Skip to main content Accessibility help
×
Home
Hostname: page-component-558cb97cc8-rx7pk Total loading time: 1.117 Render date: 2022-10-06T21:50:33.226Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": true, "useSa": true } hasContentIssue true

3 - Ephemerides

Published online by Cambridge University Press:  01 October 2018

Dennis D. McCarthy
Affiliation:
United States Naval Observatory
P. Kenneth Seidelmann
Affiliation:
University of Virginia
Get access

Summary

Ephemerides, the plural of ephemeris, are tables of positions of moving celestial bodies. By entering tables for the Sun, Moon, or planets with a specific date and performing arithmetical operations, the location of the body for the date can be determined. The timescales for the tables are the independent variables and should be uniform in rate. There is a long history of tables and theories for the solar system bodies. The motion of the Moon is the most complicated, due to its rapid motion and closeness to the Earth. Punched card equipment made it possible to compute ephemerides from the tables by machine, and computers made numerical integration of ephemerides more rapid and accurate. Historically, optical observations were used to produce ephemerides, but now radar, laser-ranging data, and spacecraft observations provide more accuracy. Reference systems have progressed from catalogs of nearby moving optical stars to the International Celestial Reference System (ICRS), which is based on observations of distant radio sources. Astronomical constants have been updated as observational accuracy improved and general relativistic concepts were developed.
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown, E. W. (1896). An Introductory Treatise on the Lunar Theory. Cambridge, UK: Cambridge University Press, and (1960) New York, NY: Dover Publications.Google Scholar
Brown, E. W. (18971908). Theory of the Motion of the Moon: Containing a New Calculation of the Expressions for the Coordinates of the Moon in Terms of the Time. Memoirs of the Royal Astronomical Society, 53, 39116, 163202; 54, 163; 57, 51145; 59, 1103.Google Scholar
Brown, E. W. (1914). Cosmic Physics. Science, 40, 389401.CrossRefGoogle Scholar
Brumfiel, G. (2012). The Astronomical Unit Gets Fixed. Nature News, Macmillan Publishers Lmt., September 14.Google Scholar
Capitaine, N. (2012). Toward an IAU Resolution for the Re-definition of the Astronomical Unit of Length. In Schuh, H., Boehm, S., Nilsson, T., & Capitaine, N., eds., Proceedings of the Journees 2011 Systemes de reference spatio-temporels. Vienna: Vienna University of Technology.Google Scholar
Capitaine, N., Guinot, B., & Klioner, S. A. (2010). Proposal for the Re-Definition of the Astronomical Unit of Length through a Fixed Relation to the SI Metre. In Capitaine, N., ed., Proceedings of the Journees 2010 Systemes de reference spatio-temporels. Paris: Observatoire de Paris, pp. 2023.Google Scholar
Capitaine, N., Klioner, S., & McCarthy, D. D. (2012). The Re-Definition of the Astronomical Unit of Length: Reasons and Consequences. IAU Joint Discussion 7: Space-Time Reference Systems for Future Research at IAU General Assembly-Beijing. Online at http://referencesystems.info/iau-joint-discussion-7.html.
Chabas, J. & Goldstein, B. R. (2003). The Alfonsine Tables of Toledo. Dordrecht: Springer.CrossRefGoogle Scholar
Clemence, G. M. (1943). The Motion of Mercury, 1765–1937. Astronomical Papers of the American Ephemeris and Nautical Almanac, vol. XI. Washington, DC: US Government Printing Office.Google Scholar
Comrie, L. J. (1925). The Application of Calculating Machines to Astronomical Computing. Popular Astronomy, 33, 14.Google Scholar
Cook, A. (1988). The Motion of the Moon. Bristol, UK, and Philadelphia, PA: Adam Hilger.Google Scholar
Cook, A. (1998). Edmond Halley, Charting the Heavens and the Seas. Oxford: Clarendon Press.Google Scholar
Curry, P. (2004). Streete, Thomas (1621–1689). In Oxford Dictionary of National Biography. Oxford: Oxford University.Google Scholar
Delaunay, C.-E. (1846). Mémoire sur une Méthode nouvelle pour la détermination du mouvement de la Lune. Comptes rendus hebdomadaires des séances de l’Académie des sciences, 22, 3237.Google Scholar
Delaunay, C.-E. (1860). Théorie du mouvement de la Lune, premier volume. Mémoires de l’Académie des Sciences, 28.Google Scholar
Delaunay, C.-E. (1866). Conference sur l’astronomie et en particulier sur le ralentissement du mouvement de rotation de la terre. Paris: G. Bailliere.Google Scholar
Delaunay, C.-E. (1867). Théorie du mouvement de la Lune, deuxième volume. Mémoires de l’Académie des Sciences, 29.Google Scholar
Dick, S. (1999). History of the American Nautical Almanac Office, The Eckert and Clemence Years, 1940–1958. In Fiala, A. D. and Dick, S. J., eds., Proceedings, Nautical Almanac Office Sesquicentennial Symposium. Washington, DC: US Naval Observatory, pp. 3546.Google Scholar
Dreyer, J. L. E. (1953). The History of Astronomy from Thales to Kepler. Dover Publications.Google Scholar
Dubbey, J. M. (1978). The Mathematical Work of Charles Babbage. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Duncombe, R. L. (1958). The Motion of Venus, 1750–1949. Astronomical Papers of the American Ephemeris and Nautical Almanac, vol. XVI. Washington, DC: US Government Printing Office.Google Scholar
Dunkin, E. (1898a). Notes on some Points connected with the Early History of the ‘Nautical Almanac’, The Observatory, 21, 4953, 123127.Google Scholar
Dunkin, E. (1898b). Some further Notes on some Points connected with the Early History of the ‘Nautical Almanac’, The Observatory, 21, 165168.Google Scholar
Dunnington, G. W., Gray, J., & Dohse, F.-E. (2004). Carl Friedrich Gauss, Titan of Science. Washington, DC: American Mathematical Association.Google Scholar
Eckert, W. J., Brouwer, D., & Clemence, G. M. (1951). Coordinates of the Five Outer Planets. Astronomical Papers of the American Ephemeris and Nautical Almanac, vol. XII. Washington, DC: US Government Printing Office.Google Scholar
Eichhorn, H. (1974). Astronomy of Star Positions. New York, NY: Frederick Ungar Publishing Company.Google Scholar
Euler, L. (1753). Theoria Motus Lunae exhibens omnes eius inaequalitates. St. Petersburg: Academiae Imperialis Scientiarum.Google Scholar
Explanatory Supplement to The Astronomical Ephemeris and The American Ephemeris and Nautical Almanac (1961). London: Her Majesty’s Stationery Office.
Explanatory Supplement to the Astronomical Almanac (1992). Seidelmann, P. K., ed. Mill Valley, CA: University Science Books.Google Scholar
Explanatory Supplement to the Astronomical Almanac (2012). Urban, S. E. & Seidelmann, P. K., eds. Mill Valley, CA: University Science Books.Google Scholar
Fienga, A., Manche, H., Laskar, J., Gastineau, M., & Verma, A. (2015). INPOP new Release INPOP13b, reprint arXiv:1405.0484v2.
Folkner, W. M., Williams, J. G., Boggs, D. H., Park, R. S., & Kuchynka, P. (2014). The Planetary and Lunar Ephemerides DE430 and DE431. The Interplanetary Network Progress Report. 42196, pp. 181.
Forbes, E. G. (1980). Tobias Mayer (1723–1762), Pioneer of Enlightened Science in Germany. Gottingen: Vandenhoech & Ruprecht.Google Scholar
Fricke, W., Kopff, A., Gliese, W., et al. (1963). Fourth Fundamental Catalogue and Supplement, Veröff. Astron. Rechen-Inst., Heidelberg, 10, 11.Google Scholar
Fricke, W., Schwan, H., Lederle, T., et al. (1988). Fifth Fundamental Catalogue (FK5). Part I. The Basic Fundamental Stars, Veröff. Astron. Rechen-Inst. Heidelberg, 32, 1106.Google Scholar
Gauss, C. F. (1809). Theoria motus corporum coelestium in sectionibus conicis solem ambientium [Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections]. Dover Publications, 2004.Google Scholar
Gingerich, O. (1973). The Role of Erasmus Reinhold and the Prutenic Tables in the Dissemination of Copernican Theory. Studia Copernicana, 6, 4362.Google Scholar
Gingerich, O. (1997). Astronomical Tables and Ephemerides. In Lankford, J., ed., History of Astronomy: An Encyclopedia, pp. 505508.
Gingerich, O. (2007). Gutenburg’s Gift, Library and Information Services in Astronomy V, Common Challenges, Uncommon Solutions, ASP Conference Series, Ricketts, S., Birdie, C. and Isaksson, E., eds., 377, 319328.Google Scholar
Gingerich, O. & Welther, B. L. (1983). Planetary, Lunar, and Solar Positions, New and Full Moons, A.D. 1650–1805. American Philosophical Society, Memoirs Series, 59.Google Scholar
Goldstine, H. H. (1993). The Computer from Pascal to von Neumann. Princeton, NJ: Princeton University Press, pp. 2728.Google Scholar
Gregory, D. (1972). Astronomiae Physicae at Geometricae Elementa 1702, with “Lunae Theoria Newtoniana” on pp. 332–336; reprinted 1726; translated as The Elements of Physical and Geometrical Astronomy 1715, 2nd Edition 1726, 2 vols., with TMM on pp. 563–571; facsimile reprint (Sources of Science, no. 119), New York and London: Johnson. Reprint.Google Scholar
Gurfil, P. & Seidelmann, P. K. (2016). Celestial Mechanics and Astrodynamics: Theory and Practice. Springer.CrossRefGoogle Scholar
Halley, E. (1693). Emendationes ac Notae in vetustas Albatenii Observationes Astronomicas cum restitutione Tabularum Lunisolarium ejusdem Authoris. Phil. Trans. Roy. Soc., 17, 913.CrossRefGoogle Scholar
Halley, E. (1749). Tabulae Astronomicae. Bevis, J., ed. London.Google Scholar
Hansen, P. (1857). Tables De La Lune, Construites D’après La Principe Newtonien De La Gravitation Universelle. London: G. E. Eyre and G. Spottiswoode.Google Scholar
Henrard, J. (1973). L’éphéméride analytique lunaire – ALE, Ciel et Terre, 89, 1.Google Scholar
Hilton, J. L., Capitaine, N., Chapront, J., et al. (2006). Report of the International Astronomical Union Division I Working Group on Precession and the Ecliptic. Celest. Mech. & Dyn. Astron., 94, 351367.CrossRefGoogle Scholar
IERS Conventions 2010 (2010). Petit, G. and Luzum, B. J., eds. Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie.Google Scholar
Improved Lunar Ephemeris, 1952–1959: A Joint Supplement to the American Ephemeris and the (British) Nautical Almanac (1954). Washington, DC: US Government Printing Office.
Jackson, E. S. (1974). A Discussion of the Observations of Neptune 1846–1970. Astronomical Papers of the American Ephemeris and Nautical Almanac, vol. XXII, no. II. Washington, DC: US Government Printing Office.Google Scholar
Khan, M. S. (1977). Āryabhata I and Al-Bīrunī. Indian J. Hist. Sci., 12, 237.Google Scholar
Klioner, S. A. (2008). Relativistic Scaling of Astronomical Quantities and the System of Astronomical Units. Astronomy & Astrophysics, 478, 951958.CrossRefGoogle Scholar
Kollerstrom, N. & Yallop, B. (1995). Flamsteed’s Lunar Data 1692–5, Sent to Newton. Journal for the History of Astronomy, 26, 237246.CrossRefGoogle Scholar
Kovalevsky, J. (1977). Lunar Orbital Theory. Phil. Trans. Roy. Soc. London. A. 284, 565571.CrossRefGoogle Scholar
Lalande, J.(1792). Traité d’astronomie, vol. 1. Paris: Desaint.Google Scholar
Laplace, P.-S. (1786). Sur l’équation séculaire de la Lune. Mém Acad Roy Sci, 235.
Laubscher, R. E. (1981). The Motion of Mars 1751–1969. Astronomical Papers of the American Ephemeris and Nautical Almanac, vol. XXII, no. IV. Washington, DC: US Government Printing Office.Google Scholar
Lequeux, J. (2013). Le Verrier: Magnificent and Detestable Astronomer, W. Sheehan translator. Springer.CrossRefGoogle Scholar
Lewis, T. (1898). Almanacs, The Observatory, 21, 299305, 327334.Google Scholar
Mayer, T. (1753). Novae Tabulae Motuum Solis et Lunae. In Commentarii Societatis Regiae Scientiarum Gottingensis, vol. II. Göttingen.Google Scholar
Mignard, F., Klioner, S., Lindegren, L. et al. (2016). Gaia Data Release 1: The Reference Frame and the Optical Properties of ICRF Sources. Astronomy & Astrophysics, 595 Eprint: arXiv:1609.07255.CrossRefGoogle Scholar
Mulholland, J. D. (1969). Numerical Studies of Lunar Motion. Nature, 223, 247249.CrossRefGoogle Scholar
Mulholland, J. D. (1972). Numerical Isolation of Flaws in the Lunar Theory. Celestial Mechanics, 6, 242246.CrossRefGoogle Scholar
Neugebauer, O. (1969). The Exact Sciences in Antiquity. Mineola, NY: Dover Publications.Google Scholar
Newcomb, S. (1876). Investigation of Corrections to Hansen’s Tables of the Moon, with Tables for Their Application. Washington, DC: US Government Printing Office.Google Scholar
Newcomb, S. (1895). The Elements of the Four Inner Planets and the Fundamental Constants of Astronomy. Washington, DC: US Government Printing Office.Google Scholar
Newcomb, S. (1898). Tables of the Motion of the Earth on Its Axis and around the Sun. Astronomical Papers of the American Ephemeris and Nautical Almanac, vol. VI, no. I. Washington, DC: US Government Printing Office.Google Scholar
Newton, I. (1999). The Principia: Mathematical Principles of Natural Philosophy, Cohen, I. B., Whitman, A. translators. University of California Press.Google Scholar
Pitjeva, E. V. & Pitjev, N. P. (2013). Relativistic Effects and Dark Matter in the Solar System from Observations of Planets and Spacecraft, Monthly Not. Roy. Astron. Soc., 432(4), 34313437.CrossRefGoogle Scholar
Pitjeva, E. V. & Standish, E. M. (2009). Proposals for the Masses of the Three Largest Asteroids, the Moon-Earth Mass Ratio and the Astronomical Unit. Celest. Mech. & Dyn. Astr, 103, 365372.CrossRefGoogle Scholar
Pontecoulant, G. de (1840). Traité élémentaire de physique céleste, ou précis d’astronomie théorique et pratique, servant d’introduction à l’étude de cette science. Paris: Carillan-Goeury.Google Scholar
Ross, F. E. (1917). New Elements of Mars and Tables for Correcting the Heliocentric Positions Derived from Astronomical Papers, Vol VI, Part IV. Astronomical Papers of the American Ephemeris and Nautical Almanac, vol. IX. Washington, DC: US Government Printing Office.Google Scholar
Russell, J. L. (1964). Kepler’s Laws of Planetary Motion: 1609–1666. British Journal for the History of Science, 2, 124.CrossRefGoogle Scholar
Saliba, G. (2002). Greek Astronomy and the Medieval Arabic Tradition. American Scientist, 90, 360.CrossRefGoogle Scholar
Seidelmann, P. K. (1976). Celestial Mechanics. In Belzer, J., Holzman, A. G., & Kent, A., eds., Encyclopedia of Computer Science and Technology, vol. 4. New York, NY, and Basel: Marcel Dekker, Inc.Google Scholar
Sharma, M. L. (1977). Āryabhata’s Contribution to Indian Astronomy. Indian J. Hist. Sci., 12, 90.Google Scholar
Standish, E. M. & Williams, J. G. (2009). Orbital Ephemerides of the Sun, Moon, and Planets. In Urban, S. E. & Seidelmann, P. K. eds., Explanatory Supplement to the Astronomical Almanac. Mill Valley, CA: University Science Books, pp. 305346.Google Scholar
Supplement to the A. E. 1968. (1966). HMNAO, Royal Greenwich Observatory and NAO, US Naval Observatory, Sussex, England and Washington DC, USA.
Streete, T. (1661). Astronomia Carolina. A New Theorie of the Coelestial Motions. London: R. Smith and S. Briscoe.Google Scholar
Szebehely, V. G. & Mark, H. (1998). Adventures in Celestial Mechanics. New York, NY: John Wiley & Sons.CrossRefGoogle Scholar
Tagliaferri, G. & Tucci, P. (2003). The Dispute between Carlini-Plana and Laplace on the Theory of the Moon. Springer, 427441.Google Scholar
Toomer, G. J. (1998). Ptolemy’s Almagest. Princeton, NJ: Princeton University Press.Google Scholar
Trans. IAU. 2015, XXVIIIB, pp. 3537.
Turyshev, S. G., Williams, J. G., Nordtvedt, K. Jr., et al. (2004). Years of Testing Relativistic Gravity: Where Do We Go from Here? Lecture Notes in Physics, 648, 311330.CrossRefGoogle Scholar
Will, C. M. (1974). Experimental Gravitation, Bertotti, B., ed. New York, NY: Academic Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Ephemerides
  • Dennis D. McCarthy, United States Naval Observatory, P. Kenneth Seidelmann, University of Virginia
  • Book: Time: From Earth Rotation to Atomic Physics
  • Online publication: 01 October 2018
  • Chapter DOI: https://doi.org/10.1017/9781108178365.004
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Ephemerides
  • Dennis D. McCarthy, United States Naval Observatory, P. Kenneth Seidelmann, University of Virginia
  • Book: Time: From Earth Rotation to Atomic Physics
  • Online publication: 01 October 2018
  • Chapter DOI: https://doi.org/10.1017/9781108178365.004
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Ephemerides
  • Dennis D. McCarthy, United States Naval Observatory, P. Kenneth Seidelmann, University of Virginia
  • Book: Time: From Earth Rotation to Atomic Physics
  • Online publication: 01 October 2018
  • Chapter DOI: https://doi.org/10.1017/9781108178365.004
Available formats
×