Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-25T02:46:42.499Z Has data issue: false hasContentIssue false

20 - Neurorehabilitation

from Section IV - Therapeutic strategies and neurorehabilitation

Published online by Cambridge University Press:  05 May 2010

Michael Brainin
Affiliation:
Zentrum für Klinische Neurowissenschaften, Donnau-Universität, Krems, Austria
Wolf-Dieter Heiss
Affiliation:
Universität zu Köln
Get access

Summary

Introduction and overview

Stroke is one of the most common causes of long-term disability in adults, especially in elderly people. Although progress in the acute treatment of stroke (e.g. thrombolysis, the concept of stroke units) has occurred over recent years, neurorehabilitation (mainly organized inpatient multidisciplinary rehabilitation) remains one of the cornerstones of stroke treatment. The overall benefit of stroke units results not only from thrombolysis – only a small proportion of all stroke patients (less than 10%) are treated with this regimen – but more generally from the multidisciplinary stroke unit management, including treatment optimization, minimization of complications, and elements of early neurorehabilitation [1, 2].

After the acute treatment, stroke patients with relevant neurological deficits should in general be treated by a specialized neurorehabilitation clinic or unit. The best timing for transferring a patient after initial treatment (e.g. on a stroke unit) to a specialized neurorehabilitation ward or clinic is still under discussion, but early initiation of rehabilitation is mandatory for outcome optimization (whereas ultra-early high-intensity training in the first hours to few days might be problematic).

Neurorehabilitation nowadays is considered as a multidisciplinary and multimodal concept to help neurological patients to improve physiological functioning, activity and participation by creating learning situations, inducing several means of recovery including restitution, functional remodeling, compensation and reconditioning [1]. A key point in successfully diminishing negative long-term effects after stroke and achieving recovery is the work of a specialized multidisciplinary team (physicians, nursing staff, therapists, others) with structured organization and processes and the stroke patient taking part in a multimodal, intense treatment program which is well adapted in detail to the individual goals of rehabilitation and deficits.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beer, S, Clarke, S, Diserens, K, Engelter, S, Müri, R, Schnider, A, et al. Neurorehabilitation nach Hirnschlag. Schweiz Med Forum 2007; 7:294–7.Google Scholar
Warlow, C, Sudlow, C, Dennis, M, Wardlaw, J, Sandercock, P. Stroke. Lancet 2003; 362(9391):1211–24.CrossRefGoogle ScholarPubMed
Duncan, PW, Zorowitz, R, Bates, B, Choi, JY, Glasberg, JJ, Graham, GD, et al. Management of Adult Stroke Rehabilitation Care: a clinical practice guideline. Stroke 2005; 36(9):e100–43.CrossRefGoogle ScholarPubMed
Cajal, R. Degeneration and Regeneration of The Nervous System. London: Oxford University Press; 1928.Google Scholar
Foerster, O. Übungstherapie InHandbuch der Neurologie, Vol. 8. Berlin: Julius Springer; 1936.Google Scholar
Kesselring, J. Neurorehabilitation: a bridge between basic science and clinical practice. Eur J Neurol 2001; 8(3):221–5.CrossRefGoogle ScholarPubMed
Nelles, G. Neuronale Plastizität. InNelles, G, ed. Neurologische Rehabilitation. Stuttgart: Thieme; 2004:1–13.Google Scholar
Hebb, . The Organisation of Behavior: a neuropsychological approach. New York: Wiley; 1949.Google Scholar
Duffau, H. Brain plasticity: from pathophysiological mechanisms to therapeutic applications. J Clin Neurosci 2006; 13(9):885–97.CrossRefGoogle ScholarPubMed
Nudo, RJ. Mechanisms for recovery of motor function following cortical damage. Curr Opin Neurobiol 2006; 16(6):638–44.CrossRefGoogle ScholarPubMed
Ward, NS. Future perspectives in functional neuroimaging in stroke recovery. Eura Medicophys 2007; 43(2):285–94.Google ScholarPubMed
Nudo, RJ, Milliken, GW. Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J Neurophysiol 1996; 75(5):2144–9.CrossRefGoogle ScholarPubMed
Nudo, RJ, Milliken, GW, Jenkins, WM, Merzenich, MM. Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J Neurosci 1996; 16(2):785–807.CrossRefGoogle ScholarPubMed
Liepert, J, Graef, S, Uhde, I, Leidner, O, Weiller, C. Training-induced changes of motor cortex representations in stroke patients. Acta Neurol Scand 2000; 101(5):321–6.CrossRefGoogle ScholarPubMed
Jaillard, A, Martin, CD, Garambois, K, Lebas, JF, Hommel, M. Vicarious function within the human primary motor cortex? A longitudinal fMRI stroke study. Brain 2005; 128(Pt 5):1122–38.CrossRefGoogle ScholarPubMed
Ward, NS, Cohen, LG. Mechanisms underlying recovery of motor function after stroke. Arch Neurol 2004; 61(12):1844–8.CrossRefGoogle ScholarPubMed
Ward, NS, Brown, MM, Thompson, AJ, Frackowiak, RS. Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain 2003; 126(Pt 11):2476–96.CrossRefGoogle ScholarPubMed
Calautti, C, Baron, JC. Functional neuroimaging studies of motor recovery after stroke in adults: a review. Stroke 2003; 34(6):1553–66.CrossRefGoogle ScholarPubMed
Ward, NS, Brown, MM, Thompson, AJ, Frackowiak, RS. Neural correlates of outcome after stroke: a cross-sectional fMRI study. Brain 2003; 126(Pt 6):1430–48.CrossRefGoogle ScholarPubMed
Biernaskie, J, Chernenko, G, Corbett, D. Efficacy of rehabilitative experience declines with time after focal ischemic brain injury. J Neurosci 2004; 24(5):1245–54.CrossRefGoogle ScholarPubMed
Griesbach, GS, Hovda, DA, Molteni, R, Wu, A, Gomez-Pinilla, F. Voluntary exercise following traumatic brain injury: brain-derived neurotrophic factor upregulation and recovery of function. Neuroscience 2004; 125(1):129–39.CrossRefGoogle ScholarPubMed
Wall, PD, Egger, MD. Formation of new connexions in adult rat brains after partial deafferentation. Nature 1971; 232(5312):542–5.CrossRefGoogle ScholarPubMed
Witte, OW. Lesion-induced plasticity as a potential mechanism for recovery and rehabilitative training. Curr Opin Neurol 1998; 11(6):655–62.CrossRefGoogle ScholarPubMed
Johansson, BB, Ohlsson, AL. Environment, social interaction, and physical activity as determinants of functional outcome after cerebral infarction in the rat. Exp Neurol 1996; 139(2):322–7.CrossRefGoogle ScholarPubMed
Huang, YZ, Edwards, MJ, Rounis, E, Bhatia, KP, Rothwell, JC. Theta burst stimulation of the human motor cortex. Neuron 2005; 45(2):201–6.CrossRefGoogle ScholarPubMed
Harris-Love, ML, Cohen, LG. Noninvasive cortical stimulation in neurorehabilitation: a review. Arch Phys Med Rehabil 2006; 87(12 Suppl 2):S84–93.CrossRefGoogle ScholarPubMed
Talelli, P, Cheeran, BJ, Teo, JT, Rothwell, JC. Pattern-specific role of the current orientation used to deliver theta burst stimulation. Clin Neurophysiol 2007; 118(8):1815–23.CrossRefGoogle ScholarPubMed
Floel, A, Nagorsen, U, Werhahn, KJ, Ravindran, S, Birbaumer, N, Knecht, S, et al. Influence of somatosensory input on motor function in patients with chronic stroke. Ann Neurol 2004; 56(2):206–12.CrossRefGoogle ScholarPubMed
Alon, G, Levitt, AF, McCarthy, PA. Functional electrical stimulation (FES) may modify the poor prognosis of stroke survivors with severe motor loss of the upper extremity: a preliminary study. Am J Phys Med Rehabil 2008; 87(8):627–36.CrossRefGoogle ScholarPubMed
Alon, G, Levitt, AF, McCarthy, PA. Functional electrical stimulation enhancement of upper extremity functional recovery during stroke rehabilitation: a pilot study. Neurorehabil Neural Repair 2007; 21(3):207–15.CrossRefGoogle ScholarPubMed
Ziemann, U, Meintzschel, F, Korchounov, A, Ilic, TV. Pharmacological modulation of plasticity in the human motor cortex. Neurorehabil Neural Repair 2006; 20(2):243–51.CrossRefGoogle ScholarPubMed
Langhorne, P, Duncan, P. Does the organization of postacute stroke care really matter?Stroke 2001; 32(1):268–74.CrossRefGoogle ScholarPubMed
Bernhardt, J, Dewey, H, Thrift, A, Donnan, G. Inactive and alone: physical activity within the first 14 days of acute stroke unit care. Stroke 2004; 35(4):1005–9.CrossRefGoogle ScholarPubMed
Kesselring, J. Neuroscience and clinical practice: a personal postscript. Brain Res Brain Res Rev 2001; 36(2–3):285–6.CrossRefGoogle ScholarPubMed
Kesselring, J, Coenen, M, Cieza, A, Thompson, A, Kostanjsek, N, Stucki, G. Developing the ICF Core Sets for multiple sclerosis to specify functioning. Mult Scler 2008; 14(2):252–4.CrossRefGoogle ScholarPubMed
Mauritz, KH. Rehabilitation von neurologischen Erkrankungen: Schlaganfall. InNelles, G, ed. Neurologische Rehabilitation. Stuttgart: Thieme; 2004: 204–17.Google Scholar
DeBow, SB, McKenna, JE, Kolb, B, Colbourne, F. Immediate constraint-induced movement therapy causes local hyperthermia that exacerbates cerebral cortical injury in rats. Can J Physiol Pharmacol 2004; 82(4):231–7.CrossRefGoogle ScholarPubMed
Humm, JL, Kozlowski, DA, James, DC, Gotts, JE, Schallert, T. Use-dependent exacerbation of brain damage occurs during an early post-lesion vulnerable period. Brain Res 1998; 783(2):286–92.CrossRefGoogle ScholarPubMed
Kozlowski, DA, James, DC, Schallert, T. Use-dependent exaggeration of neuronal injury after unilateral sensorimotor cortex lesions. J Neurosci 1996; 16(15):4776–86.CrossRefGoogle ScholarPubMed
Risedal, A, Zeng, J, Johansson, BB. Early training may exacerbate brain damage after focal brain ischemia in the rat. J Cereb Blood Flow Metab 1999; 19(9):997–1003.CrossRefGoogle ScholarPubMed
Schallert, T, Fleming, SM, Leasure, JL, Tillerson, JL, Bland, ST. CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology 2000; 39(5):777–87.CrossRefGoogle ScholarPubMed
Barbay, S, Plautz, EJ, Friel, KM, Frost, SB, Dancause, N, Stowe, AM, et al. Behavioral and neurophysiological effects of delayed training following a small ischemic infarct in primary motor cortex of squirrel monkeys. Exp Brain Res 2006; 169:106–16.CrossRefGoogle ScholarPubMed
Marin, R, Williams, A, Hale, S, Burge, B, Mense, M, Bauman, R, et al. The effect of voluntary exercise exposure on histological and neurobehavioral outcomes after ischemic brain injury in the rat. Physiol Behav 2003; 80(2–3):167–75.CrossRefGoogle ScholarPubMed
Indredavik, B, Bakke, F, Slordahl, SA, Rokseth, R, Haheim, LL. Treatment in a combined acute and rehabilitation stroke unit: which aspects are most important?Stroke 1999; 30(5):917–23.CrossRefGoogle Scholar
Musicco, M, Emberti, L, Nappi, G, Caltagirone, C. Early and long-term outcome of rehabilitation in stroke patients: the role of patient characteristics, time of initiation, and duration of interventions. Arch Phys Med Rehabil 2003; 84(4):551–8.CrossRefGoogle ScholarPubMed
Maulden, SA, Gassaway, J, Horn, SD, Smout, RJ, DeJong, G. Timing of initiation of rehabilitation after stroke. Arch Phys Med Rehabil 2005; 86(12 Suppl 2):S34–S40.CrossRefGoogle ScholarPubMed
Jette, DU, Warren, RL, Wirtalla, C. The relation between therapy intensity and outcomes of rehabilitation in skilled nursing facilities. Arch Phys Med Rehabil 2005; 86(3):373–9.CrossRefGoogle ScholarPubMed
Graham, A. Measurement in stroke: activity and quality of life. InBarnes, M, Dobkin, B, Bougousslavsky, J, eds. Recovery after Stroke. Cambridge University Press; 2005: 135–60.CrossRefGoogle Scholar
Collen, FM, Wade, DT, Robb, GF, Bradshaw, CM. The Rivermead Mobility Index: a further development of the Rivermead Motor Assessment. Int Disabil Stud 1991; 13(2):50–4.CrossRefGoogle ScholarPubMed
Lennon, S, Johnson, L. The modified Rivermead mobility index: validity and reliability. Disabil Rehabil 2000; 22(18):833–9.CrossRefGoogle ScholarPubMed
Carr, JH, Shepherd, RB, Nordholm, L, Lynne, D. Investigation of a new motor assessment scale for stroke patients. Phys Ther 1985; 65(2):175–80.CrossRefGoogle ScholarPubMed
Loewen, SC, Anderson, BA. Reliability of the Modified Motor Assessment Scale and the Barthel Index. Phys Ther 1988; 68(7):1077–81.CrossRefGoogle ScholarPubMed
Mathias, S, Nayak, US, Isaacs, B. Balance in elderly patients: the “get-up and go” test. Arch Phys Med Rehabil 1986; 67(6):387–89.Google ScholarPubMed
Lyle, RC. A performance test for assessment of upper limb function in physical rehabilitation treatment and research. Int J Rehabil Res 1981; 4(4):483–92.CrossRefGoogle ScholarPubMed
Mathiowetz, V, Kashman, N, Volland, G, Weber, K, Dowe, M, Rogers, S. Grip and pinch strength: normative data for adults. Arch Phys Med Rehabil 1985; 66(2):69–74.Google ScholarPubMed
Mahoney, FI, Barthel, DW. Functional evaluation: the Barthel Index. Md State Med J 1965; 14:61–5.Google ScholarPubMed
McDowell, I, Newell, C. Measuring Health: A Guide to Rating Scales and Questionnaires. Oxford University Press; 1996.Google Scholar
Duncan, PW, Wallace, D, Lai, SM, Johnson, D, Embretson, S, Laster, LJ. The stroke impact scale version 2.0. Evaluation of reliability, validity, and sensitivity to change. Stroke 1999; 30(10):2131–40.CrossRefGoogle ScholarPubMed
da Cunha, IT, Lim, PA, Qureshy, H, Henson, H, Monga, T, Protas, EJ. Gait outcomes after acute stroke rehabilitation with supported treadmill ambulation training: a randomized controlled pilot study. Arch Phys Med Rehabil 2002; 83(9):1258–65.CrossRefGoogle ScholarPubMed
Kosak, MC, Reding, MJ. Comparison of partial body weight-supported treadmill gait training versus aggressive bracing assisted walking post stroke. Neurorehabil Neural Repair 2000; 14(1):13–19.CrossRefGoogle ScholarPubMed
Nilsson, L, Carlsson, J, Danielsson, A, Fugl-Meyer, A, Hellstrom, K, Kristensen, L, et al. Walking training of patients with hemiparesis at an early stage after stroke: a comparison of walking training on a treadmill with body weight support and walking training on the ground. Clin Rehabil 2001; 15(5):515–27.CrossRefGoogle ScholarPubMed
Sullivan, KJ, Knowlton, BJ, Dobkin, BH. Step training with body weight support: effect of treadmill speed and practice paradigms on poststroke locomotor recovery. Arch Phys Med Rehabil 2002; 83(5):683–91.CrossRefGoogle ScholarPubMed
Visintin, M, Barbeau, H, Korner-Bitensky, N, Mayo, NE. A new approach to retrain gait in stroke patients through body weight support and treadmill stimulation. Stroke 1998; 29(6):1122–8.CrossRefGoogle ScholarPubMed
Wood-Dauphinee, S, Kwakkel, G. The impact of rehabilitation on stroke outcomes: what is the evidence. InBarnes, M, Dobkin, B, Bougousslavsky, J, eds. Recovery after Stroke. Cambridge University Press; 2005:162–88.Google Scholar
Beer, S, Aschbacher, B, Manoglou, D, Gamper, E, Kool, J, Kesselring, J. Robot-assisted gait training in multiple sclerosis: a pilot randomized trial. Mult Scler 2008; 14(2):231–6.CrossRefGoogle ScholarPubMed
Liston, R, Mickelborough, J, Harris, B, Hann, AW, Tallis, RC. Conventional physiotherapy and treadmill re-training for higher-level gait disorders in cerebrovascular disease. Age Ageing 2000; 29(4):311–18.CrossRefGoogle ScholarPubMed
Laufer, Y, Dickstein, R, Chefez, Y, Marcovitz, E. The effect of treadmill training on the ambulation of stroke survivors in the early stages of rehabilitation: a randomized study. J Rehabil Res Dev 2001; 38(1):69–78.Google ScholarPubMed
Pohl, M, Mehrholz, J, Ritschel, C, Ruckriem, S. Speed-dependent treadmill training in ambulatory hemiparetic stroke patients: a randomized controlled trial. Stroke 2002; 33(2):553–8.CrossRefGoogle ScholarPubMed
Roerdink, M, Lamoth, CJ, Kwakkel, G, Wieringen, PC, Beek, PJ. Gait coordination after stroke: benefits of acoustically paced treadmill walking. Phys Ther 2007; 87(8):1009–22.CrossRefGoogle ScholarPubMed
Mandel, AR, Nymark, JR, Balmer, SJ, Grinnell, DM, O'Riain, MD. Electromyographic versus rhythmic positional biofeedback in computerized gait retraining with stroke patients. Arch Phys Med Rehabil 1990; 71(9):649–54.Google ScholarPubMed
Thaut, MH, McIntosh, GC, Rice, RR. Rhythmic facilitation of gait training in hemiparetic stroke rehabilitation. J Neurol Sci 1997; 151(2):207–12.CrossRefGoogle ScholarPubMed
Taub, E, Miller, NE, Novack, TA, Cook, EW, Fleming, WC, Nepomuceno, CS, et al. Technique to improve chronic motor deficit after stroke. Arch Phys Med Rehabil 1993; 74(4):347–54.Google ScholarPubMed
Wolf, SL, Winstein, CJ, Miller, JP, Taub, E, Uswatte, G, Morris, D, et al. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA 2006; 296(17):2095–104.CrossRefGoogle ScholarPubMed
Wolf, SL, Winstein, CJ, Miller, JP, Thompson, PA, Taub, E, Uswatte, G, et al. Retention of upper limb function in stroke survivors who have received constraint-induced movement therapy: the EXCITE randomised trial. Lancet Neurol 2008; 7(1):33–40.CrossRefGoogle ScholarPubMed
French, B, Thomas, LH, Leathley, MJ, Sutton, CJ, McAdam, J, Forster, A, et al. Repetitive task training for improving functional ability after stroke. Cochrane Database Syst Rev 2007;(4):CD006073.Google ScholarPubMed
Wing, K, Lynskey, JV, Bosch, PR. Whole-body intensive rehabilitation is feasible and effective in chronic stroke survivors: a retrospective data analysis. Top Stroke Rehabil 2008; 15(3):247–55.CrossRefGoogle ScholarPubMed
Courbon, A, Calmels, P, Roche, F, Ramas, J, Rimaud, D, Fayolle-Minon, I. Relationship between maximal exercise capacity and walking capacity in adult hemiplegic stroke patients. Am J Phys Med Rehabil 2006; 85(5):436–42.CrossRefGoogle ScholarPubMed
Chu, KS, Eng, JJ, Dawson, AS, Harris, JE, Ozkaplan, A, Gylfadottir, S. Water-based exercise for cardiovascular fitness in people with chronic stroke: a randomized controlled trial. Arch Phys Med Rehabil 2004; 85(6):870–4.CrossRefGoogle ScholarPubMed
Dean, CM, Richards, CL, Malouin, F. Task-related circuit training improves performance of locomotor tasks in chronic stroke: a randomized, controlled pilot trial. Arch Phys Med Rehabil 2000; 81(4):409–17.CrossRefGoogle ScholarPubMed
Rimmer, JH, Riley, B, Creviston, T, Nicola, T. Exercise training in a predominantly African-American group of stroke survivors. Med Sci Sports Exerc 2000; 32(12):1990–6.CrossRefGoogle Scholar
Badics, E, Wittmann, A, Rupp, M, Stabauer, B, Zifko, UA. Systematic muscle building exercises in the rehabilitation of stroke patients. NeuroRehabilitation 2002; 17(3):211–14.Google ScholarPubMed
Yavuzer, G, Selles, R, Sezer, N, Sutbeyaz, S, Bussmann, JB, Koseoglu, F, et al. Mirror therapy improves hand function in subacute stroke: a randomized controlled trial. Arch Phys Med Rehabil 2008; 89(3):393–8.CrossRefGoogle ScholarPubMed
Altschuler, EL, Wisdom, SB, Stone, L, Foster, C, Galasko, D, Llewellyn, DM, et al. Rehabilitation of hemiparesis after stroke with a mirror. Lancet 1999; 353(9169):2035–6.CrossRefGoogle ScholarPubMed
Dohle, C, Kleiser, R, Seitz, RJ, Freund, HJ. Body scheme gates visual processing. J Neurophysiol 2004; 91(5):2376–9.CrossRefGoogle ScholarPubMed
Barthel, G, Meinzer, M, Djundja, D, Rockstroh, B. Intensive language therapy in chronic aphasia: which aspects contribute most?Aphasiology 2008; 22(4):408–21.CrossRefGoogle Scholar
Bhogal, SK, Teasell, R, Speechley, M. Intensity of aphasia therapy, impact on recovery. Stroke 2003; 34(4):987–93.CrossRefGoogle ScholarPubMed
Meinzer, M, Djundja, D, Barthel, G, Elbert, T, Rockstroh, B. Long-term stability of improved language functions in chronic aphasia after constraint-induced aphasia therapy. Stroke 2005; 36(7):1462–6.CrossRefGoogle ScholarPubMed
Breitenstein, C, Kramer, K, Meinzer, M, Baumgartner, A, Floel, A, Knecht, S. Intense language training for aphasia: contribution of cognitive factors. Nervenarzt 2009; 80(2):149–50, 152–4.CrossRefGoogle ScholarPubMed
Musso, M, Weiller, C, Kiebel, S, Muller, SP, Bulau, P, Rijntjes, M. Training-induced brain plasticity in aphasia. Brain 1999; 122 (Pt 9):1781–90.CrossRefGoogle ScholarPubMed
Heiss, WD, Thiel, A, Kessler, J, Herholz, K. Disturbance and recovery of language function: correlates in PET activation studies. Neuroimage 2003; 20 Suppl 1:S42–9.CrossRefGoogle ScholarPubMed
Winhuisen, L, Thiel, A, Schumacher, B, Kessler, J, Rudolf, J, Haupt, WF, et al. The right inferior frontal gyrus and poststroke aphasia: a follow-up investigation. Stroke 2007; 38(4):1286–92.CrossRefGoogle ScholarPubMed
Monti, A, Cogiamanian, F, Marceglia, S, Ferrucci, R, Mameli, F, Mrakic-Sposta, S, et al. Improved naming after transcranial direct current stimulation in aphasia. J Neurol Neurosurg Psychiatry 2008; 79(4):451–3.CrossRefGoogle ScholarPubMed
Cappa, SF. Current to the brain improves word-finding difficulties in aphasic patients. J Neurol Neurosurg Psychiatry 2008; 79(4):364.CrossRefGoogle ScholarPubMed
Urban, PP, Wicht, S, Vukurevic, G, Fitzek, C, Fitzek, S, Stoeter, P, et al. Dysarthria in acute ischemic stroke: lesion topography, clinicoradiologic correlation, and etiology. Neurology 2001; 56(8):1021–7.CrossRefGoogle ScholarPubMed
Mann, G, Hankey, GJ, Cameron, D. Swallowing disorders following acute stroke: prevalence and diagnostic accuracy. Cerebrovasc Dis 2000; 10(5):380–6.CrossRefGoogle ScholarPubMed
Martino, R, Foley, N, Bhogal, S, Diamant, N, Speechley, M, Teasell, R. Dysphagia after stroke: incidence, diagnosis, and pulmonary complications. Stroke 2005; 36(12):2756–63.CrossRefGoogle ScholarPubMed
Smithard, DG, O'Neill, PA, Parks, C, Morris, J. Complications and outcome after acute stroke. Does dysphagia matter? Stroke 1996; 27(7):1200–4.Google ScholarPubMed
Vernino, S, Brown, RD, Sejvar, JJ, Sicks, JD, Petty, GW, O'Fallon, WM. Cause-specific mortality after first cerebral infarction: a population-based study. Stroke 2003; 34(8):1828–32.CrossRefGoogle ScholarPubMed
Hinchey, JA, Shephard, T, Furie, K, Smith, D, Wang, D, Tonn, S. Formal dysphagia screening protocols prevent pneumonia. Stroke 2005; 36(9):1972–6.CrossRefGoogle ScholarPubMed
Trapl, M, Enderle, P, Nowotny, M, Teuschl, Y, Matz, K, Dachenhausen, A, Brainin, M. Dysphagia bedside screening for acute-stroke patients: the Gugging Swallowing Screen. Stroke 2007; 38(11):2948–52.CrossRefGoogle ScholarPubMed
Prosiegel, M, Aigner, F, Diesener, P, Gass, C, George, S, Hanning, C, et al. Qualitätskriterien und Standards für die Diagnostik und Therapie von Patienten mit neurologischen Schluckstörungen. Neurogene Dysphagien – Leitlinien der DGNKN. Neurol Rehabil 2003; 9(3–4):157–81.Google Scholar
Langmore, SE, Schatz, K, Olsen, N. Fiberoptic endoscopic examination of swallowing safety: a new procedure. Dysphagia 1988; 2(4):216–19.CrossRefGoogle ScholarPubMed
Langmore, SE. Endoscopic evaluation of oral and pharyngeal phases of swallowing. GI Motility online (2006), doi:10.1038/gimo28, nature.com 2006.CrossRef
Gramigna, GD. How to perform video-fluoroscopic swallowing studies. GI Motility online (2006), doi:10.1038/gimo95, nature.com 2006.CrossRef
Rosenbek, JC, Robbins, JA, Roecker, EB, Coyle, JL, Wood, JL. A penetration-aspiration scale. Dysphagia 1996; 11(2):93–8.CrossRefGoogle ScholarPubMed
Hess, DR. Tracheostomy tubes and related appliances. Respir Care 2005; 50(4):497–510.Google ScholarPubMed
Ward, AB. Spasticity treatment with botulinum toxins. J Neural Transm 2008; 115(4):607–16.CrossRefGoogle ScholarPubMed
Rosales, RL, Chua-Yap, AS. Evidence-based systematic review on the efficacy and safety of botulinum toxin-A therapy in post-stroke spasticity. J Neural Transm 2008; 115(4):617–23.CrossRefGoogle ScholarPubMed
Cappa, SF, Benke, T, Clarke, S, Rossi, B, Stemmer, B, Heugten, CM. EFNS guidelines on cognitive rehabilitation: report of an EFNS task force. Eur J Neurol 2005; 12(9):665–80.Google ScholarPubMed
Beis, JM, Keller, C, Morin, N, Bartolomeo, P, Bernati, T, Chokron, S, et al. Right spatial neglect after left hemisphere stroke: qualitative and quantitative study. Neurology 2004; 63(9):1600–5.CrossRefGoogle ScholarPubMed
Karnath, HO, Christ, K, Hartje, W. Decrease of contralateral neglect by neck muscle vibration and spatial orientation of trunk midline. Brain 1993; 116 (Pt 2):383–96.CrossRefGoogle ScholarPubMed
Thimm, M, Fink, GR, Kust, J, Karbe, H, Sturm, W. Impact of alertness training on spatial neglect: a behavioural and fMRI study. Neuropsychologia 2006; 44(7):1230–46.CrossRefGoogle ScholarPubMed
Shindo, K, Sugiyama, K, Huabao, L, Nishijima, K, Kondo, T, Izumi, S. Long-term effect of low-frequency repetitive transcranial magnetic stimulation over the unaffected posterior parietal cortex in patients with unilateral spatial neglect. J Rehabil Med 2006; 38(1):65–7.CrossRefGoogle ScholarPubMed
Nyffeler, T, Cazzoli, D, Wurtz, P, Luthi, M, Wartburg, R, Chaves, S, et al. Neglect-like visual exploration behaviour after theta burst transcranial magnetic stimulation of the right posterior parietal cortex. Eur J Neurosci 2008; 27(7):1809–13.CrossRefGoogle ScholarPubMed
Nelles, G, Esser, J, Eckstein, A, Tiede, A, Gerhard, H, Diener, HC. Compensatory visual field training for patients with hemianopia after stroke. Neurosci Lett 2001; 306(3):189–92.CrossRefGoogle ScholarPubMed
Schmielau, F, Wong, EK. Recovery of visual fields in brain-lesioned patients by reaction perimetry treatment. J Neuroeng Rehabil 2007; 4:31.CrossRefGoogle ScholarPubMed
Karnath, HO. Pusher syndrome – a frequent but little-known disturbance of body orientation perception. J Neurol 2007; 254(4):415–24.CrossRefGoogle ScholarPubMed
Steultjens, EM, Dekker, J, Bouter, LM, Leemrijse, CJ, Ende, CH. Evidence of the efficacy of occupational therapy in different conditions: an overview of systematic reviews. Clin Rehabil 2005; 19(3):247–54.CrossRefGoogle Scholar
Schnakers, C, Majerus, S, Goldman, S, Boly, M, Eeckhout, P, Gay, S, et al. Cognitive function in the locked-in syndrome. J Neurol 2008; 255(3):323–30.CrossRefGoogle ScholarPubMed
Smith, E, Delargy, M. Locked-in syndrome. BMJ 2005; 330(7488):406–9.CrossRefGoogle ScholarPubMed
Lo, SF, Chen, SY, Lin, HC, Jim, YF, Meng, NH, Kao, MJ. Arthrographic and clinical findings in patients with hemiplegic shoulder pain. Arch Phys Med Rehabil 2003; 84(12):1786–91.CrossRefGoogle ScholarPubMed
Braus, DF, Krauss, JK, Strobel, J. The shoulder-hand syndrome after stroke: a prospective clinical trial. Ann Neurol 1994; 36(5):728–733.CrossRefGoogle ScholarPubMed
Hackett, ML, Anderson, CS, House, A, Halteh, C. Interventions for preventing depression after stroke. Cochrane Database Syst Rev 2008(3):CD003689.Google ScholarPubMed
Sagberg, F. Driver health and crash involvement: a case-control study. Accid Anal Prev 2006; 38(1):28–34.CrossRefGoogle ScholarPubMed
Fisk, GD, Owsley, C, Pulley, LV. Driving after stroke: driving exposure, advice, and evaluations. Arch Phys Med Rehabil 1997; 78(12):1338–45.CrossRefGoogle ScholarPubMed
Akinwuntan, AE, Weerdt, W, Feys, H, Pauwels, J, Baten, G, Arno, P, et al. Effect of simulator training on driving after stroke: a randomized controlled trial. Neurology 2005; 65(6):843–50.CrossRefGoogle ScholarPubMed
Rees, PM, Fowler, CJ, Maas, CP. Sexual function in men and women with neurological disorders. Lancet 2007; 369(9560):512–25.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×