Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-54vk6 Total loading time: 0.817 Render date: 2022-08-13T03:44:39.570Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

18 - Modern Earth Orientation

Published online by Cambridge University Press:  01 October 2018

Dennis D. McCarthy
Affiliation:
United States Naval Observatory
P. Kenneth Seidelmann
Affiliation:
University of Virginia
Get access

Summary

Because of the many physical phenomena that affect the motion of a rotating Earth, e.g., weather systems, glacial isostatic adjustment, tectonic motion, etc., its kinematics are difficult to predict. So observations are necessary to complete the models describing the celestial and terrestrial reference systems and the transformations between them. This information is made available by the International Earth Rotation and Reference Systems Service (IERS). Very long baseline interferometry (VLBI) techniques provide estimates of celestial pole offsets, polar motion, and the Earth's rotation angle. GPS and satellite laser ranging observations can be analyzed for polar motion and length-of-day values. DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) observations contribute to the terrestrial reference frame. Meteorological, oceanographic, and geophysical models are used to estimate variations in the angular momentum of the atmosphere and oceans, the core mantle boundary topography, and seasonal station displacements. Jerks of the Earth’s magnetic field seem to have correlations with all Earth orientation parameters.
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altamimi, Z., Rebischung, P., Métivier, L., & Collilieux, X. (2016). ITRF2014: A New Release of the International Terrestrial Reference Frame Modeling Nonlinear Station Motions, J. Geophys. Res. Solid Earth, 121. doi:10.1002/2016JB013098CrossRefGoogle Scholar
Appleby, G., Rodriguez, J., Altamimi, Z. (2016). Assessment of the Accuracy of Global Geodetic Satellite Laser Ranging Observations and Estimated Impact on ITRF Scale: Estimation of Systematic Errors in LAGEOS Observations 1993–2014, J. Geodesy, 90, 13711388.CrossRefGoogle Scholar
Barnes, R. T. H., Hide, R., White, A. A., & Wilson, C. A. (1983). Atmospheric Angular Momentum Fluctuations, Length-of-Day Changes and Polar Motion. Proceedings of the Royal Society of London Series A, 387, 3173.CrossRefGoogle Scholar
Blossfeld, M., Seitz, M., Angermann, D., & Moreaux, G. (2016). Quality Assessment of IDS Contribution to ITRF2014 Performed by DGFI-TUM. Advances in Space Research, 58, 25052519.CrossRefGoogle Scholar
Bloxham, J., Zatman, S., & Dumberry, M. (2002). The Origin of Geomagnetic Jerks. Nature, 420, 6568.CrossRefGoogle ScholarPubMed
Carter, W. E. & Robertson, D. S. (1986). Studying the Earth by Very-Long-Baseline Interferometry, Sci. Am., 255, 4452.CrossRefGoogle Scholar
Carter, W. E., Robertson, D. S., & Fallon, F. W. (1989). Polar Motion and UT1 Time Series Derived from VLBI Observations. IERS Tech. Notes, No. 2, 3539.Google Scholar
Chen, J. L., Wilson, C. R., Ries, J. C., & Tapley, B. D. (2013). Rapid Ice Melting Drives Earth’s Pole to the East. Geophys. Res. Let., 40, 26252630. doi:10.1002/grl.50552CrossRefGoogle Scholar
Chulliat, A. & Maus, S. (2013). Geomagnetic Secular Acceleration, Jerks, and a Localized Standing Wave at the Core Surface from 2000 to 2010. J. of Geophysical Research: Solid Earth, 10.1002/2013 JB010604.
Dickman, S. R.(2003). Evaluation of “Effective Angular Momentum Function” Formulations with Respect to Core–Mantle Coupling. J. Geophys. Res., 108(B3), 2150. doi:10.1029/2001JB001603CrossRefGoogle Scholar
Dill, R., Dobslaw, H., & Thomas, M. (2013). Combination of Modeled Short-Term Angular Momentum Function Forecasts from Atmosphere, Ocean, and Hydrology with 90-Day EOP Predictions. Journal of Geodesy, 87, 567577.CrossRefGoogle Scholar
Dumberry, M. & Bloxham, J. (2006). Azimuthal Flows in the Earth’s Core and Changes in Length of Day at Millennial Timescales. Geophys. J. Int. 165, 3246. doi:10.1111/j.1365-246X.2006.02903.xCrossRefGoogle Scholar
Fey, A., Gordon, D., & Jacobs, C., eds. (2009). The Second Realization of the International Celestial Reference Frame by Very Long Baseline Interferometry, Presented on Behalf of the IERS/IVS Working Group. In (IERS Technical Note 35). Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie.Google Scholar
Gokhberg, M. B., Olshanskaya, E. V., Chkhetiani, O. G., Shalimov, S. L., & Barsukov, O. M. (2016). Correlation between Large Scale Motions in the Liquid Core of the Earth and Geomagnetic Jerks, Earthquakes, and Variations in the Earth’s Length of Day. Doklady Earth Sciences, 467, 280283.CrossRefGoogle Scholar
Gordon, D. (2016). Impact of the VLBA on Reference Frames and Earth Orientation Studies. J. Geodesy. doi:10.1007/s00190-016–0955–0CrossRef
Gross, R. S. (2012). Improving UT1 Predictions Using Short-Term Forecasts of Atmospheric, Oceanic, and Hydrologic Angular Momentum. In Schuh, H., Boehm, S., Nilsson, T., & Capitaine, N., eds., Journées Systèmes de Référence Spatio-temporels 2011. Vienna: Vienna University of Technology, pp. 117120.Google Scholar
Gurtner, W., Noomen, R., & Pearlman, M. R. (2005). The International Laser Ranging Service: Current Status and Future Developments. Advances in Space Research, 36, 327332.CrossRefGoogle Scholar
Hide, R., Birch, N. T., Morrison, L. V., Shea, D. J., & White, A. A. (1980). Atmospheric Angular Momentum Fluctuations and Changes in the Length of the Day. Nature, 286, 114117.CrossRefGoogle Scholar
Hide, R., Boggs, D. H., & Dickey, J. O. (2000). Angular Momentum Fluctuations within the Earth’s Liquid Core and Torsional Oscillations of the Core–Mantle System. Geophys. J. Int. 143, 777786. doi:10.1046/j.0956-540X.2000.01283.xCrossRefGoogle Scholar
Hide, R. & Dickey, J. O. (1991). Earth’s Variable Rotation. Science 253, 629637. doi:10.1126/science.253.5020.629CrossRefGoogle ScholarPubMed
Holme, R. T. & de Viron, O. (2013). Probing Geomagnetic Jerks Combining Geomagnetic and Earth Rotation Observations. American Geophysical Union, Fall Meeting, #GP52A01.
Johnston, K. J. (1979). The Application of Radio Interferometric Techniques to the Determination of Earth Rotation. In McCarthy, D. D. & Pilkington, J. D., eds., Time and the Earth’s Rotation. Dordrecht: Reidel, pp. 183190.CrossRefGoogle Scholar
Kehm, A., Blossfeld, M., & Pavlis, E. C. (2016). Future Global SLR Network Evolution and Its Impact on the Terrestrial Reference Frame. Geophysical Research Abstracts, 18, EGU20165848.Google Scholar
Kotze, P. B. (2017). The 2014 Geomagnetic Jerk as Observed by Southern African Magnetic Observatories. Earth, Planets, and Space, 69(17). doi:10.1186/s40623-017–0605–7.CrossRefGoogle Scholar
Koot, L., De Viron, O., & Dehant, V. (2006). Atmospheric Angular Momentum Time-Series: Characterization of Their Internal Noise and Creation of a Combined Series. J. Geodesy, 79, 663674.CrossRefGoogle Scholar
Kouba, J., Beutler, G., & Rothacher, M. (2000). IGS Combined and Contributed Earth Rotation Parameter Solutions. In Dick, S., McCarthy, D., & Luzum, B., eds., Polar Motion: Historical and Scientific Problems. ASP Conference Series, Vol. 208, also IAU Colloquium #178. San Francisco, CA: ASP, pp. 277.Google Scholar
Krasna, H., Malkin, Z., & Bohm, J. (2015). Non-Linear VLBI Station Motions and Their Impact on the Celestial Reference Frame and Earth Orientation Parameters. J. Geodesy, 89, 10191033.CrossRefGoogle ScholarPubMed
Lambeck, K. (1980). The Earth’s Variable Rotation. Cambridge: Cambridge University Press.Google Scholar
Malkin, Z. (2013). Free Core Nutation and Geomagnetic Jerks. J. Geodynamics, 72, 5358.CrossRefGoogle Scholar
Malkin, Z. (2016). Free Core Nutation: New Large Disturbance and Connection Evidence with Geomagnetic Jerks. arXiv:1603.03176v1.
Miyagoshi, T. & Hamano, Y. (2013). Magnetic Field Variation Caused by Rotational Speed Change in a Magnetohydrodynamic Dynamo. Phys. Rev. Lett. 111, 124501. doi:10.1103/Phys Rev Lett.111.124501CrossRefGoogle Scholar
Moreaux, G., Lemoine, F. G., Capdeville, H., Kuzin, S., Otten, M., Štěpánek, P., Willis, P., & Ferrage, P. (2016). The International DORIS Service Contribution to the 2014 Realization of the International Terrestrial Reference Frame. Advances in Space Research, 58, 24792504.CrossRefGoogle Scholar
Nilsson, T., Heinkelmann, R., Karbon, M. R., Raposo-Pulido, V., Soja, B., & Schuh, H. (2014). Earth Orientation Parameters Estimated from VLBI during the CONT11 Campaign. J. Geodesy, 88, 491502.CrossRefGoogle Scholar
Panafidina, N., Kurdubov, S., & Rothacher, M. (2012). Empirical Model of Subdaily Variations in the Earth Rotation from GPS and Its Stability. In Schuh, H., Boehm, S., Nilsson, T., & Capitaine, N., eds., Journées Systèmes de Référence Spatio-temporels 2011. Vienna: Vienna University of Technology, pp. 148151.Google Scholar
Petit, G. P. & Luzum, B. J., eds. (2010). IERS Conventions (2010) (IERS Technical Note 36). Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie.Google Scholar
Petrachenko, W., Behrend, D., Hase, H, Ma, C., Niell, A., Schuh, H., & Whitney, A. (2013). The VLBI2010 Global Observing System (VGOS). Geophysical Research Abstracts, 15, EGU201312867.Google Scholar
Puica, M., Dehant, V., Folgueira, M., Trinh, A., & van Hoolst, T. (2015). Topographic Coupling at Core–Mantle Boundary in Rotation and Orientation Changes of the Earth. Geophysical Research Abstracts, 17, EGU2015-13930–1.Google Scholar
Rothacher, M. (1999). The Contribution of GPS Measurements to Earth Rotation Studies. In Journées 1998: Systèmes de référence spatio-temporels: Conceptual, Conventional and Practical Studies Related to Earth Rotation. Paris: Observatoire de Paris, France. Département d‘Astronomie Fondamentale, pp. 239247.Google Scholar
Schlüter, W. & Behrend, D. (2007). The International VLBI Service for Geodesy and Astrometry (IVS): Current Capabilities and Future Prospects. J. Geodesy, 81, 379387.CrossRefGoogle Scholar
Schutz, B. E., Tapley, B. D., Eanes, R. J., & Watkins, M. M. (1989). Earth Rotation from LAGEOS Laser Ranging. IERS Tech. Notes, No. 2, 5357.Google Scholar
Sosnica, K., Thaller, D., Dach, R., Steigenberger, P., Beutler, G., Arnold, D., & Jäggi, A. (2015). Satellite Laser Ranging to GPS and GLONASS. J. Geodesy, 89, 725743.CrossRefGoogle Scholar
Tavernier, G., Fagard, H., Feissel-Vernier, M., Lemoine, F., … Willis, P. (2005). The International DORIS Service. Advances in Space Research, 36, 333341.CrossRefGoogle Scholar
Vondrak, J. & Ron, C. (2014). Geophysical Excitation of Nutation and Geomagnetic Jerks. Geophysical Research Abstracts, 16, EGU20145691.Google Scholar
Vondrak, J. & Ron, C. (2015). Earth Orientation and Its Excitations by Atmosphere, Oceans, and Geomagnetic Jerks. Serb. Astron. J., 191, 5966.CrossRefGoogle Scholar
Vondrak, J., Ron, C., & Stefka, V. (2009). New Solution of Earth Orientation Parameters in 20th Century. Highlights of Astronomy, 15, XXVIIth IAU General Assembly, Corbett, I. F., editor.Google Scholar
Wielgosz, A., Tercjak, M., & Brzezinski, A. (2016). Testing Impact of the Strategy of VLBI Data Analysis on the Estimation of Earth Orientation Parameters and Station Coordinates. Reports on Geodesy and Geoinformatics, 101, 115.CrossRefGoogle Scholar
Yoshida, S. & Hamano, Y. (1995). Geomagnetic Decadal Variations Caused by Length-of-Day Variation. Phys. Earth Planet. Int. 91, 117129. doi:10.1016/0031–9201(95)03038-XCrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×