suelo en la region oeste de Xalapa, Veracruz, México. Madera y Bosques 8: 69–85.Google Scholar
Zinck, A. (1986). Los Suelos: caracteristicas y fragilidad de los suelos en ambiente de Selva Nublada – el ejemplo de Rancho Grande. In La selva nublada de Rancho Grande Parque Nacional “Henri Pittier,” ed. Huber, O., pp. 31–66. Caracas, Venezuela: Fondo Editorial Acta Cientifíca Venezolana.Google Scholar
4
Cited by

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×