Skip to main content Accessibility help
×
Home
Hostname: page-component-5959bf8d4d-57lbh Total loading time: 1.087 Render date: 2022-12-10T06:46:49.016Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

12 - Optical Atomic Standards

Published online by Cambridge University Press:  01 October 2018

Dennis D. McCarthy
Affiliation:
United States Naval Observatory
P. Kenneth Seidelmann
Affiliation:
University of Virginia
Get access

Summary

Higher atomic transition frequencies in the optical wavelength region provide the opportunity for improved precision in comparison with microwave frequencies. One application uses a single ion with long transition lifetimes when trapped by electric fields and laser cooled. Another method uses laser-cooled atoms confined in optical lattices. The International Committee for Weights and Measures has recommended optical frequency standards for secondary representation of the second, and a number of laboratories have developed optical ion clocks and optical lattice clocks using different ions. One challenge is comparing the clocks at different locations at the accuracy of the clocks. Also at the 10-18 level, the geoid of the Earth is not well defined.
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barber, Z. W., Stalnaker, J. E., Lemke, N. D., Poli, N., Oates, C. W., Fortier, T. M., Diddams, S. A., Hollberg, L., & Hoyt, C. W. (2008). Optical Lattice Induced Light Shifts in an Yb Atomic Clock. Phys. Rev. Lett., 100, 103002.CrossRefGoogle Scholar
Barwood, G. P., Huang, G., Klein, H. A., Johnson, L. A. M., King, S. A., Margolis, H. S., Szymaniec, K., & Gill, P. (2014). Agreement between Two 88Sr+ Optical Clocks to 4 Parts in 1017. Phys. Rev. A, 89, 050501.CrossRefGoogle Scholar
Bitou, Y., Kobayashi, T., & Hong, F. L. (2016). Compact and Inexpensive Iodine-Stabilized Diode Laser System with an Output at 531 nm for Gauge Block Interferometers. Precis. Eng., 47, 528531.CrossRefGoogle Scholar
Bloom, B. J., Nicholson, T. L., Williams, J. R., Campbell, S. L., Bishof, M., Zhang, X., Zhang, W., Bromley, S. L., & Ye, J. (2014). An Optical Lattice Clock with Accuracy and Stability at the 10−18 Level. Nature, 506, 7175. doi:10.1038/nature 12941CrossRefGoogle Scholar
Campbell, C. J., Radnaev, A. G., Kuzmich, A., Dzuba, V. A., Flambaum, V. V., & Derevianko, A. (2012). Single-Ion Nuclear Clock for Metrology at the 19th Decimal Place. Phys. Rev. Lett., 108, 120802.CrossRefGoogle ScholarPubMed
Cao, J., Zhang, P., Shang, J., Cui, K., Yuan, J., Chao, S., Wang, S., Shu, H., & Huang, X. (2016). A Transportable 40Ca+ Single-Ion Clock with 7.7 x 10−17 Systematic Uncertainty, arXiv:1607.03731C.
Chou, C. W., Hume, D. B., Koelemeij, J. C. J., Wineland, D. J., & Rosenband, T. (2010). Frequency Comparison of Two High-Accuracy Al+ Optical Clocks. Phys. Rev. Lett, 104, 070802.CrossRefGoogle ScholarPubMed
Dehmelt, H. G. (1982). Mono-Ion Oscillator as Potential Ultimate Laser Frequency Standard. IEEE Transactions on Instrumentation and Measurement, 31, 8387.CrossRefGoogle Scholar
Diddams, S. A., Hollberg, L., Ma, L.-S., & Robertsson, L. (2002). Femtosecond-Laser-Based Optical Clockwork with Instability ≤ Less Than or Equal to 6.3 X 10−16 in 1 s. Opt. Lett. 27, 5860.CrossRefGoogle ScholarPubMed
Diddams, S. A., Udem, T., Bergquist, J. C., Curtis, E. A., Drullinger, R. E., Hollberg, L., Itano, W. M., Lee, W. D., Oates, C. W., Vogel, K. R., & Wineland, D. J. (2001). An Optical Clock Based on a Single Trapped 199Hg+ Ion. Science, 293, 825828.CrossRefGoogle ScholarPubMed
Falke, S., Schnatz, H., Vellore Winfred, S. R., Middelmann, T., Vogt, S., Weyers, S., Lipphardt, B., Grosche, G., Riehle, F., Sterr, U., & Lisdat, C. (2011). The 87Sr Optical Frequency Standard at PTB. Metrologia, 48, 399407.CrossRefGoogle Scholar
Gill, P. (2005). Optical Frequency Standards. Metrologia, 42, S125S137.CrossRefGoogle Scholar
Godun, R. M. (2014). Frequency Ratio of Two Optical Clock Transitions in 171 Yb and Constraints on the Time-Variation of Fundamental Constants. Phys. Rev. Lett., 113, 210801.CrossRefGoogle Scholar
Hachisu, H., Fujieda, M., Nagano, S., Gotoh, T., Nogami, A., Ido, T., Falke, S., Huntemann, N., Grebing, C., Lipphardt, B., Lisdat, C., & Piester, D. (2014). Direct Comparison of Optical Lattice Clocks with an Intercontinental Baseline of 9000 km. Optics Letters, 39, 40724075.CrossRefGoogle ScholarPubMed
Holzwarth, R., Udem, T., Hänsch, T. W., Knight, J. C., Wadsworth, W. J., & Russell, P. S. J. (2000). Optical Frequency Synthesizer for Precision Spectroscopy. Phys. Rev. Lett., 85, 22642267.CrossRefGoogle ScholarPubMed
Hong, F.-L. (2017). Optical Frequency Standards for Time and Length Applications. Meas. Sci. Technol., 28, 012002.CrossRefGoogle Scholar
Hong, F.-L., Ishikawa, J., Sugiyama, K., Onae, A., Matsumoto, H., Ye, J., & Hall, J. L. (2003). Comparison of Independent Optical Frequency Measurement Using a Portable Iodine-Stabilized Nd:YAG Laser. IEEE Trans. Instrum. Meas., 52, 240244.CrossRefGoogle Scholar
Huang, Y., Guan, H., Liu, P., Bian, W., Ma, L., Liang, K., Li, T., & Gao, K. (2016). Frequency Comparison to Two 40Ca+ Optical Clocks with an Uncertainty at the 10−17 Level. Phys. Rev. Lett., 116, 013001.CrossRefGoogle Scholar
Huntemann, N., Sanner, C., Lipphardt, B., Tamm, C., & Peik, E. (2016). Single-Ion Atomic Clock with 3 x 10−18 Systematic Uncertainty. Phys. Rev. Lett., 116, 063001.CrossRefGoogle Scholar
Katori, H., Takamoto, M., Pal’chikov, V. G., & Ovsiannikov, V. D. (2003). Ultrastable Optical Clock with Neutral Atoms in an Engineered Light Shift Trap. Phys. Rev. Lett., 91, 173005173008.CrossRefGoogle Scholar
Lisdat, C., Grosche, G., Quintin, N., Shi, C., Raupach, S. M. F., Grebing, C., Nicolodi, D., Stefani, F., Al-Masoudi, A., Dörscher, S.,Häfner, S., Robyr, J.-L., Chiodo, N., Bilicki, S., Bookjans, E., Koczwara, A., Koke, S., Kuhl, A., Wiotte, F., Meynadier, F., Camisard, E., Abgrall, M., Lours, M., Legero, T., Schnatz, H., Sterr, U., Denker, J., Chardonnet, C., Le Coq, Y., Santarelli, G., Amy-Klein, A., Le Targat, R., Lodewyck, J., Lopez, O., & Pottie, P.-E. (2016). A Clock Network for Geodesy and Fundamental Science. Nature Communications, 7, 12443.CrossRefGoogle ScholarPubMed
Ludlow, A. D., Zelevinsky, T., Campbell, G. K., Blatt, S., Boyd, M. M., de Miranda, M. H. G., Martin, M. J., Thomsen, J. W., Foreman, S. M., Ye, J., Fortier, T. M., Stalnaker, J. E., Diddams, S. A., Le Coq, Y., Barber, Z. W., Poli, N., Lemke, N. D., Beck, K. M., & Oates, C. W. (2008). Sr Lattice Clock at 1 × 10−16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock. Science, 319, 18051808.CrossRefGoogle ScholarPubMed
Ma, L.-S., Bi, Z., Bartels, A., Robertsson, L., Zucco, M., Windeler, R. S., Wilpers, G., Oates, C., Hollberg, L., & Diddams, S. A. (2004). Optical Frequency Synthesis and Comparison with Uncertainty at the 10–19 Level. Science, 303, 18431845.CrossRefGoogle ScholarPubMed
Nicholson, T. L., Campbell, S. L. Hutson, R. B., Marti, G. E., Bloom, B. J., McNally, R. L., Zhang, W., Barrett, M. D., Safronova, M. S., Strouse, G. F., Tew, W. L., & Ye, J. (2015). Systematic Evaluation of an Atomic Clock at 2 x 10−18 Total Uncertainty. Nature Communications, 6, 6896. doi:10.1038/ncomms 7896CrossRefGoogle ScholarPubMed
Oates, C. W., Bondu, F., & Hollberg, L. (1999). A Diode-Laser Optical Frequency Reference Based on Laser-Cooled Ca Atoms. Eur. Phys. J. D., 7, 449459.CrossRefGoogle Scholar
Perrella, C., Light, P. S., Anstie, J. D., Baynes, F. N., Benabid, F., & Luiten, A. N. (2013). Two-Color Rubidium Fiber Frequency Standard. Optics Letters, 38, 21222124.CrossRefGoogle ScholarPubMed
Poli, N., Oates, C. W., Gill, P., & Tino, G. M. (2013). Optical Atomic Clocks, Rivista del Nuovo Cimento, 36, 555624.Google Scholar
Rafac, R. J., Young, B. C., Beall, J. A., Itano, W. M., Wineland, D. J., & Bergquist, J. C. (2000). Sub-Dekahertz Ultraviolet Spectroscopy of 199 Hg+. Phys. Rev. Lett., 85, 24622465.CrossRefGoogle Scholar
Rosenband, T., Schmidt, P. O., Hume, D. B., Itano, W. M., Fortier, T. M., Stalnaker, J. E., Kim, K., Diddams, S. A., Koelemeij, J. C. J., Bergquist, J. C., & Wineland, D. J. (2007). Observation of the 1S03P0 Clock Transition in 27Al+. Phys. Rev. Lett., 98, 220801.CrossRefGoogle ScholarPubMed
Triches, M., Brusch, A., & Hald, J. (2015). Portable Optical Frequency Standard Based on Sealed Gas-Filled Hollow Core Fiber Using a Novel Encapsulation Technique. Appl. Phys. B, 121, 251258.CrossRefGoogle Scholar
Udem, T., Reichert, J., Holzwarth, R., & Hänsch, T. W. (1999). Accurate Measurement of Large Optical Frequency Differences with a Mode-Locked Laser. Opt. Lett., 24, 881883.CrossRefGoogle ScholarPubMed
Ushijima, I., Takamoto, M., Das, M., Ohkubo, T., & Katori, H. (2015). Cryogenic Optical Lattice Clocks. Nature Photonics Letters, 9, 185189.CrossRefGoogle Scholar
Yamanaka, K., Ohmae, N., Ushijima, I., Takamoto, M., & Katori, H. (2015). Frequency Ratio of 199Hg and 87Sr Optical Lattice Clocks beyond the SI Limit. Phys. Rev. Lett., 114, 230801.CrossRefGoogle Scholar
Ye, J., Swartz, S., Junger, P., & Hall, J. L. (1996). Hyperfine Structure and Absolute Frequency of the 87 Rb 5P3/2 State. Opt. Lett., 21, 12801282.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×