Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-09-30T11:21:36.711Z Has data issue: false hasContentIssue false

14 - Role of syn-orogenic burial and/or uplift and erosion in thermal regimes

Published online by Cambridge University Press:  23 December 2009

Michal Nemcok
Affiliation:
University of Utah
Steven Schamel
Affiliation:
University of Utah
Rod Gayer
Affiliation:
Cardiff University
Get access

Summary

The evolution of the overburden affects the thermal structure (Table 14.1) and numerous other factors important to a petroleum system during the development of a thrustbelt. In the case of increasing burial, the underlying sediments subside to greater depths with higher temperatures (Fig. 14.1a). In the case of erosion, the underlying sediments are uplifted to shallower depths with lower temperatures.Whether subsidence or uplift occurs depends on depositional rates and erosional rates specific for different environments.

Because the interplay of deposition and erosion in thrustbelts is complex, this discussion will start by investigating their impact on the thermal structure in simple settings, which have equal depositional or erosional rates over large areas before moving progressively to thrustbelt settings.

Role of deposition on thermal regimes

Assuming no erosion, deposition depresses the heat flow, and the depression persists long after sedimentation ceases (De Bremaeker, 1983; Ungerer et al., 1990). The magnitude of the depression depends on the thermal conductivity of the sediments deposited and the rate and duration of deposition (e.g., Jessop and Majorowicz, 1994; Yalcin et al., 1997).

Insight into the effects of deposition, compaction and related pore fluid movement on the thermal regime in tectonically simple oceanic and deep marginal basins (Hutchison, 1985) allows representation of the sediment system by a two-layer model in which horizontal dimensions extend to infinity (Fig. 14.2a). It allows the application of a simplified one-dimensional solution for vertical heat flow.

Type
Chapter
Information
Thrustbelts
Structural Architecture, Thermal Regimes and Petroleum Systems
, pp. 298 - 314
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×