Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-17T17:56:25.112Z Has data issue: false hasContentIssue false

9 - Interactive effects of plants, decomposers, herbivores, and predators on nutrient cycling

from Part III - Patterns and Processes

Published online by Cambridge University Press:  05 May 2015

Sarah E. Hobbie
Affiliation:
University of Minnesota
Sóebastien Villóeger
Affiliation:
Université Montpellier
Torrance C. Hanley
Affiliation:
Northeastern University, Boston
Kimberly J. La Pierre
Affiliation:
University of California, Berkeley
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Trophic Ecology
Bottom-up and Top-down Interactions across Aquatic and Terrestrial Systems
, pp. 233 - 259
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbas, F., Merlet, J., Morellet, N., et al. (2012). Roe deer may markedly alter forest nitrogen and phosphorus budgets across Europe. Oikos, 121, 1271–1278.CrossRefGoogle Scholar
Adams, D. G. and Duggan, P. S. (2008). Cyanobacteria-bryophyte symbioses. Journal of Experimental Botany, 59, 1047–1058.CrossRefGoogle ScholarPubMed
Allgeier, J. E., Yeager, L. A. and Layman, C. A. (2013). Consumers regulate nutrient limitation regimes and primary production in seagrass ecosystems. Ecology, 94, 521–529.CrossRefGoogle ScholarPubMed
Alves, J., Caliman, A., Guariento, R. D., et al. (2010). Stoichiometry of benthic invertebrate nutrient recycling: interspecific variation and the role of body mass. Aquatic Ecology, 44, 421–430.CrossRefGoogle Scholar
Anderson, T. R., Hessen, D. O., Elser, J. J. and Urabe, J. (2005). Metabolic stoichiometry and the fate of excess carbon and nutrients in consumers. The American Naturalist, 165, 1–15.CrossRefGoogle ScholarPubMed
Atkinson, C. L., Vaughn, C. C., Forshay, K. J. and Cooper, J. T. (2013). Aggregated filter-feeding consumers alter nutrient limitation: consequences for ecosystem and community dynamics. Ecology, 94, 1359–1369.CrossRefGoogle ScholarPubMed
Attayde, J. L. and Hansson, L. A. (1999). Effects of nutrient recycling by zooplankton and fish on phytoplankton communities. Oecologia, 121, 47–54.CrossRefGoogle ScholarPubMed
Bardgett, R. D. and Wardle, D. A. (2003). Herbivore-mediated linkages between aboveground and belowground communities. Ecology, 84, 2258–2268.CrossRefGoogle Scholar
Barrett, K., Anderson, W. B., Wait, D. A., et al. (2005). Marine subsidies alter the diet and abundance of insular and coastal lizard populations. Oikos, 109, 145–153.CrossRefGoogle Scholar
Bartels, P., Cucherousset, J., Steger, K., et al. (2012). Reciprocal subsidies between freshwater and terrestrial ecosystems structure consumer resource dynamics. Ecology, 93, 1173–1182.CrossRefGoogle ScholarPubMed
Bastow, J., Sabo, J., Finlay, J. and Power, M. (2002). A basal aquatic-terrestrial trophic link in rivers: algal subsidies via shore-dwelling grasshoppers. Oecologia, 131, 261–268.CrossRefGoogle ScholarPubMed
Baxter, C. V., Fausch, K. D. and Saunders, W. C. (2005). Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones. Freshwater Biology, 50, 201–220.CrossRefGoogle Scholar
Beard, K. H., Vogt, K. A. and Kulmatiski, A. (2002). Top-down effects of a terrestrial frog on forest nutrient dynamics. Oecologia, 133, 583–593.CrossRefGoogle ScholarPubMed
Belovsky, G. E. and Slade, J. B. (2000). Insect herbivory accerlates nutrient cycling and increase plant production. Proceedings of the National Academy of Sciences of the USA, 97, 14412–14417.CrossRefGoogle Scholar
Berg, B., Davey, M. P., De Marco, A., et al. (2010). Factors influencing limit values for pine needle litter decomposition: a synthesis for boreal and temperate pine forest systems. Biogeochemistry, 100, 57–73.CrossRefGoogle Scholar
Borer, E. T., Bracken, M. E., Seabloom, E. W., et al. (2013). Global biogeography of autotroph chemistry: is insolation a driving force? Oikos, 122, 1121–1130.CrossRefGoogle Scholar
Boulêtreau, S., Cucherousset, J., Villéger, S., Masson, R. and Santoul, F. (2011). Colossal aggregations of giant alien freshwater fish as a potential biogeochemical hotspot. PLoS One, 6, e25732.CrossRefGoogle ScholarPubMed
Bray, R. N., Miller, A. C. and Geesey, G. G. (1981). The fish connection: a trophic link between planktonic and rocky reef communities?Science, 214, 204–205.CrossRefGoogle ScholarPubMed
Brown, G. E., Chivers, D. P. and Smith, R. J. F. (1996). Effects of diet on localized defecation by Northern pike, Esox lucius. Journal of Chemical Ecology, 22, 467–475.CrossRefGoogle ScholarPubMed
Bruno, J. F. and O'Connor, M. I. (2005). Cascading effects of predator diversity and omnivory in a marine food web. Ecology Letters, 8, 1048–1056.CrossRefGoogle Scholar
Burkepile, D. E., Allgeier, J. E., Shantz, A. A., et al. (2013). Nutrient supply from fishes facilitates macroalgae and suppresses corals in a Caribbean coral reef ecosystem. Scientific Reports, 3, 1493.CrossRefGoogle Scholar
Burkholder, D. A., Heithaus, M. R., Fourqurean, J. W., Wirsing, A. and Dill, L. M. (2013). Patterns of top-down control in a seagrass ecosystem: could a roving apex predator induce a behaviour-mediated trophic cascade?Journal of Animal Ecology, 82, 1192–1202.CrossRefGoogle Scholar
Byrnes, J., Stachowicz, J. J., Hultgren, K. M., et al. (2006). Predator diversity strengthens trophic cascades in kelp forests by modifying herbivore behaviour. Ecology Letters, 9, 61–71.Google ScholarPubMed
Capps, K. A. and Flecker, A. S. (2013). Invasive fishes generate biogeochemical hotspots in a nutrient-limited system. PLoS One, 8, e54093.CrossRefGoogle Scholar
Cebrian, J. and Lartigue, J. (2004). Patterns of herbivory and decomposition in aquatic and terrestrial ecosystems. Ecological Monographs, 74, 237–259.CrossRefGoogle Scholar
Chapman, S. K., Hart, S. C., Cobb, N. S., Whitham, T. G. and Koch, G. W. (2003). Insect herbivory increases litter quality and decomposition: an extension of the acceleration hypothesis. Ecology, 84, 2867–2876.CrossRefGoogle Scholar
Choudhury, D. (1988). Herbivore induced changes in leaf-litter resource quality: a neglected aspect of herbivory in ecosystem nutrient dynamics. Oikos, 51, 389–393.CrossRefGoogle Scholar
Chuyong, G. B., Newbery, D. M. and Songwe, N. C. (2004). Rainfall input, throughfall and stemflow of nutrients in a central African rain forest dominated by ectomycorrhizal trees. Biogeochemistry, 67, 73–91.CrossRefGoogle Scholar
Clarholm, M. (1985). Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biology and Biochemistry, 17, 181–187.CrossRefGoogle Scholar
Cleveland, C. C. and Liptzin, D. (2007). C: N: P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass?Biogeochemistry, 85, 235–252.CrossRefGoogle Scholar
Conroy, J. D. and Edwards, W. J. (2005). Soluble nitrogen and phosphorus excretion of exotic freshwater mussels (Dreissena spp.): potential impacts for nutrient remineralisation in western Lake Erie. Freshwater Biology, 50, 1146–1162.CrossRefGoogle Scholar
Cornwell, W. K., Cornelissen, J. H. C., Amatangelo, K., et al. (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 11, 1065–1071.CrossRefGoogle ScholarPubMed
Cornwell, W. K., Cornelissen, J. H., Allison, S. D., et al. (2009). Plant traits and wood fates across the globe: rotted, burned, or consumed? Global Change Biology, 15, 2431–2449.CrossRefGoogle Scholar
Crawley, K. R., Hyndes, G. A., Vanderklift, M. A., Revill, A. T. and Nichols, P. D. (2009). Allochthonous brown algae are the primary food source for consumers in a temperate, coastal environment. Marine Ecology Progress Series, 376, 33–44.CrossRefGoogle Scholar
Cronin, G. and Hay, M. E. (1996). Induction of seaweed chemical defenses by amphipod grazing. Ecology, 77, 2287–2301.CrossRefGoogle Scholar
Crotty, F. V, Adl, S. M., Blackshaw, R. P. and Murray, P. J. (2012). Protozoan pulses unveil their pivotal position within the soil food web. Microbial Ecology, 63, 905–918.CrossRefGoogle ScholarPubMed
Cucherousset, J. and Olden, J. D. (2011). Ecological impacts of nonnative freshwater fishes. Fisheries, 36, 215–230.CrossRefGoogle Scholar
Cyr, H. and Pace, M. L. (1993). Magnitude and patterns of herbivory in aquatic and terrestrial ecosystems. Nature, 361, 148–150.CrossRefGoogle Scholar
Danger, M., Cornut, J., Chauvet, E., Chavez, P., Elger, A. and Lecerf, A. (2013). Benthic algae stimulate leaf litter decomposition in detritus-based headwater streams: a case of aquatic priming effect?Ecology, 94(7), 1604–1613.CrossRefGoogle ScholarPubMed
Darnaude, A. M. (2005). Fish ecology and terrestrial carbon use in coastal areas: implications for marine fish production. Journal of Animal Ecology, 74, 864–876.CrossRefGoogle Scholar
del Giorgio, P. A. and Cole, J. J. (1998). Bacterial growth efficiency in natural aquatic systems. Annual Review of Ecology and Systematics, 29, 503–541.CrossRefGoogle Scholar
DeRuiter, P. C., Wolters, V., Moore, J. C. and Winemiller, K. O. (2005). Food web ecology. Playing Jenga and beyond. Science, 309, 68–70.Google Scholar
Doughty, C. E., Wolf, A. and Malhi, Y. T. (2013). The legacy of the Pleistocene megafauna extinctions on nutrient availability in Amazonia. Nature Geoscience, 6, 761–764.CrossRefGoogle Scholar
Duffy, J. E., Cardinale, B. J., France, K. E., et al. (2007). The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecology Letters, 10, 522–538.CrossRefGoogle ScholarPubMed
Dugan, J. E., Hubbard, D. M., McCrary, M. D. and Pierson, M. O. (2003). The response of macrofauna communities and shorebirds to macrophyte wrack subsidies on exposed sandy beaches of southern California. Estuarine, Coastal and Shelf Science, 58, 25–40.CrossRefGoogle Scholar
Dunham, A. E. (2008). Above and below ground impacts of terrestrial mammals and birds in a tropical forest. Oikos, 117, 571–579.CrossRefGoogle Scholar
Enriquez, S., Duarte, C. M. and Sand-Jensen, K. (1993). Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content. Oecologia, 94, 457–471.CrossRefGoogle ScholarPubMed
Estes, J. A., Terborgh, J., Brashares, J. S., et al. (2011). Trophic downgrading of planet Earth. Science, 333, 301–306.CrossRefGoogle ScholarPubMed
Flecker, A. S., Taylor, B. W. and Bernhardt, E. S. (2002). Interactions between herbivorous fishes and limiting nutrients in a tropical stream ecosystem. Ecology, 83, 1831–1844.CrossRefGoogle Scholar
Frank, D. A. (2008). Evidence for top predator control of a grazing ecosystem. Oikos, 117, 1718–1724.CrossRefGoogle Scholar
Frank, D. A. and Groffman, P. M. (1998a). Denitrification in a semi-arid grazing ecosystem. Oecologia, 117, 564–569.CrossRefGoogle Scholar
Frank, D. A. and Groffman, P. M. (1998b). Ungulate vs. landscape control of soil C and N processes in grasslands of Yellowstone National Park. Ecology, 79, 2229–2241.CrossRefGoogle Scholar
Frank, D. A., Groffman, P. M., Evans, R. D. and Tracy, B. F. (2000). Ungulate stimulation of nitrogen cycling and retention in Yellowstone Park grasslands. Oecologia, 123, 116–121.CrossRefGoogle ScholarPubMed
Frost, C. J. and Hunter, M. D. (2007). Recycling of nitrogen in herbivore feces: plant recovery, herbivore assimilation, soil retention, and leaching losses. Oecologia, 151, 42–53.CrossRefGoogle ScholarPubMed
Fujita, M. and Koike, F. (2009). Landscape effects on ecosystems: birds as active vectors of nutrient transport to fragmented urban forests versus forest-dominated landscapes. Ecosystems, 12, 391–400.CrossRefGoogle Scholar
Fukami, T., Wardle, D. A., Bellingham, P. J., et al. (2006). Above- and below-ground impacts of introduced predators in seabird- dominated island ecosystems. Ecology Letters, 9, 1299–1307.CrossRefGoogle ScholarPubMed
Gessner, M. O., Chauvet, E. and Dobson, M. (1999). A perspective on leaf litter breakdown in streams. Oikos, 85, 377–384.CrossRefGoogle Scholar
Gillson, J. (2011). Freshwater flow and fisheries production in estuarine and coastal systems: where a drop of rain is not lost. Reviews in Fisheries Science, 19, 168–186.CrossRefGoogle Scholar
Gratton, C. and Vander Zanden, M. J. (2009). Flux of aquatic insect productivity to land: comparison of lentic and lotic ecosystems. Ecology, 90, 2689–2699.CrossRefGoogle ScholarPubMed
Gravel, D., Guichard, F., Loreau, M. and Mouquet, N. (2010). Source and sink dynamics in meta-ecosystems. Ecology, 91, 2172–2184.CrossRefGoogle ScholarPubMed
Grime, J. P., Cornelisson, J. H. C., Thompson, K. and Hodgson, J. G. (1996). Evidence of a causal connection between anti-herbivore defence and the decomposition rate of leaves.
Haertel-Borer, S. S., Allen, D. M. and Dame, R. F. (2004). Fishes and shrimps are significant sources of dissolved inorganic nutrients in intertidal salt marsh creeks. Journal of Experimental Marine Biology and Ecology, 311, 79–99.CrossRefGoogle Scholar
Hall, E., Maixner, F., Franklin, O., et al. (2011). Linking microbial and ecosystem ecology using ecological stoichiometry: a synthesis of conceptual and empirical approaches. Ecosystems, 14, 261–273.CrossRefGoogle Scholar
Hall, R. O., Koch, B. J. and Marshall, M. C. (2007). How body size mediates the role of animals in nutrient cycling in aquatic ecosystems. In Body size: The Structure and Function of Aquatic Ecosystems, ed. Hildrew, A. G., Raffaelli, D. G. and Edmonds-Brown, R.. Cambridge, UK: Cambridge University Press, pp. 286–305.Google Scholar
Halpern, B. S., Cottenie, K. and Broitman, B. R. (2006). Strong top-down control in southern California kelp forest ecosystems. Science, 312, 1230–1232.CrossRefGoogle ScholarPubMed
Hartley, S. E. and Jones, T. H. (2004). Insect herbivores, nutrient cycling, and plant productivity. In Insects and Ecosystem Function, ed. Weisser, W. W. and Siemann, E.. Berlin: Springer-Verlag, pp. 27–52.Google Scholar
Hawlena, D. and Schmitz, O. J. (2010). Herbivore physiological response to predation risk and implications for ecosystem nutrient dynamics. Proceedings of the National Academy of Sciences of the USA, 107, 15503–15507.CrossRefGoogle ScholarPubMed
Hawlena, D., Strickland, M. S., Bradford, M. A. and Schmitz, O. J. (2012). Fear of predation slows plant-litter decomposition. Science, 336, 1434–1438.CrossRefGoogle ScholarPubMed
Helfield, J. M. and Naiman, R. J. (2001). Effects of salmon-derived nitrogen on riparian forest growth and implications for stream productivity. Ecology, 82, 2403–2409.CrossRefGoogle Scholar
Hobbie, S. E. (2000). Interactions between lignin and nutrient availability during decomposition in Hawaiian montane forest. Ecosystems, 3, 484–494.CrossRefGoogle Scholar
Hobbie, S. E. (2008). Nitrogen effects on litter decomposition: a five-year experiment in eight temperate grassland and forest sites. Ecology, 89, 2633–2644.CrossRefGoogle Scholar
Hobbie, S. E. and Vitousek, P. M. (2000). Nutrient regulation of decomposition in Hawaiian montane forests: do the same nutrients limit production and decomposition?Ecology, 81, 1867–1877.CrossRefGoogle Scholar
Hobbie, S. E., Reich, P. B., Oleksyn, J., et al. (2006). Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology, 87, 2288–2297.CrossRefGoogle Scholar
Hobbs, N. T. (1996). Modification of ecosystems by ungulates. The Journal of Wildlife Management, 60, 695–713.Google Scholar
Hocking, M. D. and Reimchen, T. E. (2002). Salmon-derived nitrogen in terrestrial invertebrates from coniferous forests of the Pacific Northwest. BMC Ecology, 14, 1–14.Google Scholar
Hocking, M. D. and Reynolds, J. D. (2011). Impacts of salmon on riparian plant diversity. Science, 331, 1609–1612.CrossRefGoogle ScholarPubMed
Holland, E. A. and Detling, J. K. (1990). Plant response to herbivory and belowground nitrogen cycling. Ecology, 71, 1040–1049.CrossRefGoogle Scholar
Hood, J. M., Vanni, M. J. and Flecker, A. S. (2005). Nutrient recycling by two phosphorus-rich grazing catfish: the potential for phosphorus-limitation of fish growth. Oecologia, 146, 247–57.CrossRefGoogle ScholarPubMed
Hoppe, H. (2003). Phosphatase activity in the sea. Hydrobiologia, 493, 187–200.CrossRefGoogle Scholar
Hunter, M. D. (2001). Insect population dynamics meets ecosystem ecology: effects of herbivory on soil nutrient dynamics. Agricultural and Forest Entomology, 3, 77–84.CrossRefGoogle Scholar
Hyndes, G., Lavery, P. and Doropoulos, C. (2012). Dual processes for cross-boundary subsidies: incorporation of nutrients from reef-derived kelp into a seagrass ecosystem. Marine Ecology Progress Series, 445, 97–107.CrossRefGoogle Scholar
Janetski, D. J., Chaloner, D. T., Tiegs, S. D. and Lamberti, G. A. (2009). Pacific salmon effects on stream ecosystems: a quantitative synthesis. Oecologia, 159, 583–595.CrossRefGoogle ScholarPubMed
Jarvis, S. C. (2000). Soil-plant-animal interactions and impact on nitrogen and phosphorus cycling and recycling in grazed pastures. In Grassland Ecophysiology and Grazing Ecology, ed. Lemaire, G., Hodgson, J., Moraes, A. de, Nabinger, C. and Carvalho, P. C. de F.. New York: CAB International, pp. 191–207.Google Scholar
Jouquet, P., Traoré, S., Choosai, C., Hartmann, C. and Bignell, D. (2011). Influence of termites on ecosystem functioning: ecosystem services provided by termites. European Journal of Soil Biology, 47, 215–222.CrossRefGoogle Scholar
Karban, R. and Baldwin, I. T. (2007). Induced Responses to Herbivory. Chicago: University of Chicago Press.Google Scholar
Kaspari, M. and Yanoviak, S. P. (2009). Biogeochemistry and the structure of tropical brown food webs. Ecology, 90, 3342–3351.CrossRefGoogle ScholarPubMed
Kaspari, M., Garcia, M. N., Harms, K. E., et al. (2008). Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecology Letters, 11, 35–43.Google Scholar
Kaspari, M., Yanoviak, S. P., Dudley, R., Yuan, M. and Clay, N. A. (2009). Sodium shortage as a constraint on the carbon cycle in an inland tropical rainforest. Proceedings of the National Academy of Sciences of the USA, 106, 19405–19409.CrossRefGoogle Scholar
Knight, T. M., McCoy, M. W., Chase, J. M., McCoy, K. A. and Holt, R. D. (2005). Trophic cascades across ecosystems. Nature, 437, 880–883.CrossRefGoogle ScholarPubMed
Knops, J. M., Ritchie, M. and Tilman, D. (2000). Selective herbivory on a nitrogen fixing legume (Lathyrus venosus) influences productivity and ecosystem nitrogen pools in an oak savanna. Ecoscience, 7(2), 166–174.CrossRefGoogle Scholar
Kobe, R. K., Lepczyk, C. A. and Iyer, M. (2005). Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology, 86(10), 2780–2792.CrossRefGoogle Scholar
Krone, R., Bshary, R., Paster, M., et al. (2008). Defecation behaviour of the lined bristletooth surgeonfish Ctenochaetus striatus (Acanthuridae). Coral Reefs, 27, 619–622.CrossRefGoogle Scholar
Kuhn, M. (2001). The nutrient cycle through snow and ice, a review. Aquatic Sciences, 63, 150–167.CrossRefGoogle Scholar
Lambers, H., Raven, J. A., Shaver, G. R. and Smith, S. E. (2008). Plant nutrient-acquisition strategies change with soil age. Trends in Ecology and Evolution, 23, 95–103.CrossRefGoogle ScholarPubMed
Lamberti, G. A., Chaloner, D. T. and Hershey, A. E. (2010). Linkages among aquatic ecosystems. Journal of the North American Benthological Society, 29, 245–263.CrossRefGoogle Scholar
Lavery, T. J., Roudnew, B., Gill, P., et al. (2010). Iron defecation by sperm whales stimulates carbon export in the Southern Ocean. Proceedings of the Royal Society B: Biological Sciences, 277, 3527–3531.CrossRefGoogle ScholarPubMed
Layman, C. A., Allgeier, J. E., Yeager, L. A. and Stoner, E. W. (2013). Thresholds of ecosystem response to nutrient enrichment from fish aggregations. Ecology, 94, 530–536.CrossRefGoogle ScholarPubMed
Lee, T. D., Reich, P. B. and Tjoelker, M. G. (2003). Legume presence increases photosynthetic and N concentration of co-occurring non-fixers but does not modulate their response to carbon dioxide enrichment. Oecologia, 137, 22–31.CrossRefGoogle Scholar
Leibold, M. A., Holyoak, M., Mouquet, N., et al. (2004). The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters, 7, 601–613.CrossRefGoogle Scholar
Leroux, S. J. and Loreau, M. (2010). Consumer- mediated recycling and cascading trophic interactions. Ecology, 91, 2162–2171.CrossRefGoogle ScholarPubMed
Leroux, S. J., Hawlena, D. and Schmitz, O. J. (2012). Predation risk, stoichiometric plasticity and ecosystem elemental cycling. Proceedings of the Royal Society of London Series B, 279, 4183–4191.CrossRefGoogle ScholarPubMed
Likens, G. E. and Bormann, F. H. (1974). Linkages between terrestrial and aquatic ecosystems. BioScience, 24, 447–456.CrossRefGoogle Scholar
Lindeman, R. L. (1942). The trophic-dynamic aspect of ecology. Ecology, 23, 399–418.CrossRefGoogle Scholar
Lovett, G. M., Christenson, L. M., Groffman, P. M., et al. (2002). Insect defoliation and nitrogen cycling in forests. BioScience, 52, 335–341.CrossRefGoogle Scholar
Manzoni, S., Trofymow, J. A., Jackson, R. B. and Porporato, A. (2010). Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecological Monographs, 80, 89–106.CrossRefGoogle Scholar
Manzoni, S., Taylor, P., Richter, A., Porporato, A. and Ågren, G. (2012). Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytologist, 196, 79–91.CrossRefGoogle ScholarPubMed
Marcarelli, A. M., Baxter, C. V., Mineau, M. M. and Hall, R. O. (2011). Quantity and quality: unifying food web and ecosystem perspectives on the role of resource subsidies in freshwaters. Ecology, 92, 1215–1225.CrossRefGoogle ScholarPubMed
Maron, J. L., Estes, J. A., Croll, D. A., et al. (2006). An introduced predator alters Aleutian Island plant communities by thwarting nutrient subsidies. Ecological Monographs, 76, 3–24.CrossRefGoogle Scholar
Martinson, H. M., Schneider, K., Gilbert, J., et al. (2008). Detritivory: stoichiometry of a neglected trophic level. Ecological Research, 23, 487–491.CrossRefGoogle Scholar
Massol, F., Gravel, D., Mouquet, N., et al. (2011). Linking community and ecosystem dynamics through spatial ecology. Ecology Letters, 14, 313–323.CrossRefGoogle ScholarPubMed
McIntyre, P. B., Flecker, A. S., Vanni, M. J., et al. (2008). Fish distributions and nutrient cycling in streams: can fish create biogeochemical hotspots?Ecology, 89, 2335–2346.CrossRefGoogle ScholarPubMed
McNaughton, S., Banyikwa, F. and McNaughton, M. (1997). Promotion of the cycling of diet-enhancing nutrients by African grazers. Science, 278, 1798–1800.CrossRefGoogle ScholarPubMed
McTainsh, G. and Strong, C. (2007). The role of aeolian dust in ecosystems. Geomorphology, 89, 39–54.CrossRefGoogle Scholar
Melillo, J. M., Aber, J. D. and Muratore, J. F. (1982). Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 63, 621–626.CrossRefGoogle Scholar
Meyer, J. L. and Schultz, E. T. (1985). Migrating Haemulid fishes as a source of nutrients and organic matter on coral reefs. Limnology and Oceanography, 30, 146–156.CrossRefGoogle Scholar
Meyer, S. T., Neubauer, M., Sayer, E. J., et al. (2013). Leaf-cutting ants as ecosystem engineers: topsoil and litter perturbations around Atta cephalotes nests reduce nutrient availability. Ecological Entomology, 38, 497–504.CrossRefGoogle Scholar
Milchunas, D. G. and Lauenroth, W. K. (1993). Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecological Monographs, 63, 327–366.CrossRefGoogle Scholar
Moksnes, P., Gullstro, M., Tryman, K. and Baden, S. (2008). Trophic cascades in a temperate seagrass community. Oikos, 117, 763–777.CrossRefGoogle Scholar
Moore, J. W., Schindler, D. E., Carter, J. L., et al. (2007). Biotic control of stream fluxes: spawning salmon drive nutrient and matter export. Ecology, 88, 1278–1291.CrossRefGoogle ScholarPubMed
Mountfort, D. O., Campbell, J. and Clements, K. D. (2002). Hindgut fermentation in three species of marine herbivorous fish. Applied and Environmental Microbiology, 68, 1374–1380.CrossRefGoogle ScholarPubMed
Mueller, U. G., Gerardo, N. M., Aanen, D. K., Six, D. L. and Schultz, T. R. (2005). The evolution of agriculture in insects. Annual Review of Ecology, Evolution, and Systematics, 36, 563–595.CrossRefGoogle Scholar
Naiman, R. J. and Rogers, K. H. (1997). Large animals and system-level characteristics in river corridors. BioScience, 47, 521–529.CrossRefGoogle Scholar
Nakano, S. and Murakami, M. (2001). Reciprocal subsidies: dynamic interdependence. Proceedings of the National Academy of Sciences of the USA, 98, 166–170.CrossRefGoogle ScholarPubMed
Parton, W. A., Silver, W. L., Burke, I. C., et al. (2007). Global-scale similarities in nitrogen release patterns during long-term decomposition. Science, 315, 361–364.CrossRefGoogle ScholarPubMed
Pastor, J., Naimen, R. J., Dewey, B. and McInnes, P. (1988). Moose, microbes, and the boreal forest. BioScience, 38, 770–777.CrossRefGoogle Scholar
Pastor, J., Dewey, B., Naiman, R. J., MiInnes, P. F. and Cohen, Y. (1993). Moose browsing and soil fertility in the boreal forests of Isle Royale National Park. Ecology, 74, 467–480.CrossRefGoogle Scholar
Pastor, J., Cohen, Y. and Hobbs, N. T. (2006). The roles of large herbivores in ecosystem nutrient cycles. In Large Mammalian Herbivores, Ecosystem Dynamics, and Conservation, ed. Danell, K., Bergström, K., Duncan, P., Pastor, J. and Olff, H.. Cambridge: Cambridge University Press, pp. 289–325.Google Scholar
Pérez-Aragón, M., Fernandez, C. and Escribano, R. (2011). Nitrogen excretion by mesozooplankton in a coastal upwelling area: seasonal trends and implications for biological production. Journal of Experimental Marine Biology and Ecology, 406, 116–124.CrossRefGoogle Scholar
Phillips, R. P., Finzi, A. C. and Bernhardt, E. S. (2011). Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecology Letters, 14, 187–194.CrossRefGoogle Scholar
Phillips, R. P., Brzostek, E. and Midgley, M. G. (2013). The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests. New Phytologist, 199, 41–51.CrossRefGoogle ScholarPubMed
Pilati, A. and Vanni, M. J. (2007). Ontogeny, diet shifts, and nutrient stoichiometry in fish. Oikos, 116, 1663–1674.CrossRefGoogle Scholar
Polis, G. A., Anderson, W. B. and Holt, R. D. (1997). Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annual Review of Ecology and Systematics, 28, 289–316.CrossRefGoogle Scholar
Pringle, R. M. and Fox-Dobbs, K. (2008). Coupling of canopy and understory food webs by ground-dwelling predators. Ecology Letters, 11, 1328–1337.CrossRefGoogle ScholarPubMed
Read, D. J. (1991). Mycorrhizas in ecosystems. Experientia, 47, 376–391.CrossRefGoogle Scholar
Redfield, A. C. (1958). The biological control of chemical factors in the environment. American Scientist, 46, 205–221.Google Scholar
Reece, W. O. (2013). Functional Anatomy and Physiology of Domestic Animals. Singapore: Wiley-Blackwell.Google Scholar
Reich, P. B. and Oleksyn, J. (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the USA, 101, 11001–11006.CrossRefGoogle ScholarPubMed
Reynolds, P. L. and Sotka, E. E. (2011). Non- consumptive predator effects indirectly influence marine plant biomass and palatability. Journal of Ecology, 99, 1272–1281.CrossRefGoogle Scholar
Ritchie, M. E. and Tilman, D. (1995). Responses of legumes to herbivores and nutrients during succession on a nitrogen-poor soil. Ecology, 76, 2648–2655.CrossRefGoogle Scholar
Roman, J. and McCarthy, J. J. (2010). The whale pump: marine mammals enhance primary productivity in a coastal basin. PLoS One, 5, e13255.CrossRefGoogle Scholar
Rose, M. D. and Polis, G. A. (1998). The distribution and abundance of coyotes: the effects of allochthonous food subsidies from the sea. Ecology, 79, 998–1007.CrossRefGoogle Scholar
Ruess, R. W. and McNaughton, S. J. (1988). Grazing and the dynamics of nutrient and energy regulated microbial processes in the Serengeti grasslands. Oikos, 49, 101–110.Google Scholar
Sanchez-Pinero, F. and Polis, G. A. (2000). Bottom-up dynamics of allochthonous input: direct and indirect effects of seabirds on islands. Ecology, 81, 3117–3132.CrossRefGoogle Scholar
Schaus, M. H. and Vanni, M. J. (2000). Effects of gizzard shad on phytoplankton and nutrient dynamics: role of sediment feeding and fish size. Ecology, 81, 1701–1719.CrossRefGoogle Scholar
Schimel, J. P. and Bennett, J. (2004). Nitrogen mineralization: challenges of a changing paradigm. Ecology, 85, 591–602.CrossRefGoogle Scholar
Schindler, D. E. and Scheuerell, M. D. (2002). Habitat coupling in lake ecosystems. Oikos, 98, 177–189.CrossRefGoogle Scholar
Schindler, D. E., Carpenter, S. R., Cole, J. J., Kitchell, J. F. and Pace, M. L. (1997). Influence of food web structure on carbon exchange between lakes and the atmosphere. Science, 277, 248–251.CrossRefGoogle Scholar
Schindler, D. E., Knapp, R. A. and Leavitt, P. R. (2001). Alteration of nutrient cycles and algal production resulting from fish introductions into mountain lakes. Ecosystems, 4, 308–321.CrossRefGoogle Scholar
Schmitz, O. J. (2006). Predators have large effects on ecosystem properties by changing plant diversity, not plant biomass. Ecology, 87, 1432–1437.CrossRefGoogle Scholar
Schmitz, O. J. (2008). Effects of predator hunting mode on grassland ecosystem function. Science, 319, 952–954.CrossRefGoogle ScholarPubMed
Schmitz, O. J. (2010). The Green World and the Brown Chain in Resolving Ecosystem Complexity. Princeton, NJ: Princeton University Press.Google Scholar
Schmitz, O. J. and Suttle, K. B. (2001). Effects of top predator species on direct and indirect interactions in a food web. Ecology, 82, 2072–2081.CrossRefGoogle Scholar
Schmitz, O. J., Krivan, V. and Ovadia, O. (2004). Trophic cascades: the primacy of trait-mediated indirect interactions. Ecology Letters, 7, 153–163.CrossRefGoogle Scholar
Schmitz, O. J., Hawlena, D. and Trussell, G. C. (2010). Predator control of ecosystem nutrient dynamics. Ecology Letters, 13, 1199–1209.CrossRefGoogle ScholarPubMed
Schuurman, G. W. (2012). Ecosystem influences of fungus-growing termites in the dry paleotropics. In Soil Ecology and Ecosystem Services, ed. Wall, D., Bardgett, R. D., Behan-Pelletier, V., et al. Oxford: Oxford University Press, pp. 173–188.Google Scholar
Sereda, J. M. and Hudson, J. J. (2011). Empirical models for predicting the excretion of nutrients (N and P) by aquatic metazoans: taxonomic differences in rates and element ratios. Freshwater Biology, 56, 250–263.CrossRefGoogle Scholar
Sereda, J. M., Hudson, J. J. and Mcloughlin, P. D. (2008a). General empirical models for predicting the release of nutrients by fish, with a comparison between detritivores and non-detritivores. Freshwater Biology, 53, 2133–2144.Google Scholar
Sereda, J. M., Hudson, J. J., Taylor, W. D. and Demers, E. (2008b). Fish as sources and sinks of nutrients in lakes: direct estimates, comparison with plankton and stoichiometry. Freshwater Biology, 53, 278–289.Google Scholar
Shurin, J. B., Gruner, D. S. and Hillebrand, H. (2006). All wet or dried up? Real differences between aquatic and terrestrial food webs. Proceedings of the Royal Society B: Biological Sciences, 273, 1–9.CrossRefGoogle ScholarPubMed
Small, G. E., Pringle, C. M., Pyron, M. and Duff, J. H. (2011). Role of the fish Astyanax aeneus (Characidae) as a keystone nutrient recycler in low-nutrient neotropical streams. Ecology, 92, 386–397.CrossRefGoogle ScholarPubMed
Spiller, D. A., Piovia-Scorr, J., Wright, A. N., et al. (2010). Marine subsidies have multiple effects on coastal food webs. Ecology, 91, 1424–1434.CrossRefGoogle ScholarPubMed
Staaf, H. and Berg, B. (1981). Accumulation and release of plant nutrients in decomposing Scots pine needle litter. Long-term decomposition in a Scots pine forest II. Canadian Journal of Botany, 60, 1561–1568.Google Scholar
Sterner, R. W. and Elser, J. J. (2002). Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere, Princeton, NJ: Princeton University Press.Google Scholar
Stevens, C. E. and Hume, I. D. (1998). Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients. Physiological Reviews, 78, 393–427.CrossRefGoogle ScholarPubMed
Stief, P. and Hölker, F. (2006). Trait-mediated indirect effects of predatory fish on microbial mineralization in aquatic sediments. Ecology, 87, 3152–3159.CrossRefGoogle ScholarPubMed
Swap, R., Garstang, M. and Greco, S. (1992). Saharan dust in the Amazon Basin. Tellus, 44, 133–149.Google Scholar
Terborgh, J., Lopez, L., Nunez, P., et al. (2001). Ecological meltdown in predator-free forest fragments. Science, 294, 1923–1926.CrossRefGoogle ScholarPubMed
Thiel, M., Macaya, E. C., Acuna, E., et al. (2007). The Humboldt current system of Northern and Central Chile. Oceanography and Marine Biology: An Annual Review, 45, 195–344.Google Scholar
Thompson, R. M., Brose, U., Dunne, J., et al. (2012). Food webs: reconciling the structure and function of biodiversity. Trends in Ecology and Evolution, 27, 689–697.CrossRefGoogle ScholarPubMed
Tokuda, G. and Watanabe, H. (2007). Hidden cellulases in termites: revision of an old hypothesis. Biology Letters, 3, 336–339.CrossRefGoogle ScholarPubMed
Treseder, K. K. and Vitousek, P. M. (2001). Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests. Ecology, 82, 946–954.CrossRefGoogle Scholar
Vanni, M. J. (2002). Nutrient cycling by animals in freshwater ecosystems. Annual Review of Ecology and Systematics, 33, 341–370.CrossRefGoogle Scholar
Vanni, M. M. J., Flecker, A. A. S., Hood, J. M. and Headworth, J. L. (2002). Stoichiometry of nutrient recycling by vertebrates in a tropical stream: linking species identity and ecosystem processes. Ecology Letters, 5, 285–293.CrossRefGoogle Scholar
Vanni, M. J., Bowling, A. M., Dickman, E. M., et al. (2006). Nutrient cycling by fish supports relatively more primary production as lake productivity increases. Ecology, 87, 1696–1709.CrossRefGoogle ScholarPubMed
Vanni, M. J., Boros, G. and McIntyre, P. B. (2013). When are fish sources versus sinks of nutrients in lake ecosystems? Ecology, 94, 2195–2206.
Vergés, A., Pérez, M., Alcoverro, T. and Romero, J. (2008). Compensation and resistance to herbivory in seagrasses: induced responses to simulated consumption by fish. Oecologia, 155, 751–760.CrossRefGoogle ScholarPubMed
Villéger, S., Ferraton, F., Mouillot, D. and de Wit, R. (2012a). Nutrient recycling by coastal macrofauna: intra- versus interspecific differences. Marine Ecology Progress Series, 452, 297–303.CrossRefGoogle Scholar
Villéger, S., Grenouillet, G., Suc, V. and Brosse, S. (2012b). Intra- and interspecific differences in nutrient recycling by European freshwater fish. Freshwater Biology, 57, 2330–2341.CrossRefGoogle Scholar
Vrede, K., Heldal, M., Norland, S. and Bratbak, G. (2002). Elemental composition (C, N, P) and cell volume of exponentially growing and nutrient-limited bacterioplankton. Applied and Environmental Microbiology, 68, 2965–2971.CrossRefGoogle ScholarPubMed
Wardle, D. A. (2002). Communities and Ecosystems: Linking the Aboveground and Belowground Components. Princeton, NJ: Princeton University Press.Google Scholar
Welsh, D. T. (2000). Nitrogen fixation in seagrass meadows: regulation, plant-bacteria interactions and significance to primary productivity. Ecology Letters, 3, 58–71.CrossRefGoogle Scholar
Wieder, W. R., Cleveland, C. C. and Townsend, A. R. (2009). Controls over leaf litter decomposition in wet tropical forests. Ecology, 90, 3333–3341.CrossRefGoogle ScholarPubMed
Winder, M., Schindler, D. E., Moore, J. W., Johnson, S. P. and Palen, W. J. (2005). Do bears facilitate transfer of salmon resources to aquatic macroinvertebrates? Canadian Journal of Fisheries and Aquatic Sciences, 2293, 2285–2293.
Wipfli, M. S., Hudson, J. and Caouette, J. (1998). Influence of salmon carcasses on stream productivity: response of biofilm and benthic macroinvertebrates in south-eastern Alaska, USA. Canadian Journal of Fisheries and Aquatic Sciences, 1511, 1503–1511.Google Scholar
Wipfli, M., Hudson, J. P. and Caouette, J. P. (2003). Marine subsidies in freshwater ecosystems: salmon carcasses increase the growth rates of stream-resident salmonids. Transactions of the American Fisheries Society, 132, 371–381.2.0.CO;2>CrossRefGoogle Scholar
Wu, S., Wang, G., Angert, E. R., et al. (2012). Composition, diversity, and origin of the bacterial community in grass carp intestine. PLoS One, 7, e30440.CrossRefGoogle ScholarPubMed
Wurtsbaugh, W. A. (2007). Nutrient cycling and transport by fish and terrestrial insect nutrient subsidies to lakes. Limnology and Oceanography, 52, 2715–2718.CrossRefGoogle Scholar
Wyatt, A., Lowe, R., Humphries, S. and Waite, A. (2010). Particulate nutrient fluxes over a fringing coral reef: relevant scales of phytoplankton production and mechanisms of supply. Marine Ecology Progress Series, 405, 113–130.CrossRefGoogle Scholar
Young, H. S., McCauley, D. J., Dunbar, R. B. and Dirzo, R. (2010). Plants cause ecosystem nutrient depletion via the interruption of bird-derived spatial subsidies. Proceedings of the National Academy of Sciences of the USA, 107, 2072–2077.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×