Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-20T11:22:24.525Z Has data issue: false hasContentIssue false

4 - Cortical mechanisms of visuospatial attention in humans and monkeys

Published online by Cambridge University Press:  08 August 2009

Sabine Kastner
Affiliation:
Department of Psychology Center for the Study of Brain, Mind & behavior Princeton University Green Hall (3-N-1E) Princeton, NJ 08544-1010
Peter De Weerd
Affiliation:
Laboratory of Perception & Actions Department of Psychology (Room 518) University of Arizona 1503 E. University Blvd. PO Box 210068 Tucson, AZ 85721
Leslie G. Ungerleider
Affiliation:
Chief Laboratory of Brain and Cognition National Institute of Mental Health Building 10, Room 4C104 10 Center Drive, MSC 1148 Bethesda, MD 20892-1366
James R. Pomerantz
Affiliation:
Rice University, Houston
Get access

Summary

Introduction

In everyday life, the scenes we view are typically cluttered with many different objects. However, the capacity of the visual system to process information about multiple objects at any given moment in time is limited (Broadbent, 1958; Neisser, 1967; Schneider & Shiffrin, 1977; Tsotsos, 1990). This limited processing capacity can be exemplified in a simple experiment. If subjects are presented with two different objects and asked to identify two different attributes at the same time (e.g., color of one and orientation of the other), the subjects' performance is worse than if the task had been performed with only a single object (Duncan, 1980, 1984; Treisman, 1969). Hence, multiple objects present at the same time in the visual field compete for neural representation due to limited processing resources.

How can the competition among multiple objects be resolved? One way is by bottom-up, stimulus-driven processes. For example, in Figure 4.1A, the vertical line among the multiple distracter lines is effortlessly and quickly detected because of its salience in the display, which biases the competition in favor of the vertical line. Stimulus salience depends on various factors, including simple feature properties such as line orientation or color of the stimulus (Treisman & Gelade, 1980; Treisman & Gormican, 1988), perceptual grouping of stimulus features by Gestalt principles (Driver & Baylis, 1989; Duncan, 1984; Lavie & Driver, 1996; Prinzmetal, 1981), and the dissimilarity between the stimulus and nearby distracter stimuli (Duncan & Humphreys, 1989, 1992; Nothdurft, 1993).

Type
Chapter
Information
Topics in Integrative Neuroscience
From Cells to Cognition
, pp. 77 - 118
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, R. A., Snowden, R. J., Treue, S., and Graziano, M. (1990). Hierarchical processing of motion in the visual cortex of moneky. Cold Spring Harbor Symposia Quantitative Biology, 55, 741–8.CrossRefGoogle Scholar
Bandettini, P. A., Wong, E. C., Hinks, R. S., Tikofsky, R. S., and Hyde, J. S. (1992). Time course EPI of human brain function during task activation. Magnetic Resonance in Medicine, 25, 390–7.CrossRefGoogle ScholarPubMed
Bashinski, H. S. and Bacharach, V. R. (1980). Enhancement of perceptual sensitivity as the result of selectively attending to spatial locations. Perception & Psychophysics, 28, 241–8.CrossRefGoogle ScholarPubMed
Beauchamp, M. S., Haxby, J. V., Jennings, J. E., and DeYoe, E. A. (1999). An fMRI version of the Farnsworth Munsell 100-Hue Test reveals multiple color-selective areas in human ventral occipitotemporal cortex. Cerebral Cortex, 9, 257–63.CrossRefGoogle ScholarPubMed
Bisiach, E. and Vallar, G. (1988). Hemineglect in humans. In Boller, F. and Grafman, J., eds., Handbook of Neuropsychology, Vol. 1. Amsterdam: Elsevier, pp. 195–222.Google Scholar
Bon, L. and Lucchetti, C. (1997). Attention-related neurons in the supplementary eye field of the macaque monkey. Experimental Brain Research, 113, 180–5.CrossRefGoogle ScholarPubMed
Boussaoud, D., Desimone, R., and Ungerleider, L. G. (1991). Visual topography of area TEO in the macaque. Journal of Computational Neurology, 306, 554–75.CrossRefGoogle ScholarPubMed
Brefczynski, J. A. and DeYoe, E. A. (1999). A physiological correlate of the ‘spotlight’ of visual attention. Nature Neuroscience, 2, 370–4.CrossRefGoogle ScholarPubMed
Broadbent, D. E. (1958). Perception and Communication. London: Pergamon Press.CrossRefGoogle Scholar
Buchel, C. and Friston, K. J. (2000). Assessing interactions among neuronal systems using functional neuroimaging. Neural Networks, 13, 871–82.CrossRefGoogle ScholarPubMed
Bundesen, C. (1990). A theory of visual attention. Psychology Review, 97, 523–47.CrossRefGoogle ScholarPubMed
Bushnell, M. C., Goldberg, M. E., and Robinson, D. L. (1981). Behavioral enhancement of visual responses in monkey cerebral cortex. Journal of Neurophysiology, 46, 755–72.CrossRefGoogle ScholarPubMed
Carrasco, M. and Yeshurun, Y. (1998). The contribution of covert attention to the set-size and eccentricity effects in visual search. Journal of Experimental Psychology: Human Perception Performance, 24, 673–92.Google ScholarPubMed
Cavada, C. and Goldman-Rakic, P. S. (1989). Posterior parietal cortex in rhesus monkey: II. Evidence for segregated cortico-cortical networks linking sensory and limbic areas with the frontal lobe. Journal of Computational Neurology, 287, 422–45.CrossRefGoogle Scholar
Chawla, D., Rees, G., and Friston, K. J. (1999). The physiological basis of attentional modulation in extrastriate visual areas. Nature Neuroscience, 2, 671–6.CrossRefGoogle ScholarPubMed
Chelazzi, L., Duncan, J., Miller, E. K., and Desimone, R. (1998). Responses of neurons in inferior temporal cortex during memory-guided visual search. Journal of Neurophysiology, 80, 2918–40.CrossRefGoogle ScholarPubMed
Chelazzi, L., Miller, E. K., Duncan, J., and Desimone, R. (1993). A neural basis for visual search in inferior temporal cortex. Nature, 363, 345–7.CrossRefGoogle ScholarPubMed
Cocchini, G., Cubelli, R., Sala, Della S., and Beschin, N. (1999). Neglect without extinction. Cortex, 35, 285–313.CrossRefGoogle ScholarPubMed
Colby, C. L., Duhamel, J. R., and Goldberg, M. E. (1996). Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. Journal of Neurophysiology, 76, 2841–52.CrossRefGoogle ScholarPubMed
Colby, C. L. and Goldberg, M. E. (1998). Space and attention in parietal cortex. Annual Review of Neuroscience, 22, 319–49.CrossRefGoogle Scholar
Connor, C. E., Gallant, J. L., Preddie, D. C., and Essen, D. C. (1996). Responses in area V4 depend on the spatial relationship between stimulus and attention. Journal of Neurophysiology, 75, 1306–8.CrossRefGoogle ScholarPubMed
Connor, C. E., Preddie, D. C., Gallant, J. L., and Essen, D. C. (1997). Spatial attention effects in macaque area V4. Journal of Neuroscience, 17, 3201–14.CrossRefGoogle ScholarPubMed
Corbetta, M., Akbudak, E., Conturo, T. E., et al. (1998). A common network of functional areas for attention and eye movements. Neuron, 21, 761–73.CrossRefGoogle ScholarPubMed
Corbetta, M., Kincade, J. M., Ollinger, J. M., McAvoy, M. P., and Shulman, G. L. (2000). Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nature Neuroscience, 3, 292–7.CrossRefGoogle ScholarPubMed
Corbetta, M., Miezin, F. M., Shulman, G. L., and Petersen, S. E. (1993). A PET study of visuospatial attention. Journal of Neuroscience, 13, 1202–26.CrossRefGoogle ScholarPubMed
Culham, J. C., Brandt, S. A., Cavanagh, P., et al. (1998). Cortical fMRI activation produced by attentive tracking of moving targets. Journal of Neurophysiology, 80, 2657–70.CrossRefGoogle ScholarPubMed
Damasio, A. R., Damasio, H., and Chang, C. H. (1980). Neglect following damage to frontal lobe or basal ganglia. Neuropsychologia, 18, 123–32.CrossRefGoogle ScholarPubMed
Desimone, R. (1991). Face-selective cells in the temporal cortex of monkeys. Journal of Cognitive Neuroscience, 3, 1–8.CrossRefGoogle ScholarPubMed
Desimone, R. (1996). Neural mechanisms for visual memory and their role in attention. Proceedings of the National Academy of Sciences USA, 26, 13494–9.Google Scholar
Desimone, R. (1998). Visual attention mediated by biased competition in extrastriate visual cortex. Philosophical Transactions of the Royal Society of London, 353, 1245–55.CrossRefGoogle ScholarPubMed
Desimone, R. and Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222.CrossRefGoogle ScholarPubMed
Desimone, R. and Ungerleider, L. G. (1986). Multiple visual areas in the caudal superior temporal sulcus of the macaque. Journal of Computational Neurology, 248, 164–89.CrossRefGoogle ScholarPubMed
Desimone, R. and Ungerleider, L. G. (1989). Neural mechanisms of visual processing in monkeys. In Boller, F. and Grafman, J., eds., Handbook of Neuropsychology, Vol. 2. Amsterdam: Elsevier, pp. 267–99.Google Scholar
DeYoe, E. A., Carman, G. J., Bandettini, P., et al. (1996). Mapping striate and extrastriate visual areas in human cerebral cortex. Proceedings of the National Academy of Sciences USA, 93, 2382–6.CrossRefGoogle ScholarPubMed
Weerd, P., Peralta, M. R. III, Desimone, R., and Ungerleider, L. (1999). Loss of attentional selection after extrastriate cortical lesions in macaques. Nature Neuroscience, 2, 753–7.Google ScholarPubMed
Driver, J. (1995). Object segmentation and visual neglect. Behavior Brain Research, 71, 135–46.CrossRefGoogle ScholarPubMed
Driver, J. and Baylis, G. C. (1989). Movement and visual attention: the spotlight metaphor breaks down. Journal of Experimental Psychology: Human Perception Performance, 15, 448–56.Google ScholarPubMed
Driver, J., Baylis, G. C., and Rafal, R. D. (1992). Preserved figure-ground segmentation and symmetry perception in visual neglect. Nature, 360, 73–5.CrossRefGoogle ScholarPubMed
Driver, J. and Mattingley, J. B. (1998). Parietal neglect and visual awareness. Nature Neuroscience, 1, 17–22.CrossRefGoogle ScholarPubMed
Duffy, C. J. and Wurtz, R. H. (1991). Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli. Journal of Neurophysiology, 65, 1346–59.CrossRefGoogle ScholarPubMed
Duncan, J. (1980). The locus of interference in the perception of simultaneous stimuli. Psychology Review, 87, 272–300.CrossRefGoogle ScholarPubMed
Duncan, J. (1984). Selective attention and the organization of visual information. Journal of Experimental Psychology, 113, 501–17.CrossRefGoogle ScholarPubMed
Duncan, J. (1996). Cooperating brain systems in selective perception and action. In Inui, T. and McClelland, J. L., eds., Attention and Performance XVI. Cambridge: MIT Press, pp. 549–78.Google Scholar
Duncan, J. (1998). Converging levels of analysis in the cognitive neuroscience of visual attention. Philosophical Transactions of the Royal Society of London B, 353, 1307–17.CrossRefGoogle ScholarPubMed
Duncan, J. and Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychology Review, 96, 433–58.CrossRefGoogle ScholarPubMed
Duncan, J. and Humphreys, G. W. (1992). Beyond the search surface: visual search and attentional engagement. Journal of Experimental Psychology: Human Perception Performance, 18, 578–88.Google ScholarPubMed
Eason, R. G., Harter, M. R., and White, C. T. (1969). Effects of attention and arousal on visually evoked cortical potentials and reaction time in man. Physiology and Behavior, 4, 283–9.CrossRefGoogle Scholar
Engel, S. A., Glover, G. H., and Wandell, B. A. (1997). Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cerebral Cortex, 7, 181–92.CrossRefGoogle ScholarPubMed
Felleman, D. J. and Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1, 1–47.CrossRefGoogle ScholarPubMed
Fink, G. R., Dolan, R. J., Halligan, P. W., Marshall, J. C., and Frith, C. D. (1997). Space-based and object-based visual attention: shared and specific neural domains. Brain, 120, 2013–28.CrossRefGoogle ScholarPubMed
Fox, P. T. and Raichle, M. E. (1986). Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proceedings of the National Academy of Sciences USA, 83, 1140–4.CrossRefGoogle ScholarPubMed
Friedman-Hill, S. R., Robertson, L. C., Ungerleider, L. G., and Desimone, R. (2000). Impaired attentional filtering in a patient with bilateral parietal lesions. Society of Neuroscience Abstracts, 106.11.Google Scholar
Friedrich, F. J., Egly, R., Rafal, R. D., and Beck, D. (1998). Spatial attention deficits in humans: a comparison of superior parietal and temporal-parietal junction lesions. Neuropsychology, 12, 193–207.CrossRefGoogle ScholarPubMed
Gaffan, D. and Hornak, J. (1997). Visual neglect in the monkey: representation and disconnection. Brain, 120, 1647–57.CrossRefGoogle ScholarPubMed
Gallant, J. L., Shoup, R. E., and Mazer, J. A. (2000). A human extrastriate area functionally homologous to macaque V4. Neuron, 27, 227–35.CrossRefGoogle ScholarPubMed
Gattass, R., Gross, C. G., and Sandell, J. H. (1981). Visual topography of V2 in the macaque. Journal of Computational Neurology, 201, 519–39.CrossRefGoogle ScholarPubMed
Gattass, R., Sousa, A. P. B., and Gross, C. G. (1988). Visuotopic organization and extent of V3 and V4 of the macaque. Journal of Neuroscience, 8, 1831–45.CrossRefGoogle ScholarPubMed
Ghandi, S. P., Heeger, D. J., and Boynton, G. M. (1999). Spatial attention affects brain activity in human primary visual cortex. Proceedings of the National Academy of Sciences USA, 96, 3314–19.Google Scholar
Gitelman, D. R., Nobre, A. C., Parrish, T. B., et al. (1999). A large-scale distributed network for covert spatial attention. Brain, 122, 1093–106.CrossRefGoogle ScholarPubMed
Goldberg, M. E. and Bushnell, M. C. (1981). Behavioral enhancement of visual responses in monkey cerbral cortex. Journal of Neurophysiology, 46, 773–87.CrossRefGoogle Scholar
Goldberg, M. E. and Colby, C. L. (1989). The neurophysiology of spatial vision. In Boller, F. and Grafman, J., eds., Handbook of Neuropsychology, Vol. 2. Amsterdam: Elsevier, pp. 301–15.Google Scholar
Goodale, M. A. and Milner, A. D. (1992). Separate visual pathways for perception and action. Trends Neuroscience, 15, 20–5.CrossRefGoogle ScholarPubMed
Grabowecky, M., Robertson, L. C., and Treisman, A. (1993). Preattentive processes guide visual search: evidence from patients with unilateral visual neglect. Journal of Cognitive Neuroscience, 5, 288–302.CrossRefGoogle ScholarPubMed
Grill-Spector, K., Kushnir, T., Hendler, T., et al. (1998). A sequence of object-processing stages revealed by fMRI in the human occipital lobe. Human Brain Mapping, 6, 316–28.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Hadjikhani, N. K., Liu, A. K., Dale, A. M., Cavanagh, P., and Tootell, R. B. H. (1998). Retinotopy and color sensitivity in human visual cortical area V8. Nature Neuroscience, 1, 235–41.CrossRefGoogle ScholarPubMed
Haenny, P. E., Maunsell, J. H. R., and Schiller, P. H. (1988). State dependent activity in monkey visual cortex. Experimental Brain Research, 69, 245–59.CrossRefGoogle ScholarPubMed
Halgren, E., Dale, A. M., Sereno, M. I., et al. (1999). Location of human face-selective cortex with respect to retinotopic areas. Human Brain Mapping, 7, 29–37.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Harter, M. R. and Aine, C. J. (1984). Brain mechanisms of visual selective attention. In Parasuraman, R. and Davies, D. R., eds., Varieties of Attention. Orlando, FL: Academic, pp. 293–321.Google Scholar
Haxby, J. V., Horwitz, B., Ungerleider, L. G., et al. (1994). The functional organization of human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations. Journal of Neuroscience, 14, 6336–53.CrossRefGoogle ScholarPubMed
Heilman, K. M. and Valenstein, E. (1972). Frontal lobe neglect in man. Neurology, 22, 660–4.CrossRefGoogle ScholarPubMed
Heilman, K. M. and Abell, T. (1980). Right hemisphere dominance for attention: the mechanism underlying hemispheric asymmetries of inattention (neglect). Neurology, 30, 327–30.CrossRefGoogle Scholar
Heilman, K. M., Watson, R. T., and Valenstein, E. (1993). Neglect and related disorders. In Heilman, K. M. and Valenstein, E., eds., Clinical Neuropsychology, pp. 279–336.Google Scholar
Heinze, H. J., Mangun, G. R., Burchert, W., et al. (1994). Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature, 372, 543–6.CrossRefGoogle ScholarPubMed
Hillyard, S. A., Vogel, E. K., and Luck, S. J. (1998). Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence. Philosophical Transactions of the Royal Society of London, 353, 1257–70.CrossRefGoogle ScholarPubMed
Hopfinger, J. B., Buonocore, M. H., and Mangun, G. R. (2000). The neural mechanisms of top-down attentional control. Nature Neuroscience, 3, 284–91.CrossRefGoogle ScholarPubMed
Ishai, A., Ungerleider, L. G., and Haxby, J. V. (2000). Distributed neural systems for the generation of visual images. Neuron, 28, 979–90.CrossRefGoogle ScholarPubMed
Janer, K. W. and Pardo, J. V. (1991). Deficits in selective attention following bilateral anterior cingulotomy. Journal of Cognitive Neuroscience, 3, 231–41.CrossRefGoogle ScholarPubMed
Kanwisher, N., McDermott, J., and Chun, M. M. (1997). The fusiform face area: a module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17, 4302–11.CrossRefGoogle ScholarPubMed
Kastner, S., Weerd, P., Desimone, R., and Ungerleider, L. G. (1998). Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. Science, 282, 108–11.CrossRefGoogle ScholarPubMed
Kastner, S., Weerd, P., Pinsk, M. A., et al. (2001). Modulation of sensory suppression: implications for receptive field sizes in the human visual cortex. Journal of Neurophysiology, 86, 1398–411.CrossRefGoogle ScholarPubMed
Kastner, S., Weerd, P., and Ungerleider, L. G. (2000). Texture segregation in the human visual cortex: a functional MRI study. Journal of Neurophysiology, 83, 2453–7.CrossRefGoogle ScholarPubMed
Kastner, S., Pinsk, M. A., Weerd, P., Desimone, R., and Ungerleider, L. G. (1999). Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron, 22, 751–61.CrossRefGoogle ScholarPubMed
Kastner, S. and Ungerleider, L. G. (2000). Mechanisms of visual attention in the human cortex. Annual Review of Neuroscience, 23, 315–41.Google ScholarPubMed
Kim, Y. H., Gitelman, D. R., Nobre, A. C., et al. (1999). The large-scale neural network for spatial attention displays multifunctional overlap but differential asymmetry. NeuroImage, 9, 269–77.CrossRefGoogle ScholarPubMed
Kinsbourne, M. (1993). Orientational bias model of unilateral neglect: evidence from attentional gradients within hemispace. In Robertson, I. H. and Marshall, J. C., eds., Unilateral Neglect: Clinical and Experimental Studies. Hillsdale, NJ: Lawrence Erlbaum, pp. 63–86.Google Scholar
Kleinschmidt, A., Lee, B. B., Requardt, M., and Frahm, J. (1996). Functional mapping of color processing by magnetic resonance imaging of responses to selective P- and M-pathway stimulation. Experimental Brain Research, 110, 279–88.CrossRefGoogle ScholarPubMed
Knierim, J. J. and Essen, D. C. (1992). Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. Journal of Neurophysiology, 67, 961–80.CrossRefGoogle ScholarPubMed
Kodaka, Y., Mikami, A., and Kubota, K. (1997). Neuronal activity in the frontal eye field of the monkey is modulated while attention is focused on to a stimulus in the peripheral visual field, irrespective of eye movement. Neuroscience Research, 28, 291–8.CrossRefGoogle ScholarPubMed
Kosslyn, S. M., Thompson, W. L., Kim, I. J., and Alpert, N. M. (1995). Topographical representations of mental images in primary visual cortex. Nature, 378, 496–8.CrossRefGoogle ScholarPubMed
Kwong, K. K., Belliveau, J. W., Chesler, D. A., et al. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences USA, 89, 5675–9.CrossRefGoogle ScholarPubMed
Latto, R. and Cowey, A. (1971). Visual field defects after frontal eye-field lesions in monkeys. Brain Research, 30, 1–24.CrossRefGoogle ScholarPubMed
Lavie, N. and Driver, J. (1996). On the spatial extent of attention in object-based visual selection. Perception & Psychophysics, 58, 1238–51.CrossRefGoogle ScholarPubMed
Lu, Z. L. and Dosher, B. A. (1998). External noise distinguishes attention mechanisms. Vision Research, 38, 1183–98.CrossRefGoogle ScholarPubMed
Luck, S. J., Chelazzi, L., Hillyard, S. A., and Desimone, R. (1997). Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. Journal of Neurophysiology, 77, 24–42.CrossRefGoogle ScholarPubMed
Lynch, J. C. and McLaren, J. W. (1989). Deficits of visual attention and saccadic eye movements after lesions of parietooccipital cortex in monkeys. Journal of Neurophysiology, 61, 74–90.CrossRefGoogle ScholarPubMed
Mangun, G. R. (1995). Neural mechanisms of visual selective attention. Psychophysiology, 32, 4–18.CrossRefGoogle ScholarPubMed
Mangun, G. R., Buonocore, M. H., Girelli, M., and Jha, A. P. (1998). ERP and fMRI measures of visual spatial selective attention. Human Brain Mapping, 6, 383–9.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Marshall, J. C. and Halligan, P. W. (1994). The yin and the yang of visuo-spatial neglect: a case study. Neuropsychologia, 32, 1037–57.CrossRefGoogle ScholarPubMed
Martinez, A., Vento, L. A., Sereno, M. I., et al., (1999). Involvement of striate and extrastriate visual cortical areas in spatial attention. Nature Neuroscience, 2, 364–9.CrossRefGoogle ScholarPubMed
Mattingley, J. B., Davis, G., and Driver, J. (1997). Preattentive filling-in of visual surfaces in parietal extinction. Science, 275, 671–4.CrossRefGoogle ScholarPubMed
Maunsell, J. H. R. and Essen, D. C. (1983). Functional properties of neurons in middle temporal visual area of the macaque monkey. Journal of Neurophysiology, 49, 1127–47.CrossRefGoogle ScholarPubMed
McAdams, C. J. and Maunsell, J. H. R. (1999). Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. Journal of Neuroscience, 19, 431–41.CrossRefGoogle ScholarPubMed
McCarthy, G., Puce, A., Gore, J. C., and Allison, T. (1997). Face-specific processing in the human fusiform gyrus. Journal of Cognitive Neuroscience, 9, 605–10.CrossRefGoogle ScholarPubMed
McKeefry, D. J. and Zeki, S. (1997). The position and topography of the human colour centre as revealed by functional magnetic resonance imaging. Brain, 120, 2229–42.CrossRefGoogle ScholarPubMed
Mesulam, M. M. (1981). A cortical network for directed attention and unilateral neglect. Annals of Neurology, 10, 309–25.CrossRefGoogle ScholarPubMed
Mesulam, M. M. (1999). Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. Philosophical Transactions of the Royal Society of London B Biology Science, 354, 1325–46.CrossRefGoogle ScholarPubMed
Miller, E. K. and Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.CrossRefGoogle ScholarPubMed
Miller, E. K., Li, L., and Desimone, R. (1993). Activity of neurons in anterior inferior temporal cortex during a short-term memory task. Journal of Neuroscience, 13, 1460–78.CrossRefGoogle ScholarPubMed
Moran, J. and Desimone, R. (1985). Selective attention gates visual processing in the extrastriate cortex. Science, 229, 782–4.CrossRefGoogle ScholarPubMed
Motter, B. C. (1993). Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. Journal of Neurophysiology, 70, 909–19.CrossRefGoogle ScholarPubMed
Neisser, U. (1967). Cognitive Psychology. New York: Appleton.Google Scholar
Newsome, W. T. and Salzman, C. D. (1990). Neuronal mechanisms of motion perception. Cold Spring Harbor Symposia Quantitative Biology, 55, 697–705.CrossRefGoogle ScholarPubMed
Nobre, A. C., Gitelman, D. R., Dias, E. C., and Mesulam, M. M. (2000). Covert visual spatial orienting and saccades: overlapping neural systems. NeuroImage, 11, 210–16.CrossRefGoogle ScholarPubMed
Nobre, A. C., Sebestyen, G. N., Gitelman, D. R., et al. (1997). Functional localization of the system for visuospatial attention using positron emission tomography. Brain, 120, 515–33.CrossRefGoogle ScholarPubMed
Nothdurft, H. C. (1993). The role of features in preattentive vision: comparison of orientation, motion and colour cues. Vision Research, 33, 1937–58.CrossRefGoogle Scholar
O'Craven, K. M. and Kanwisher, N. (2000). Mental imagery of faces and places activates corresponding stimulus-specific brain regions. Journal of Cognitive Neuroscience, 12, 1013–23.CrossRefGoogle Scholar
Ogawa, S., Tank, D. W., Menon, R., et al. (1992). Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proceedings of the National Academy of Sciences USA, 89, 5951–5.CrossRefGoogle ScholarPubMed
Perry, R. J. and Zeki, S. (2000). The neurology of saccades and covert shifts in spatial attention. Brain, 123, 2273–88.CrossRefGoogle ScholarPubMed
Petersen, S. E., Robinson, D. L., and Morris, J. D. (1987). Contributions of the pulvinar to visual spatial attention. Neuropsychologia, 25, 97–105.CrossRefGoogle ScholarPubMed
Posner, M. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 3–25.CrossRefGoogle ScholarPubMed
Posner, M. I. and Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25–42.CrossRefGoogle ScholarPubMed
Posner, M. I., Walker, J. A., Friedrich, F. J., and Rafal, R. D. (1984). Effects of parietal injury on covert orienting of attention. Journal of Neuroscience, 4, 1863–74.CrossRefGoogle ScholarPubMed
Prinzmetal, W. (1981). Principles of feature integration in visual perception. Perception & Psychophysics, 30, 330–40.CrossRefGoogle ScholarPubMed
Puce, A., Allison, T., Asgari, M., Gore, J. C., and McCarthy, G. (1996). Differential sensitivity of human visual cortex to faces, letterstrings, and textures: a functional magnetic resonance imaging study. Journal of Neuroscience, 16, 5205–15.CrossRefGoogle ScholarPubMed
Rafal, R. D. (1994). Neglect. Current Opinion in Neurobiology, 4, 231–6.CrossRefGoogle ScholarPubMed
Recanzone, G. H. and Wurtz, R. H. (2000). Effects of attention on MT and MST neuronal activity during pursuit initiation. Journal of Neurophysiology, 83, 777–90.CrossRefGoogle ScholarPubMed
Recanzone, G. H., Wurtz, R. H., and Schwarz, U. (1997). Responses of MT and MST neurons to one and two moving objects in the receptive field. Journal of Neurophysiology, 78, 2904–15.CrossRefGoogle ScholarPubMed
Ress, D., Backus, B. T., and Heeger, D. J. (2000). Activity in primary visual cortex predicts performance in a visual detection task. Nature Neuroscience, 3, 940–5.CrossRefGoogle Scholar
Rees, G., Frackowiak, R. S. J., and Frith, C. D. (1997). Two modulatory effects of attention that mediate object categorization in human cortex. Science, 275, 835–8.CrossRefGoogle ScholarPubMed
Reynolds, J. H., Chelazzi, L., and Desimone, R. (1999). Competitive mechanisms subserve attention in macaque areas V2 and V4. Journal of Neuroscience, 19, 1736–53.CrossRefGoogle ScholarPubMed
Reynolds, J. H., Pasternak, T., and Desimone, R. (2000). Attention increases sensitivity of V4 neurons. Neuron, 26, 703–14.CrossRefGoogle ScholarPubMed
Robinson, D. L., Goldberg, M. E., and Stanton, G. B. (1978). Parietal association cortex in the primate: sensory mechanisms and behavioral modulations. Journal of Neurophysiology, 91, 910–32.CrossRefGoogle Scholar
Roelfsema, P. R., Lamme, V. A. F., and Spekreijse, H. (1998). Object-based attention in the primary visual cortex of the macaque monkey. Nature, 395, 376–81.CrossRefGoogle ScholarPubMed
Rolls, E. T. and Tovee, M. J. (1995). Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex. Journal of Neurophysiology, 73, 713–26.CrossRefGoogle ScholarPubMed
Rosen, A. C., Rao, S. M., Caffarra, P., et al. (1999). Neural basis of endogenous and exogenous spatial orienting: a functional MRI study. Journal of Cognitive Neuroscience, 11, 135–52.CrossRefGoogle ScholarPubMed
Sakai, K., Watanabe, E., Onodera, Y., et al. (1995). Functional mapping of the human colour centre with echo-planar magnetic resonance imaging. Proceedings of the Royal Society of London B, 261, 89–98.CrossRefGoogle ScholarPubMed
Sato, T. (1989). Interactions of visual stimuli in the receptive fields of inferior temporal neurons in awake monkeys. Experimental Brain Research, 77, 23–30.CrossRefGoogle Scholar
Schein, S. J. and Desimone, R. (1990). Spectral properties of V4 neurons in the macaque. Journal of Neuroscience, 10, 3369–89.CrossRefGoogle ScholarPubMed
Schiller, P. H. (1993). The effects of V4 and middle temporal (MT) area lesions on visual performance in rhesus monkey. Visual Neuroscience, 10, 717–46.CrossRefGoogle ScholarPubMed
Schiller, P. H. and Lee, K. (1991). The role of the primate extrastriate area V4 in vision. Science, 251, 1251–3.CrossRefGoogle ScholarPubMed
Schneider, W., Noll, D. C., and Cohen, J. D. (1993). Functional topographic mapping of the cortical ribbon in human vision with conventional MRI scanners. Nature, 365, 150–3.CrossRefGoogle ScholarPubMed
Schneider, W. and Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. detection, search, and attention. Psychology Review, 84, 1–66.CrossRefGoogle Scholar
Sereno, M. I., Dale, A. M., Reppas, J. B., et al. (1995). Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science, 268, 889–93.CrossRefGoogle ScholarPubMed
Shiu, L. P. and Pashler, H. (1995). Spatial attention and vernier acuity. Vision Research, 35, 337–43.CrossRefGoogle ScholarPubMed
Shulman, G. L., Ollinger, J. M., Akbudak, E., et al. (1999). Areas involved in encoding and applying directional expectations to moving objects. Journal of Neuroscience, 21, 9480–96.CrossRefGoogle Scholar
Somers, D. C., Dale, A. M., Seiffert, A. E., and Tootell, R. B. H. (1999). Functional MRI reveals spatially specific attentional modulation in human primary visual cortex. Proceedings of the National Academy of Sciences USA, 96, 1663–8.CrossRefGoogle ScholarPubMed
Spitzer, H., Desimone, R., and Moran, J. (1988). Increased attention enhances both behavioral and neuronal performance. Science, 240, 338–40.CrossRefGoogle ScholarPubMed
Spitzer, H. and Richmond, B. J. (1991). Task difficulty: ignoring, attending to, and discriminating a visual stimulus yield progressively more activity in inferior temporal neurons. Experimental Brain Research, 83, 340–8.CrossRefGoogle ScholarPubMed
Tanaka, K. and Saito, H. (1989). Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. Journal of Neurophysiology, 62, 626–41.CrossRefGoogle ScholarPubMed
Tootell, R. B. H., Hadjikhani, N., Hall, E. K., et al. (1998). The retinotopy of visual spatial attention. Neuron, 21, 1409–22.CrossRefGoogle ScholarPubMed
Tootell, R. B., Mendola, J. D., Hadjikhani, N. K., et al. (1997). Functional analysis of V3A and related areas in human visual cortex. Journal of Neuroscience, 17, 7060–78.CrossRefGoogle ScholarPubMed
Tootell, R. B. H, Reppas, J. B., Kwong, K. K., et al. (1995). Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. Journal of Neuroscience, 15, 3215–30.CrossRefGoogle ScholarPubMed
Treisman, A. M. (1969). Strategies and models of selective attention. Psychology Review, 76, 282–99.CrossRefGoogle ScholarPubMed
Treisman, A. M. and Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12, 97–136.CrossRefGoogle Scholar
Treisman, A. and Gormican, S. (1988). Feature analysis in early vision: evidence from search asymmetries. Psychology Review, 95, 15–48.CrossRefGoogle ScholarPubMed
Treue, S. and Martinez, J. C. (1999). Feature-based attention influences motion processing gain in macaque visual cortex. Nature, 399, 575–9.CrossRefGoogle ScholarPubMed
Treue, S. and Maunsell, J. H. R. (1996). Attentional modulation of visual motion processing in cortical areas MT and MST. Nature, 382, 539–41.CrossRefGoogle ScholarPubMed
Tsotsos, J. K. (1990). Analyzing vision at the complexity level. Behavioral Brain Science, 13, 423–69.CrossRefGoogle Scholar
Ungerleider, L. G. (1995). Functional brain imaging studies of cortical mechanisms for memory. Science, 270, 769–75.CrossRefGoogle ScholarPubMed
Ungerleider, L. G., Gaffan, D., and Pelak, V. S. (1989). Projections from inferior temporal cortex to prefrontal cortex via the uncinate fascicle in rhesus monkeys. Experimental Brain Research, 76, 473–84.CrossRefGoogle ScholarPubMed
Ungerleider, L. G. and Haxby, J. V. (1994). What and where in the human brain. Current Opinion Neurobiology, 4, 157–65.CrossRefGoogle ScholarPubMed
Ungerleider, L. G. and Mishkin, M. (1982). Two cortical visual systems. In Ingle, D. J., Goodale, M. A., and Mansfield, R. J. W., eds., Analysis of Visual Behavior. Cambridge: MIT Press, pp. S49–86.Google Scholar
Vallar, G. (1993). The anatomical basis of spatial neglect in humans. In Robertson, I. H. and Marshall, J. C., eds., Unilateral Neglect: Clinical and Experimental Studies. Hillsdale, NJ: Lawrence Erlbaum, pp. 27–62.Google Scholar
Vallar, G. and Perani, D. (1986). The anatomy of unilateral neglect after right-hemisphere stroke lesions: a clinical/CT-scan correlation study in man. Neuropsychologia, 24, 609–22.CrossRefGoogle ScholarPubMed
Vandenberghe, R., Duncan, J., Dupont, P., et al. (1997). Attention to one or two features in left or right visual field: a positron emission tomography study. Journal of Neuroscience, 17, 3739–50.CrossRefGoogle ScholarPubMed
Essen, D. C., Newsome, W. T., and Maunsell, J. H. (1984). The visual field representation in striate cortex of the macaque monkey: asymmetries, anisotropies, and individual variability. Vision Research, 24, 429–48.CrossRefGoogle ScholarPubMed
Voorhis, S. and Hillyard, S. A. (1977). Visual evoked potentials and selective attention to points in space. Perception & Psychophysics, 22, 54–62.CrossRefGoogle Scholar
Watanabe, T., Harner, A. M., Miyauchi, S., et al. (1998a). Task-dependent influences of attention on the activation of human primary visual cortex. Proceedings of the National Academy of Sciences USA, 95, 11489–92.CrossRefGoogle Scholar
Watanabe, T., Sasaki, Y., Miyauchi, S., et al. (1998b). Attention-regulated activity in human primary visual cortex. Journal of Neurophysiology, 79, 2218–21.CrossRefGoogle Scholar
Watson, R. T. and Heilman, K. M. (1979). Thalamic neglect. Neurology, 29, 690–4.CrossRefGoogle ScholarPubMed
Watson, R. T., Heilman, K. M., Cauthen, J. C., and Frederick, A. K. (1973). Neglect after cingulectomy. Neurology, 23, 1003–7.CrossRefGoogle ScholarPubMed
Watson, R. T., Heilman, K. M., Miller, B. D., and King, F. A. (1974). Neglect after mesencephalic reticular formation lesions. Neurology, 24, 294–8.CrossRefGoogle ScholarPubMed
Watson, J. D. G., Myers, R., Frackowiak, R. S. J., et al. (1993). Area V5 of the human brain: evidence from combined study using positron emission tomography and magnetic resonance imaging. Cerebral Cortex, 3, 79–94.CrossRefGoogle ScholarPubMed
Webster, M. J., Bachevalier, J., and Ungerleider, L. G. (1994). Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. Cerebral Cortex, 4, 470–83.CrossRefGoogle ScholarPubMed
Welch, K. and Stuteville, P. (1958). Experimental production of unilateral neglect in monkeys. Brain, 81, 341–7.CrossRefGoogle ScholarPubMed
Wetherhill, G. B. and Levitt, R. (1965). Sequential estimation of points on a psychometrical function. The British Journal of Mathematical and Statistical Psychology, 18, 1–10.CrossRefGoogle Scholar
Wojciulik, E. and Kanwisher, N. (1999). The generality of parietal involvement in visual attention. Neuron, 23, 747–64.CrossRefGoogle ScholarPubMed
Wolfe, J. M. (1994). Guided search 2.0: a revised model of visual search. Psychonomic Bulletin & Review, 1, 202–38.CrossRefGoogle ScholarPubMed
Wolfe, J. M., Cave, K. R., and Franzel, S. L. (1989). Guided search: an alternative to the feature integration model for visual search. Journal of Experimental Psychology: Human Perception and Performance, 15, 419–33.Google ScholarPubMed
Wurtz, R. H. and Mohler, C. W. (1976). Enhancement of visual responses in monkey striate cortex and frontal eye fields. Journal of Neurophysiology, 39, 766–72.CrossRefGoogle ScholarPubMed
Zeki, S. M. (1974). Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. Journal of Physiology (London), 236, 549–73.CrossRefGoogle ScholarPubMed
Zeki, S. M. (1978). Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex. Journal of Physiology (London), 277, 273–90.CrossRefGoogle ScholarPubMed
Zeki, S., Watson, J. D. G., Lueck, C. J., et al. (1991). A direct demonstration of functional specialization in human visual cortex. Journal of Neuroscience, 11, 641–9.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Cortical mechanisms of visuospatial attention in humans and monkeys
    • By Sabine Kastner, Department of Psychology Center for the Study of Brain, Mind & behavior Princeton University Green Hall (3-N-1E) Princeton, NJ 08544-1010, Peter De Weerd, Laboratory of Perception & Actions Department of Psychology (Room 518) University of Arizona 1503 E. University Blvd. PO Box 210068 Tucson, AZ 85721, Leslie G. Ungerleider, Chief Laboratory of Brain and Cognition National Institute of Mental Health Building 10, Room 4C104 10 Center Drive, MSC 1148 Bethesda, MD 20892-1366
  • Edited by James R. Pomerantz, Rice University, Houston
  • Book: Topics in Integrative Neuroscience
  • Online publication: 08 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541681.007
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Cortical mechanisms of visuospatial attention in humans and monkeys
    • By Sabine Kastner, Department of Psychology Center for the Study of Brain, Mind & behavior Princeton University Green Hall (3-N-1E) Princeton, NJ 08544-1010, Peter De Weerd, Laboratory of Perception & Actions Department of Psychology (Room 518) University of Arizona 1503 E. University Blvd. PO Box 210068 Tucson, AZ 85721, Leslie G. Ungerleider, Chief Laboratory of Brain and Cognition National Institute of Mental Health Building 10, Room 4C104 10 Center Drive, MSC 1148 Bethesda, MD 20892-1366
  • Edited by James R. Pomerantz, Rice University, Houston
  • Book: Topics in Integrative Neuroscience
  • Online publication: 08 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541681.007
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Cortical mechanisms of visuospatial attention in humans and monkeys
    • By Sabine Kastner, Department of Psychology Center for the Study of Brain, Mind & behavior Princeton University Green Hall (3-N-1E) Princeton, NJ 08544-1010, Peter De Weerd, Laboratory of Perception & Actions Department of Psychology (Room 518) University of Arizona 1503 E. University Blvd. PO Box 210068 Tucson, AZ 85721, Leslie G. Ungerleider, Chief Laboratory of Brain and Cognition National Institute of Mental Health Building 10, Room 4C104 10 Center Drive, MSC 1148 Bethesda, MD 20892-1366
  • Edited by James R. Pomerantz, Rice University, Houston
  • Book: Topics in Integrative Neuroscience
  • Online publication: 08 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541681.007
Available formats
×