Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-30T13:17:16.200Z Has data issue: false hasContentIssue false

3 - Mechanics of thrust sheets

Published online by Cambridge University Press:  23 December 2009

Michal Nemcok
Affiliation:
University of Utah
Steven Schamel
Affiliation:
University of Utah
Rod Gayer
Affiliation:
Cardiff University
Get access

Summary

Folding/faulting interaction in thrust sheet development

Folding and faulting in thrustbelts are interdependent and/or competing processes that have been described in terms of models of fold–thrust interaction (e.g., Berger and Johnson, 1982; Suppe, 1983; Williams and Chapman, 1983; Suppe and Medwedeff, 1984; Jamison, 1987). Over the past decade, several quantitative geometric models, described later, have been developed for thin-skin thrustbelts providing specific relationships between the fault and fold geometries, such as faultbend, fault-propagation and detachment folding (Suppe, 1983; Suppe and Medwedeff, 1984; Jamison, 1987; Chester and Chester, 1990; Erslev, 1991; Epard and Groshong, 1995). In general, these geometric models are based on line-length or area balancing and assume kink-type or tri-shear folding, where flexural slip is the dominant deformation mechanism. Some models have been expanded by adding localized thickening or thinning within the fold, translation along imbricate thrust faults or over ramps, and progressive changes in fold geometry with displacement (e.g., Jamison, 1987; Mitra, 1990, 2002; Suppe and Medwedeff, 1990; Erslev, 1991; Erslev and Mayborn, 1997; Hardy and Ford, 1997; Almendinger, 1998). The models provide guidelines for seismic interpretation and construction of balanced cross sections. They have become valuable tools for defining trap geometry in the subsurface (e.g., Suppe and Namson, 1979; Mitra, 1986; Namson and Davis, 1988; Mount et al., 1990). Because of their geometric basis, however, the models do not allow one to determine why, when, and where a particular process, such as imbrication or detachment, occurs. Neither do they allow the determination of the exact geometrical response of the deforming section, which is unique for each mechanical stratigraphy and character of the faults involved.

Type
Chapter
Information
Thrustbelts
Structural Architecture, Thermal Regimes and Petroleum Systems
, pp. 46 - 57
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×