Skip to main content Accessibility help
×
Home
Hostname: page-component-8bbf57454-5qtdt Total loading time: 1.969 Render date: 2022-01-25T15:01:02.489Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

References

Published online by Cambridge University Press:  05 June 2012

Simon Hillson
Affiliation:
University College London
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Teeth , pp. 323 - 363
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aas, I. H. (1983). Variability of a dental morphological trait. Acta Odontologica Scandinavica, 41, 257–63Google ScholarPubMed
Aitken, M. J. (1990). Science-based Dating in Archaeology. Longman Archaeology Series. London: Longman
Aitken, R. J. (1975). Cementum layers and tooth wear as criteria for ageing roe deer (Capreolus capreolus). Journal of Zoology (London), 175, 15–28CrossRefGoogle Scholar
Alexandersen, V. (1967a). The evidence for injuries to the jaws. In Brothwell, D. R. & Sandison, A. T. (eds.), Diseases in Antiquity. Springfield: Thomas, pp. 623–9Google Scholar
Alexandersen, V. (1967b). The pathology of the jaws and temporomandibular joint. In Brothwell, D. R. & Sandison, A. T. (eds.), Diseases in Antiquity. Springfield: Thomas, pp. 551–95Google Scholar
Allen, T. (2003). Manual of Equine Dentistry. St Louis: MosbyGoogle Scholar
Alvesalo, L. (1971). The influence of sex chromosome genes on tooth size in man. Suomen Hammaslääkäriseunan Toimituksia (Proceedings of the Finnish Dental Society), 67, 3–54Google ScholarPubMed
Alvesalo, L. & Tigerstedt, P. M. A. (1974). Heritabilities of human tooth dimensions. Hereditas, 77, 311–18CrossRefGoogle ScholarPubMed
Ambrose, S. H. (1993). Isotopic analysis of paleodiets: methodological and interpretive considerations. In Sandford, M. K. (ed.), Investigations of Ancient Human Tissue: Chemical Analyses in Anthropology. Food and Nutrition in History and Anthropology Volume 10. Langhorne, Pennsylvania: Gordon & Breach, pp. 59–130Google Scholar
Andresen, V. (1898). Die Querstreifung des Dentins. Deutsche Monatsschrift für Zahnheilkunde, 16, 386–9Google Scholar
Andrews, A. H. (1982). The use of dentition to age young cattle. In Wilson, B., Grigson, C., & Payne, S. (eds.), Ageing and Sexing Animal Bones from Archaeological Sites. British Archaeology Reports British Series 109. Oxford: British Archaeological Reports, pp. 141–53Google Scholar
Andrews, A. H. & Noddle, B. (1975). Absence of premolar teeth from ruminant mandibles found at archaeological sites. Journal of Archaeological Science, 2, 137–44CrossRefGoogle Scholar
Anemone, R. L. (1995). Dental development in chimpanzees of known chronological age: implications for understanding the age at death of Plio-Pleistocene hominids. In Moggi-Cecchi, J. (ed.), Aspects of Dental Biology: Palaeontology, Anthropology and Evolution. Florence: International Institute for the Study of Man, pp. 201–15Google Scholar
Anemone, R. L., Mooney, M. P., & Siegel, M. I. (1996). Longitudinal study of dental development in chimpanzees of known chronological age: implications for understanding the age at death of Plio-Pleistocene hominids. American Journal of Physical Anthropology, 99, 119–343.0.CO;2-W>CrossRefGoogle ScholarPubMed
Angel, J. L. (1969). The bases of paleodemography. American Journal of Physical Anthropology, 30, 427–37CrossRefGoogle ScholarPubMed
Antoine, D. M., Dean, M. C., & Hillson, S. W. (1999). The periodicity of incremental structures in dental enamel based on the developing dentition of post-Medieval known-age children. In Mayhall, J. T. & Heikinnen, T. (eds.), Dental Morphology'98. Oulu: Oulu University Press, pp. 48–55Google Scholar
Armitage, P. (1975). The extraction and identification of opal phytoliths from the teeth of ungulates. Journal of Archaeological Science, 2, 187–97CrossRefGoogle Scholar
Arya, B. S., Thomas, D. R., Savara, B. S., & Clarkson, Q. D. (1974). Correlations among tooth sizes in a sample of Oregon caucasoid children. Human Biology, 46, 693–8Google Scholar
Asper, H. (1916). Ueber die ‘Braune Retzius'sche Parallelstreifung’ im Schmelz der Menschlichen Zähne. Schweizerische Vrtljschrift für Zahnheilkunde, 26, 275Google Scholar
Aufderheide, A. C. (1989). Chemical analysis of skeletal remains. In Iscan, M. Y. & Kennedy, K. A. R. (eds.), Reconstruction of Life from the Skeleton. New York: Alan R Liss, pp. 237–60Google Scholar
Bäckman, B. (1989). Amelogenesis imperfecta. An epidemiologic, genetic, morphologic and clinical study. MD Dissertation, University of Umeå, Sweden
Bäckman, B. (1997). Inherited enamel defects. In Chadwick, D. J. & Cardew, G. (eds.), Dental Enamel. Ciba Foundation Symposium 205. Chichester: Wiley, pp. 175–86Google Scholar
Bader, R. S. (1965). Heritability of dental characters in the house mouse. Evolution, 19, 378–84CrossRefGoogle Scholar
Bader, R. S. & Lehmann, W. H. (1965). Phenotypic and genotypic variation in odontometric traits of the house mouse. American Midland Naturalist, 74, 28–38CrossRefGoogle Scholar
Baker, J. & Brothwell, D. R. (1980). Animal Diseases in Archaeology. London: Academic PressGoogle Scholar
Balasse, M., Bocherens, H., Mariotti, A., & Ambrose, S. H. (2001). Detection of dietary changes by intra-tooth carbon and nitrogen isotopic analysis: an experimental study of dentine collagen of cattle (Bos taurus). Journal of Archaeological Science, 28, 235–45CrossRefGoogle Scholar
Bang, G. & Ramm, E. (1970). Determination of age in humans from root dentine transparency. Acta Odontologica Scandinavica, 28, 3–35CrossRefGoogle Scholar
Bang, P. & Dahlstrom, P. (1972). Collins Guide to Animal Tracks and Signs. London: CollinsGoogle Scholar
Barnosky, A. D. (1990). Evolution of dental traits since latest Pleistocene in Meadow Voles (Microtus pennsylvanicus) from Virginia. Paleobiology, 16, 370–83CrossRefGoogle Scholar
Barrett, M. J., Brown, T., & Macdonald, M. R. (1963). Dental observations on Australian aborigines: mesiodistal crown diameters of permanent teeth. Australian Dental Journal, 8, 150–6CrossRefGoogle Scholar
Baume, L. J., Horowitz, H. S., Summers, C. J., Dirks, O. B., Brown, W. A. B., Carlos, J. P., Cohen, L. K., Freer, T. J., Harvold, E. P., Moorrees, C. F. A., Satzmann, J. A., Schmuth, G., Solow, B., & Taatz, H. (1970). A method for measuring occlusal traits. Developed by the F. D. I. Commission on Classification and Statistics for Oral Conditions (COCSTOC) Working Group 2 on Dentofacial Anomalies, 1969–72. International Dental Journal, 23, 530–7
Beasley, M. J., Brown, W. A. B., & Legge, A. J. (1992). Incremental banding in dental cementum: methods of preparation for teeth from archaeological sites and for modern comparative specimens. International Journal of Osteoarchaeology, 2, 37–50CrossRefGoogle Scholar
Beasley, M. J., Brown, W. A. B., & Legge, A. J. (1993). Metrical discrimination between mandibular first and second molars in domestic cattle. International Journal of Osteoarchaeology, 3, 303–14CrossRefGoogle Scholar
Beeley, J. G. & Lunt, D. A. (1980). The nature of the biochemical changes in softened dentine from archaeological sites. Journal of Archaeological Science, 7, 371–7CrossRefGoogle Scholar
Begg, P. R. (1954). Stone Age man's dentition. American Journal of Orthodontics, 40, 298–383, 462CrossRefGoogle Scholar
Bell, L. S. (1990). Palaeopathology and diagenesis: an SEM evaluation of structural changes using backscattered electron imaging. Journal of Archaeological Science, 17, 85–102CrossRefGoogle Scholar
Bell, L. S., Boyde, A., & Jones, S. J. (1991). Diagenetic alteration to teeth in situ illustrated by backscattered electron imaging. Scanning, 13, 173–83CrossRefGoogle Scholar
Bell, L. S., Skinner, M. F., & Jones, S. J. (1996). The speed of post mortem change to the human skeleton and its taphonomic significance. Forensic Science International, 82, 129–40CrossRefGoogle ScholarPubMed
Benecke, N. (1987). Studies on early dog remains from northern Europe. Journal of Archaeological Science, 14, 31–49CrossRefGoogle Scholar
Bermann, M., Edwards, L. F., & Kitchin, P. C. (1939). Effect of artificially induced hyperpyrexia on tooth structure in the rabbit. Proceedings of the Society for Experimental Biology & Medicine, 41, 113–15CrossRefGoogle Scholar
Bermudez de Castro, J. M., Durand, A. I., & Ipiña, S. L. (1993). Sexual dimorphism in the human dental sample from the SH site (Sierra de Atapuerca, Spain): a statistical approach. Journal of Human Evolution, 24, 43–56CrossRefGoogle Scholar
Berry, A. C. (1978). Anthropological and family studies on minor variants of the dental crown. In Butler, P. M. & Joysey, K. A. (eds.), Development, Function and Evolution of Teeth. London: Academic Press, pp. 81–98Google Scholar
Berry, R. J. (1968). The biology of non-metrical variation in mice and men. In Brothwell, D. R. (ed.), The Skeletal Biology of Earlier Human Populations. Symposia of the Society for the Study of Human Biology. Oxford: Pergamon Press, pp. 104–133Google Scholar
Berry, R. J. (1969). History in the evolution of Apodemus sylvaticus (Mammalia) at one edge of its range. Journal of Zoology, 159, 311–28CrossRefGoogle Scholar
Berry, R. J. (1975). On the nature of genetical distance and island races of the Apodemus sylvaticus. Journal of Zoology, 176, 293–6Google Scholar
Berry, R. J. & Jakobson, M. E. (1975). Ecological genetics of an island population of the house mouse. Journal of Zoology, 175, 523–40CrossRefGoogle Scholar
Berry, R. J., Jakobson, M. E., & Peters, J. (1977). The house mice of the Faroe Islands: a study in microdifferentiation. Journal of Zoology, 185, 73–92CrossRefGoogle Scholar
Berry, R. J. & Rose, F. E. N. (1975). Islands and the evolution of Microtus arvalis (Microtinae). Journal of Zoology, 177, 395–409CrossRefGoogle Scholar
Berten, J. (1895). Hypoplasie des Schmelzes (Congenitale Schmelzdefecte; Erosionen). Deutsche Monatsschrift für Zahnheilkunde, 13, 425–39Google Scholar
Beynon, A. D., Dean, M. C., & Reid, D. J. (1991). Histological study on the chronology of the developing dentition in gorilla and orangutan. American Journal of Physical Anthropology, 86, 189–203CrossRefGoogle Scholar
Biggerstaff, R. H. (1973). Heritability of Carabelli's cusp in twins. Journal of Dental Research, 52, 40–4CrossRefGoogle Scholar
Biggerstaff, R. H. (1975). Cusp size, sexual dimorphism, and heritability of cusp size in twins. American Journal of Physical Anthropology, 42, 127–40CrossRefGoogle ScholarPubMed
Biggerstaff, R. H. (1976). Cusp size, sexual dimorphism, and heritability of maximum molar cusp size in twins. Journal of Dental Research, 55, 189–95CrossRefGoogle Scholar
Bishop, M. P. (1982). The Early Middle Pleistocene Mammal Fauna of Westbury-sub-Mendip. Special Papers in Palaeontology 28. London: Palaeontological AssociationGoogle Scholar
Black, T. K. (1978). Sexual dimorphism in the tooth-crown diameters of deciduous teeth. American Journal of Physical Anthropology, 48, 77–82CrossRefGoogle ScholarPubMed
Bocquet-Appel, J. & Masset, C. (1982). Farewell to paleodemography. Journal of Human Evolution, 11, 321–33CrossRefGoogle Scholar
Boessneck, J. & von den Driesch, A. (1978). The significance of measuring animals bones from archaeological sites. In Meadow, R. H. & Zeder, M. A. (eds.), Approaches to Faunal Analysis in the Middle East. Peabody Museum Bulletin 2. Cambridge, Mass.: Harvard University, pp. 25–39Google Scholar
Bogin, B. (1999). Patterns of Human Growth. Cambridge Studies in Biological Anthropology 23. Cambridge: Cambridge University PressGoogle ScholarPubMed
Bourque, B. J., Morris, K., & Speiss, A. (1978). Determining the season of death of mammal teeth from archaeological sites: a new sectioning technique. Science, 199, 530–31CrossRefGoogle Scholar
Bover, P. & Alcover, J. A. (1999). The evolution and ontogeny of the dentition of Myotragus balearicus Bate, 1909 (Artiodactyla, Caprinae): evidence from new fossil data. Biological Journal of the Linnean Society, 68, 401–28CrossRefGoogle Scholar
Bowen, W. H. & Pearson, S. K. (1993). Effect of milk on cariogenesis. Caries Research, 27, 461–6CrossRefGoogle ScholarPubMed
Boyde, A. (1963). Estimation of age at death of young human skeletal remains from incremental lines in dental enamel. London: Third International Meeting in Forensic Immunology, Medicine, Pathology and Toxicology, Plenary Session 11A
Boyde, A. (1969). Electron microscopic observations relating to the nature and development of prism decussation in mammalian dental enamel. Bulletin du Groupement International pour les Recherches Scientifique en Stomatologie, 12, 151–207Google ScholarPubMed
Boyde, A. (1971). Comparative histology of mammalian teeth. In Dahlberg, A. A. (ed.), Dental Morphology and Evolution. Chicago: University of Chicago Press, pp. 81–94Google Scholar
Boyde, A. (1978). Development of the structure of the enamel of the incisor teeth in the three classical subordinal groups of the Rodentia. In Butler, P. M. & Joysey, K. A. (eds.), Development, Function and Evolution of Teeth. London: Academic Press, pp. 43–58Google Scholar
Boyde, A. (1979). Carbonate concentration, crystal centres, core dissolution, caries, cross striations, circadian rhythms and compositional contrast in the SEM. Journal of Dental Research, 58, 981–3CrossRefGoogle Scholar
Boyde, A. (1980). Histological studies of dental tissues in Odontocetes. In Perrin, W. F. & Myrick, A. C. (eds.), Growth of Odontocetes and Sirenians: Problems in Age Determination. Proceedings of the International Conference on Determining Age of Odontocete Ceteans (and Sirenians), La Jolla, California, September 5–19, 1978. Report of the International Whaling Commission, Special Issue 3. Cambridge: International Whaling Commission, pp. 65–87Google Scholar
Boyde, A. (1984). Methodology of calcified tissue specimen preparation for scanning electron microscopy. In Dickson, G. R. (ed.), Methods of Calcified Tissue Preparation. Amsterdam: Elsevier, pp. 251–307Google Scholar
Boyde, A. (1989). Enamel. In Berkovitz, B. K. B., Boyde, A., Frank, R. M., Höhling, H. J., Moxham, B. J., Nalbandian, J., & Tonge, C. H. (eds.), Teeth. Handbook of Microscopic Anatomy. New York: Springer, pp. 309–473Google Scholar
Boyde, A. (1990). Developmental interpretations of dental microstructure. In DeRousseau, C. J. (ed.), Primate Life History and Evolution. Monographs in Primatology Volume 14. New York: Wiley-Liss, pp. 229–67Google Scholar
Boyde, A. & Fortelius, M. (1986). Development, structure and function of rhinoceros enamel. Zoological Journal of the Linnean Society, 87, 181–214CrossRefGoogle Scholar
Boyde, A., Fortelius, M., Lester, K. S., & Martin, L. B. (1988). Basis of the structure and development of mammalian enamel as seen by scanning electron microscopy. Scanning Microscopy, 2, 1479–90Google ScholarPubMed
Boyde, A. & Jones, S. J. (1983). Backscattered electron imaging of dental tissues. Anatomy and Embryology, 5, 145–50Google Scholar
Boyde, A. & Jones, S. J. (1995). Skeletal connective tissues. In Williams, P. L. & Bannister, L. H. (eds.), Gray's Anatomy: the Anatomical Basis of Medicine and Surgery. London: Churchill Livingstone, pp. 443–84Google Scholar
Boyde, A. & Lester, K. S. (1967). The structure and development of Marsupial enamel tubules. Zeitschrift für Morphologie und Anthropologie, 82, 558–76Google ScholarPubMed
Boyde, A. & Martin, L. (1982). Enamel microstructure determination in hominoid and cercopithecoid Primates. Anatomy and Embryology, 165, 193–212CrossRefGoogle ScholarPubMed
Boyde, A. & Martin, L. (1987). Tandem scanning reflected light microscopy of primate enamel. Scanning Microscopy, 1, 1935–48Google ScholarPubMed
Brace, C. L. (1964). The probable mutation effect. American Naturalist, 97, 39–49CrossRefGoogle Scholar
Brace, C. L. & Mahler, P. E. (1971). Post-Pleistocene changes in the human dentition. American Journal of Physical Anthropology, 34, 191–204CrossRefGoogle ScholarPubMed
Brace, C. L., Rosenberg, K. R., & Hunt, K. D. (1987). Gradual change in human tooth size in the late Pleistocene and post-Pleistocene. Evolution, 41, 705–20Google ScholarPubMed
Brace, C. L. & Ryan, A. S. (1980). Sexual dimorphism and human tooth size differences. Journal of Human Evolution, 9, 417–35CrossRefGoogle Scholar
Brace, C. L., Shao, Z-Q., & Zhang, Z-B. (1984). Biological and cultural change in the European Late Pleistocene and Early Holocene. In Smith, F. H. & Spencer, F. (eds.), The Origin of Modern Humans. New York: Alan R. Liss, pp. 485–516Google Scholar
Brace, C. L., Smith, S. L., & Hunt, K. D. (1991). What big teeth you had Grandma! Human tooth size, past and present. In Kelley, M. A. & Larsen, C. S. (eds.), Advances in Dental Anthropology. New York: Wiley-Liss, pp. 33–57Google Scholar
Bradford, E. W. (1967). Microanatomy and histochemistry of dentine. In Miles, A. E. W. (ed.), Structural and Chemical Organization of Teeth. London: Academic Pressv, pp. 3–34Google Scholar
Brescia, N. J. (1961). Applied Dental Anatomy. St Louis: MosbyGoogle Scholar
Broca, P. (1867). Recherches sur un nouveau group de tumeurs désigné sous le nom d'ontomes. Comptes Rendus Hebdomadaires des Séances de l'Académie de Sciences, 65, 1117–21Google Scholar
Bromage, T. G. (1991). Enamel incremental periodicity in the pig-tailed macaque: a polychrome fluorescent labeling study of dental hard tissues. American Journal of Physical Anthropology, 86, 205–14CrossRefGoogle Scholar
Bromage, T. G. & Dean, M. C. (1985). Re-evaluation of the age at death of immature fossil hominids. Nature, 317, 525–7CrossRefGoogle ScholarPubMed
Brooks, S. & Suchey, J. M. (1990). Skeletal age determination based on the os pubis: a comparison of the Acsádi-Nemeskéri and Suchey-Brooks methods. Human Evolution, 5, 227–38CrossRefGoogle Scholar
Brothwell, D. R. (1963a). Dental Anthropology. London: Pergamon PressGoogle Scholar
Brothwell, D. R. (1963b). Digging up Bones. London & Oxford: British Museum & Oxford University PressGoogle Scholar
Brothwell, D. R. (1963c). The macroscopic dental pathology of some earlier human populations. In Brothwell, D. R. (ed.), Dental Anthropology. London: Pergamon Press, pp. 272–87Google Scholar
Brothwell, D. R. (1981a). Digging up Bones. Third edition. London & Oxford: British Museum & Oxford University PressGoogle Scholar
Brothwell, D. R. (1981b). The Pleistocene and Holocene archaeology of the house mouse and related species. Symposia of the Zoological Society of Great Britian, 47, 1–13Google Scholar
Brothwell, D. R. (1989). The relationship of tooth wear to aging. In Iscan, M. Y. (ed.), Age Markers in the Human Skeleton. Springfield: Charles C. Thomas, pp. 303–16Google Scholar
Brothwell, D. R., Carbonell, V. M., & Goose, D. H. (1963). Congenital absence of teeth in human populations. In Brothwell, D. R. (ed.), Dental Anthropology. London: Pergamon Press, pp. 179–89Google Scholar
Brown, D. & Anthony, D. (1998). Bit wear, horseback riding and the Botai Site in Kazakhstan. Journal of Archaeological Science, 25, 331–47CrossRefGoogle Scholar
Brown, W. A. B. & Chapman, N. G. (1990). The dentition of fallow deer (Dama dama): a scoring scheme to assess age from wear of the permanent molariform teeth. Journal of Zoology, 221, 659–82CrossRefGoogle Scholar
Brown, W. A. B. & Chapman, N. G. (1991a). The dentition of red deer (Cervus elaphus): a scoring scheme to assess age from wear of the permanent molariform teeth. Journal of Zoology, 224, 519–36CrossRefGoogle Scholar
Brown, W. A. B. & Chapman, N. G. (1991b). The dentition of red deer (Cervus elaphus): from a scoring scheme based on radiographs of developing permanent molariform teeth. Journal of Zoology, 224, 85–97CrossRefGoogle Scholar
Brown, W. A. B., Christofferson, D. V. M., Massler, M., & Weiss, M. B. (1960). Postnatal tooth development in cattle. American Journal of Veterinary Research XⅪ, 80, 7–34Google Scholar
Brudevold, F. & Söremark, R. (1967). Chemistry of the mineral phase of enamel. In Miles, A. E. W. (ed.), Structural and Chemical Organization of Teeth. London: Academic Pressv, pp. 247–78Google Scholar
Buikstra, J. E. & Konigsberg, L. W. (1985). Paleodemography: critiques and controversies. American Anthropologist, 87, 316–33CrossRefGoogle Scholar
Buikstra, J. E. & Mielke, J. H. (1985). Demography, diet, and health. In Gilbert, R. I. & Mielke, J. H. (eds.), Analysis of Prehistoric Diets. New York: Academic Press, pp. 359–422Google Scholar
Buikstra, J. E. & Ubelaker, D. H. (1994). Standards for Data Collection from Human Skeletal Remains. Fayetteville: Arkansas Archeological SurveyGoogle Scholar
Bull, G. & Payne, S. (1982). Tooth eruption and epiphyseal fusion in pigs and wild boar. In Wilson, B., Grigson, C., & Payne, S. (eds.), Ageing and Sexing Animal Bones from Archaeological Sites. British Archaeology Reports British Series 109. Oxford: British Archaeology Reports
Bullock, D. & Rackham, J. (1982). Epiphyseal fusion and tooth eruption of feral goats from Moffatdale, Dumfries and Galloway, Scotland. In Wilson, B., Grigson, C., & Payne, S. (eds.), Ageing and Sexing Animal Bones from Archaeological Sites. British Archaeology Reports British Series 109. Oxford: British Archaeology Reports, pp. 73–80Google Scholar
Burke, A. & Castanet, J. (1995). Histological observations of cementum growth in horse teeth and their application to archaeology. Journal of Archaeological Science, 22, 479–93CrossRefGoogle Scholar
Burns, K. R. & Maples, W. R. (1976). Estimation of age from individual adult teeth. Journal of Forensic Sciences, 21, 343–56CrossRefGoogle ScholarPubMed
Burton, J. H. & Price, T. (1999). Evaluation of bone strontium as a measure of seafood consumption. International Journal of Osteoarchaeology, 9, 233–63.0.CO;2-S>CrossRefGoogle Scholar
Burton, J. H. & Wright, L. E. (1995). Nonlinearity in the relationship between bone Sr/Ca and diet: paleodietary implications. American Journal of Physical Anthropology, 96, 273–82CrossRefGoogle ScholarPubMed
Butler, P. M. (1939). Studies in the mammalian dentition – and of differentiation of the postcanine dentition. Proceedings of the Zoological Society, London, B, 107, 103–32Google Scholar
Butler, P. M. (1978). Molar cusp nomenclature and homology. In Butler, P. M. & Joysey, K. A. (eds.), Development, Function and Evolution of Teeth. London: Academic Press, pp. 439–54Google Scholar
Butler, P. M. (1982). Some problems of the ontogeny of tooth patterns. In Kurtén, B. (ed.), Teeth, Form Function and Evolution. Columbia: University Press, pp. 44–51Google Scholar
Calcagno, J. M. (1989). Mechanisms of Human Dental Reduction. A Case Study from Post-Pleistocene Nubia. University of Kansas Publications in Anthropology 18. Lawrence: University of KansasGoogle Scholar
Cameron, N. (1998). Radiographic assessment. In Ulijaszek, S. J., Johnston, F. E., & Preece, M. A. (eds.), The Cambridge Encyclopedia of Human Growth and Development. Cambridge: Cambridge University Press, pp. 42–4Google Scholar
Campbell, T. D. (1937). Dental observations on the teeth of Australian aborigines, Hermannsberg, Central Australia. Australian Journal of Dentistry, 41, 1–6Google Scholar
Campbell, T. D. & Gray, J. H. (1936). Observations on the teeth of Australian aborigines. Australian Journal of Dentistry, 40, 290–5Google Scholar
Carlson, D. S. & Gerven, D. P. (1977). Masticatory function and post-Pleistocene evolution in Nubia. American Journal of Physical Anthropology, 46, 495–506CrossRefGoogle ScholarPubMed
Carrick, R. & Ingham, S. E. (1962). Studies on the southern elephant seal, Mirounga leonina (L.). II Canine tooth structure in relation to function and age determination. Commonwealth Scientific and Industrial Research Organization Wildlife Research, 7, 102–18Google Scholar
Carter, J. T. (1922). On the structure of enamel in Primates and some other mammals. Proceedings of the Zoological Society of London, 1922, 599–608CrossRefGoogle Scholar
Carter, R. J. (1997). Age estimation of the roe deer (Capreolus capreolus) mandibles from the Mesolithic site of Star Carr, Yorkshire, based on radiographs of mandibular tooth development. Journal of Zoology, 241, 495–502CrossRefGoogle Scholar
Carter, R. J. (1998). Reassessment of seasonality at the Early Mesolithic site of Star Carr, Yorkshire, based on radiographs of mandibular tooth development in red deer (Cervus elaphus). Journal of Archaeological Science, 25, 851–6CrossRefGoogle Scholar
Carter, R. J. (2000). New evidence for seasonal human presence at the Early Mesolithic site of Thatcham, Berkshire, England. Journal of Archaeological Science, 28, 1055–60CrossRefGoogle Scholar
Castanet, J. (1981). Quelques remarques sur la méthode squelettochronologique chez les vertébrés supérieurs (oiseaux et mammifières). Bulletin Société Zoologique de France, 105, 371–6Google Scholar
Casteel, R. W. (1976). Incremental growth zones in mammals and their archaeological value. Papers of the Kroeber Anthropological Society (Berkeley), 47, 1–27Google Scholar
Caughley, G. (1965). Horn rings and tooth eruption as criteria of age in the Himalayan Thar, Hemitragus jemlahicus. New Zealand Journal of Science, 8, 333–51Google Scholar
Cawson, R. A. (1970). Essentials of Dental Surgery and Pathology. Edinburgh: Churchill LivingstoneGoogle Scholar
Charles, D. K., Condon, K., Cheverud, J. M., & Buikstra, J. E. (1986). Cementum annulation and age determination in Homo sapiens. I. Tooth variability and observer error. American Journal of Physical Anthropology, 71, 311–20CrossRefGoogle ScholarPubMed
Charles, D. K., Condon, K., Cheverud, J. M., & Buikstra, J. E. (1989). Estimating age at death from growth layer groups in cementum. In Iscan, M. Y. (ed.), Age Markers in the Human Skeleton. Springfield: Charles C. Thomas, pp. 277–316Google Scholar
Clarke, N. G. (1990). Periodontal defects of pulpal origin: evidence in early man. American Journal of Physical Anthropology, 82, 371–6CrossRefGoogle ScholarPubMed
Clarke, N. G. & Hirsch, R. S. (1991). Physiological, pulpal, and periodontal factors influencing alveolar bone. In Kelley, M. A. & Larsen, C. S. (eds.), Advances in Dental Anthropology. New York: Wiley-Liss, pp. 241–66Google Scholar
Clement, A. J. (1963). Variations in the microstructure and biochemistry of human teeth. In Brothwell, D. R. (ed.), Dental Anthropology. London: Pergamon Press, pp. 245–69Google Scholar
Clutton-Brock, J. (1987). A Natural History of Domesticated Mammals. London & Cambridge: British Museum (Natural History) & Cambridge University PressGoogle Scholar
Clutton-Brock, J., Dennis-Bryan, K., Armitage, P., & Jewell, P. A. (1990). Osteology of Soay sheep. Bulletin of the British Museum of Natural History, 56, 1–56Google Scholar
Colby, G. R. (1996). Analysis of dental sexual dimorphism in two Western Gulf of Mexico precontact populations utilizing cervical measurements (abstract). American Journal of Physical Anthropology, Supplement 22, 87Google Scholar
Colyer, J. F. (1936). Variations and Diseases of the Teeth of Animals. London: John Bale, Sons & DanielssonGoogle Scholar
Commission on Oral Health (1982). An epidemiological index of developmental defects of dental enamel (DDE Index). International Dental Journal, 32, 159–67
Condon, K. W. (1981). Correspondence of developmental enamel defects between the mandibular canine and first premolar. American Journal of Physical Anthropology, 54, 211Google Scholar
Condon, K., Becker, J., Condon, C., & Hoffman, J. R. (1994). Dental and skeletal indicators of a congenital treponematosis. American Journal of Physical Anthropology, Supplement 18, 70Google Scholar
Condon, K., Charles, D. K., Cheverud, J. M., & Buikstra, J. E. (1986). Cementum annulation and age determination in Homo sapiens. II. Estimates and accuracy. American Journal of Physical Anthropology, 71, 321–30CrossRefGoogle ScholarPubMed
Conroy, G. C. & Vannier, M. W. (1987). Dental development of the Taung skull from computerized tomography. Nature, 329, 625–7CrossRefGoogle ScholarPubMed
Cook, D. C. (1981). Mortality, age-structure, and status in interpretation of stress indicators in prehistoric skeletons: a dental example from the lower Illinois Valley. In Chapman, R., Kinnes, I., & Randsborg, K. (eds.), The Archaeology of Death. Cambridge: Cambridge University Press, pp. 133–44Google Scholar
Cook, D. C. (1984). Subsistence and health in the Lower Illinois Valley: osteological evidence. In Cohen, M. N. & Armelagos, G. J. (eds.), Palaeopathology at the Origins of Agriculture. New York: Academic Press, pp. 235–69Google Scholar
Cooper, A. & Poinar, H. (2000). Ancient DNA: do it right or not at all. Science, 289, 1139CrossRefGoogle ScholarPubMed
Coote, G. E. (1988). Fluorine diffusion profiles in archaeological human teeth: a method for relative dating of burials? In Prescott, J. R. (ed.), Archaeometry: Australian Studies 1988. Adelaide: Department of Physics, University of Adelaide, pp. 99–104Google Scholar
Coote, G. E. & Nelson, P. (1987). Diffusion profiles of fluorine in archaeological bones and teeth: their measurement and application. In Ward, G. K. (ed.), Archaeology at ANZAAS. Canberra: Canberra Archaeological Society, Australian National University, pp. 22–7Google Scholar
Coote, G. E. & Sparks, R. J. (1981). Fluorine concentration profiles in archaeological bones. New Zealand Journal of Archaeology, 3, 21–32Google Scholar
Corbet, G. B. (1975). Examples of short-and long-term changes of dental pattern in Scottish voles (Rodentia; Microtinae). Mammal Review, 5, 17–21CrossRefGoogle Scholar
Corbet, G. B. (1978). The Mammals of the Palaearctic Region: a Taxonomic Review. London and Ithaca: British Museum of Natural History and Cornell University PressGoogle Scholar
Corbet, G. B. & Hill, J. E. (1990). World List of Mammalian Species. London: Natural History MuseumGoogle Scholar
Corbett, M. E. & Moore, W. J. (1976). Distribution of dental caries in ancient British populations: IV The 19th century. Caries Research, 10, 401–14CrossRefGoogle ScholarPubMed
Corruccini, R. S. (1977a). Crown component variation in hominoid lower third molars. Zeitschrift für Morphologie und Anthropologie, 68, 14–25Google Scholar
Corruccini, R. S. (1977b). Crown component variation in the hominoid lower second premolar. Journal of Dental Research, 56, 1093–6CrossRefGoogle Scholar
Corruccini, R. S. (1978). Crown component analysis of the hominoid upper first premolar. Archives of Oral Biology, 23, 491–4CrossRefGoogle Scholar
Corruccini, R. S. (1990). Australian aboriginal tooth succession, interproximal attrition, and Begg's theory. American Journal of Orthodontics & Dentofacial Orthopaedics, 97, 349–57CrossRefGoogle ScholarPubMed
Corruccini, R. S. (1991). Anthropological aspects of orofacial and occlusal variations and anomalies. In Kelley, M. A. & Larsen, C. S. (eds.), Advances in Dental Anthropology. New York: Wiley-Liss, pp. 295–323Google Scholar
Corruccini, R. S. & Potter, R. H. Y. (1980). Genetic analysis of occlusal variation in twins. American Journal of Orthodontics, 78, 140–54CrossRefGoogle ScholarPubMed
Corruccini, R. S., Sharma, K., & Potter, R. H. Y. (1986). Comparative genetic variance and heritability of dental occlusal variables in US and Northwest Indian twins. American Journal of Physical Anthropology, 70, 293–9CrossRefGoogle Scholar
Corruccini, R. S. & Shimada, I. (2002). Dental relatedness corresponding to mortuary patterning at Huaca Loro, Peru. American Journal of Physical Anthropology, 117, 113–21CrossRefGoogle ScholarPubMed
Corruccini, R. S., Shimada, I., & Shinoda, K. (2002). Dental and mtDNA relatedness among thousand-year-old remains from Huaca Loro, Peru. Dental Anthropology, 16, 9–14Google Scholar
Corruccini, R. S., Townsend, G. C., & Brown, T. (1990). Occlusal variation in Australian aboriginals. American Journal of Physical Anthropology, 82, 257–65CrossRefGoogle ScholarPubMed
Coy, J. P., Jones, R. T., & Turner, K. A. (1982). Absolute ageing in cattle from tooth sections and its relevance to archaeology. In Wilson, B., Grigson, C., & Payne, S. (eds.), Ageing and Sexing Animal Bones from Archaeological Sites. British Archaeological Reports, British Series 109. Oxford: British Archaeological Reports, pp. 127–40Google Scholar
Crossner, C. G. & Mansfield, L. (1983). Determination of dental age in adopted non-European children. Swedish Dental Journal, 7, 1–10Google ScholarPubMed
Crowcroft, P. (1957). The Life of the Shrew. London: Reinhardt
Cutress, T. W. & Schroeder, H. E. (1982). Histopathology of periodontitis (broken-mouth) in sheep: a further consideration. Research in Veterinary Science, 33, 64–9Google ScholarPubMed
d'Errico, F. & Vanhaeren, M. (2002). Criteria for identifying red deer (Cervus elaphus) age and sex from their canines. Application to the study of Upper Palaeolithic and Mesolithic ornaments. Journal of Archaeological Science, 29, 211–32CrossRefGoogle Scholar
Dahlberg, A. A. (1945). The changing dentition of man. Journal of the American Dental Association, 6, 676–90CrossRefGoogle Scholar
Dahlberg, A. A. (1947). The evolutionary significance of the protostylid. American Journal of Physical Anthropology, 8, 15–25CrossRefGoogle Scholar
Dahlberg, A. A. (1961). Relationship of tooth size to cusp number and groove conformation of occlusal surface patterns of lower molar teeth. Journal of Dental Research, 44, 476–9Google Scholar
Dahlberg, A. A. (1963). Analysis of the American Indian dentition. In Brothwell, D. R. (ed.), Dental Anthropology. London: Pergamon Press, pp. 149–78Google Scholar
Danenberg, P. J., Hirsch, R. S., Clarke, N. G., Leppard, P. I., & Richards, L. C. (1991). Continuous tooth eruption in Australian aboriginal skulls. American Journal of Physical Anthropology, 85, 305–12CrossRefGoogle ScholarPubMed
Daniel, G. (1978). 150 Years of Archaeology. London: DuckworthGoogle Scholar
Darling, A. I. (1959). The pathology and prevention of caries. British Dental Journal, 107, 287–96Google Scholar
Darling, A. I. (1963). Microstructural changes in early dental caries. In Soggnaes, R. F. (ed.), Mechanisms of Hard Tissue Destruction. Washington: American Association for the Advancement of Science, pp. 171–85Google Scholar
Dart, R. A. (1925). Australopithecus africanus: the man-ape of South Africa. Nature, 115, 195–9CrossRefGoogle Scholar
Davies, T. G. H. & Pedersen, P. O. (1955). The degree of attrition of the deciduous teeth and the first permanent molars of primitive and urbanised Greenland natives. British Dental Journal, 99, 35–43Google Scholar
Davis, S. J. M. (1980). A note on the dental and skeletal ontogeny of Gazella. Israel Journal of Zoology, 29, 129–34Google Scholar
Davis, S. J. M. (1981). The effects of temperature change and domestication on the body size of late Pleistocene to Holocene mammals in Israel. Paleobiology, 7, 101–14CrossRefGoogle Scholar
Davis, S. J. M. (1983). The age profiles of gazelles predated by ancient man in Israel: possible evidence for a shift from seasonality to sedentism in the Natufian. Paléorient, 9, 55–62CrossRefGoogle Scholar
Davis, S. J. M. (1984). Tiny elephants and giant mice. New Scientist, 105, 25–7Google Scholar
Davis, S. J. M. (1987). The Archaeology of Animals. London: BatsfordGoogle Scholar
Day, M. H. & Molleson, T. I. (1973). The Trinil femora. In Day, M. H. (ed.), Human Evolution. London: Taylor and Francis, pp. 127–54Google Scholar
Dayan, T. (1994). Early domesticated dogs of the Near East. Journal of Archaeological Science, 21, 633–40CrossRefGoogle Scholar
Vito, C. & Saunders, S. R. (1990). A discriminant function analysis of deciduous teeth to determine sex. Journal of Forensic Sciences, 35, 845–58Google ScholarPubMed
Dean, M. C. (1987). Growth layers and incremental markings in hard tissues; a review of the literature and some preliminary observations about enamel structure in Paranthropus boisei. Journal of Human Evolution, 16, 157–72CrossRefGoogle Scholar
Dean, M. C. (1995). The nature and periodicity of incremental lines in primate dentine and their relationship to periradicular bands in OH 16 (Homo habilis). In Moggi-Cecchi, J. (ed.), Structure, Function and Evolution of Teeth. Dental Morphology Meeting, Florence, September 1992. Florence: International Institute for the Study of Man, pp. 239–65Google Scholar
Dean, M. C. (1998a). A comparative study of cross striation spacings in cuspal enamel and of four methods of estimating the time taken to grow molar cuspal enamel in Pan, Pongo and Homo. Journal of Human Evolution, 35, 449–62CrossRefGoogle Scholar
Dean, M. C. (1998b). Comparative observations on the spacing of short-period (von Ebner's) lines in dentine. Archives of Oral Biology, 43, 1009–21CrossRefGoogle Scholar
Dean, M. C. & Beynon, A. D. (1991). Histological reconstruction of crown formation times and initial root formation times in a modern human child. American Journal of Physical Anthropology, 86, 215–28CrossRefGoogle Scholar
Dean, M. C., Beynon, A. D., & Reid, D. J. (1992a). Microanatomical estimates of rates of root extension in a modern human child from Spitalfields, London. In Smith, P. & Tchernov, E. (eds.), Structure, Function and Evolution of Teeth. London & Tel Aviv: Freund Publishing House, pp. 311–34Google Scholar
Dean, M. C., Beynon, A. D., Thackeray, J. F., & Macho, G. A. (1993). Histological reconstruction of dental development and age at death of a juvenile Paranthropus robustus specimen, SK 63, from Swartkrans, South Africa. American Journal of Physical Anthropology, 91, 401–20CrossRefGoogle ScholarPubMed
Dean, M. C., Jones, M. E., & Pilley, J. R. (1992b). The natural history of tooth wear, continuous eruption and periodontal disease in wild shot great apes. Journal of Human Evolution, 22, 23–39CrossRefGoogle Scholar
Dean, M. C., Leakey, M. G., Reid, D. J., Schrenk, F., Schwartz, G., Stringer, C. B., & Walker, A. (2001). Growth processes in teeth distinguish modern humans from Homo erectus and earlier hominins. Nature, 414, 628–31CrossRefGoogle ScholarPubMed
Dean, M. C. & Scandrett, A. E. (1996). The relation between long-period incremental markings in dentine and daily cross-striations in enamel in human teeth. Archives of Oral Biology, 41, 233–41CrossRefGoogle ScholarPubMed
Degerb⊘l, M. (1961). On a find of Preboreal domestic dog (Canis familiaris, L.) from Star Carr, Yorkshire, with remarks on other Mesolithic dogs. Proceedings of the Prehistoric Society, 27, 35–55CrossRefGoogle Scholar
Demetsopoullos, I. C., Burleigh, R., & Oakley, K. P. (1983). Relative and absolute dating of the human skull and skeleton from Galley Hill, Kent. Journal of Archaeological Science, 10, 129–34CrossRefGoogle Scholar
Demirjian, A., Goldstein, H., & Tanner, J. M. (1973). A new system of dental age assessment. Human Biology, 45, 211–27Google ScholarPubMed
Dempsey, P., Townsend, G. C., Martin, N., & Neale, M. (1995). Genetic covariance structure of incisor crown size in twins. Journal of Dental Research, 74, 1389–98CrossRefGoogle ScholarPubMed
Deniz, E. & Payne, S. (1979). Eruption and wear in the mandibular dentition of Turkish Angora goats in relation to ageing sheep/goat mandibles from archaeological sites. In Kubasiewicz, M. (ed.), Archaeozoology Volume I.Szezecin: Agricultural Academy, pp. 153–63Google Scholar
Deniz, E. & Payne, S. (1982). Eruption and wear in the mandibular dentition as a guide to ageing Turkish angora goats. In Wilson, B., Grigson, C., & Payne, S. (eds.), Ageing and Sexing Animal Bone from Archaeological Sites. British Archaeological Reports British Series 109. Oxford: British Archaeological ReportsGoogle Scholar
Dent, V. E. & Marsh, P. D. (1981). Evidence for a basic plaque microbial community on the tooth surface in animals. Archives of Oral Biology, 26, 171–9CrossRefGoogle ScholarPubMed
Deutsch, D., Dafni, A., Palmon, A., Held, A. J., Young, M. F., & Fisher, L. W. (1997). Tuftelin: enamel mineralization and amelogenesis imperfecta. In Chadwick, D. J. & Cardew, G. (eds.), Dental Enamel. Ciba Foundation Symposium 205. Chichester: Wiley, pp. 135–55Google Scholar
Dias, G. & Tayles, N. (1997). ‘Abscess cavity’ – a misnomer. International Journal of Osteoarchaeology, 7, 548–543.0.CO;2-I>CrossRefGoogle Scholar
DiBennardo, R. & Bailit, H. L. (1978). Stress and dental asymmetry in a population of Japanese children. American Journal of Physical Anthropology, 48, 89–94CrossRefGoogle Scholar
Dirks, W. (1998). Histological reconstruction of dental development and age at death in a juvenile gibbon (Hylobates lar). Journal of Human Evolution, 35, 411–25CrossRefGoogle Scholar
Dirks, W., Reid, D. J., Jolly, C. J., Phillips-Conroy, J. E., & Brett, F. L. (2002). Out of the mouths of baboons: stress, life history, and dental development in the Awash National Park Hybrid Zone, Ethiopia. American Journal of Physical Anthropology, 118, 239–52CrossRefGoogle ScholarPubMed
Ditch, L. E. & Rose, J. C. (1972). A multivariate sexing technique. American Journal of Physical Anthropology, 37, 61–4CrossRefGoogle ScholarPubMed
Doberenz, A. R., Miller, M. F., & Wyckoff, R. W. G. (1969). Fossil enamel protein. Calcified Tissue Research, 3, 93–5CrossRefGoogle ScholarPubMed
Doberenz, A. R. & Wyckoff, R. W. G. (1967). The microstructure of fossil teeth. Journal of Ultrastructure Research, 18, 166–75CrossRefGoogle ScholarPubMed
Dobney, K. & Brothwell, D. (1986). Dental calculus: its relevance to ancient diet and oral ecology. In Cruwys, E. & Foley, R. A. (eds.), Teeth and Anthropology. B. A. R. International Series 291. Oxford: British Archaeological Reports, pp. 55–82Google Scholar
Dobney, K. & Ervynck, A. (2000). Interpreting developmental stress in archaeological pigs: the chronology of linear enamel hypoplasia. Journal of Archaeological Science, 27, 597–607CrossRefGoogle Scholar
Ducos, P. (1968). L'origine des Animaux Domestiques en Palestine. Bordeaux: Travaux de l'Université de Bordeaux 6Google Scholar
Ducos, P. (1969). Methodology and results of the study of the earliest domesticated animals in the Near East (Palestine). In Ucko, P. J. & Dimbleby, G. W. (eds.), The Domestication and Exploitation of Plants and Animals. London: Duckworth, pp. 265–75Google Scholar
Duncan, W. J., Persson, G. R., Sims, T. J., Braham, P., Pack, A. R. C., & Page, R. C. (2003). Ovine periodontitis as a potential model for periodontal studies. Cross-sectional anlayais of clinical, microbiological, and serum immunological parameters. Journal of Clinical Periodontology, 30, 63–72CrossRefGoogle ScholarPubMed
Ekstrand, K. R., Kuzmina, I., Bj⊘rndal, L., & Thylstrup, A. (1995). Relationship between external and histologic features of progressive stages of caries in the occlusal fossa. Caries Research, 29, 243–50CrossRefGoogle ScholarPubMed
Elliott, J. C. (1997). Structure, crystal chemistry and density of enamel apatites. In Chadwick, D. J. & Cardew, G. (eds.), Dental Enamel. Ciba Foundation Symposium 205. Chichester: Wiley, pp. 54–84
Elvery, M. W., Savage, N. W., & Wood, W. B. (1998). Radiographic study of the Broadbeach aboriginal dentition. American Journal of Physical Anthropology, 107, 211–193.0.CO;2-X>CrossRefGoogle ScholarPubMed
Enlow, D. H. & Hansen, B. F. (1996). Essentials of Facial Growth. London: SaundersGoogle Scholar
Espelid, I., Tveit, A. B., & Fjelltveit, A. (1994). Variations among dentists in radiographic detection of occlusal caries. Caries Research, 28, 169–75CrossRefGoogle ScholarPubMed
Evans, K., Hindell, M. A., Robertson, K., Lockyer, C., & Rice, D. (2002). Factors affecting the precision of age determination of sperm whales (Physeter macrocephalus). Journal of Cetacean Research and Management, 4, 193–201Google Scholar
Ewbank, J. M., Phillipson, D. W., & Whitehouse, R. D. (1964). Sheep in the Iron Age: a method of study. Proceedings of the Prehistoric Society, 30, 423–6CrossRefGoogle Scholar
Ezzo, J. A., Johnson, C. M., & Price, T. D. (1997). Analytical perspectives on prehistoric migration: a case study from East-Central Arizona. Journal of Archaeological Science, 24, 447–66CrossRefGoogle Scholar
Falguères, C. (2003). ESR dating and the human evolution: contribution to the chronology of the earliest humans in Europe. Quaternary Science Reviews, 22, 1345–51CrossRefGoogle Scholar
Falin, L. I. (1961). Histological and histochemical studies of human teeth of the Bronze and Stone Ages. Archives of Oral Biology, 5, 5–13CrossRefGoogle Scholar
Ferembach, D., Schwidetzky, I., & Stloukal, M. (1980). Recommendations for age and sex diagnoses of skeletons. Journal of Human Evolution, 9, 517–49Google Scholar
Fernandez, P. & Legendre, S. (2003). Mortality curves for horses from the Middle Palaeolithic site of Bau de l'Aubesier (Vaucluse, France): methodological, palaeo-ethnological, and palaeo-ecological approaches. Journal of Archaeological Science, 30, 1577–98CrossRefGoogle Scholar
Fincham, A. G. & Simmer, J. P. (1997). Amelogenin proteins of developing dental enamel. In Chadwick, D. J. & Cardew, G. (eds.), Dental Enamel. Ciba Foundation Symposium 205. Chichester: Wiley, pp. 118–46
Fitzgerald, C. & Rose, J. (2000). Reading between the lines: dental development and subadult age assessment using the microstructural growth markers of teeth. In Katzenberg, M. A. & Saunders, S. R. (eds.), Biological Anthropology of the Human Skeleton. New York: John Wiley, pp. 163–86Google Scholar
Fitzgerald, C. M. (1998). Do enamel microstructures have regular time dependency? Conclusions from the literature and a large-scale study. Journal of Human Evolution, 35, 371–86CrossRefGoogle Scholar
Foti, B., Adalian, P., Signoli, M., Ardagna, Y., Dutour, O., & Leonetti, G. (2001). Limits of the Lamendin method in age determination. Forensic Science International, 122, 101–6CrossRefGoogle ScholarPubMed
Frank, R. M. (1978). Les stries brunes de Retzius en microscopie électronique à balayage. Journal de Biologie Buccale, 6, 139–51Google Scholar
Frank, R. M. & Brendel, A. (1966). Ultrastructure of the approximal dental plaque. Archives of Oral Biology, 11, 883–912CrossRefGoogle ScholarPubMed
Frank, R. M. & Nalbandian, J. (1989). Structure and ultrastructure of dentine. In Berkovitz, B. K. B., Boyde, A., Frank, R. M., Höhling, H. J., Moxham, B. J., Nalbandian, J., & Tonge, C. H. (eds.), Teeth. Handbook of Microscopic Anatomy. New York: Springer, pp. 173–247CrossRefGoogle Scholar
Frayer, D. W. (1978). Evolution of the Dentition in Upper Palaeolithic and Mesolithic Europe. University of Kansas Publications in Anthropology 10. Lawrence: University of KansasGoogle Scholar
Frayer, D. W. (1980). Sexual dimorphism and cultural evolution in the Late Pleistocene and Holocene of Europe. Journal of Human Evolution, 9, 399–415CrossRefGoogle Scholar
Frayer, D. W. (1984). Biological and cultural change in the European Late Pleistocene and Early Holocene. In Smith, F. H. & Spencer, F. (eds.), The Origin of Modern Humans. New York: Alan R. Liss, pp. 211–50Google Scholar
Frison, G. C. & Reher, C. A. (1970). Appendix I: age determination of buffalo by teeth eruption and wear. In Frison, G. C. (ed.), The Glenrock Buffalo Jump, 48CO304: Late Prehistoric Period Buffalo Procurement and Butchering on the Northwestern Plains. Plains Anthropologist Memoir 7, pp. 46–47CrossRef
Fujita, T. (1939). Neue Feststellungen uber Retzius'schen Parallelstreifung des Zahnschmelzes. Anatomischer Anzeiger, 87, 350–5Google Scholar
Fukuhara, T. (1959). Comparative anatomical studies of the tooth growth lines in the enamel of mammalian teeth (in Japanese). Acta Anatomica Nipponica, 34, 322–32Google Scholar
Funmilayo, O. (1976). Age determination, age distribution and sex ratio in mole populations. Acta Theriologica, 21, 207–15CrossRefGoogle Scholar
Garn, S. M., Cole, P. E., & Astine, W. L. (1979a). Sex discriminatory effectiveness using combinations of root lengths and crown diameters. American Journal of Physical Anthropology, 50, 115–18CrossRefGoogle Scholar
Garn, S. M., Cole, P. E., Wainwright, R. L., & Guire, K. E. (1977). Sex discriminatory effectiveness using combinations of permanent teeth. Journal of Dental Research, 56, 697CrossRefGoogle ScholarPubMed
Garn, S. M., Lewis, A. B., Dahlberg, A. A., & Kerewsky, R. S. (1966a). Interaction between relative molar size and relative number of cusps. Journal of Dental Research, 45, 1240CrossRefGoogle Scholar
Garn, S. M., Lewis, A. B., & Kerewsky, R. S. (1966b). The meaning of bilateral asymmetry in the permanent dentition. Angle Orthodontist, 36, 55–62Google Scholar
Garn, S. M., Lewis, A. B., & Kerewsky, R. S. (1967a). Sex difference in tooth shape. Journal of Dental Research, 46, 1470CrossRefGoogle Scholar
Garn, S. M., Lewis, A. B., & Kerewsky, R. S. (1968). The magnitude and implications of the relationship between tooth size and body size. Archives of Oral Biology, 13, 129–31CrossRefGoogle ScholarPubMed
Garn, S. M., Lewis, A. B., Kerewsky, R. S., & Dahlberg, A. A. (1966c). Genetic independence of Carabelli's trait from tooth size or crown morphology. Archives of Oral Biology, 11, 745–7CrossRefGoogle Scholar
Garn, S. M., Lewis, A. B., Swindler, D. R., & Kerewsky, R. S. (1967b). Genetic control of dimorphism in tooth size. Journal of Dental Research, 46, 963–72CrossRefGoogle Scholar
Garn, S. M., Osborne, R. H., & McCabe, K. D. (1979b). The effect of prenatal factors on crown dimensions. American Journal of Physical Anthropology, 51, 665–78CrossRefGoogle Scholar
Garniewicz, R. C. (2000). Age and sex determination from the mandibular dentition of raccoons: techniques and applications. Archaeozoologia, , 223–38Google Scholar
Gasaway, W. C., Harkness, D. B., & Rausch, R. A. (1978). Accuracy of moose age determinations from incisor cementum layers. Journal of Wildlife Management, 42, 558–63CrossRefGoogle Scholar
Getty, R. (1975). Sisson and Grossman's The Anatomy of the Domestic Animals. Fifth edition. Philadelphia: SaundersGoogle Scholar
Gifford-Gonzalez, D. (1992). Examining and refining the quadratic crown height method of age estimation. In Stiner, M. C. (ed.), Human Predators and Prey Mortality. Boulder: Westview Press, pp. 41–78Google Scholar
Gilbert, F. F. & Stolt, S. L. (1970). Variation and aging white-tailed deer by tooth wear characteristics. Journal of Wildlife Management, 34, 532–5CrossRefGoogle Scholar
Gilkeston, C. F. (1997). Tubules in Australian marsupials. In Koenigswald, W. & Sander, P. M. (eds.), Tooth Enamel Microstructure. Rotterdam: A. A. Balkema, pp. 113–21Google Scholar
Gingerich, P. D. (1977). Correlation of tooth size and body size in living hominoid Primates, with a note on the relative brain size in Aegyptopithecus and Proconsul. American Journal of Physical Anthropology, 47, 395–8CrossRefGoogle ScholarPubMed
Gipson, P. S., Ballard, W. B., Nowak, R. M., & Mech, L. D. (2000). Accuracy and precision of estimating age of gray wolves by tooth wear. Journal of Wildlife Management, 64, 752–8CrossRefGoogle Scholar
Gittleman, J. L. & Valkenburgh, B. (1997). Sexual dimorphism in the canines and skulls of carnivores: effects of size, phylogeny, and behavioural change. Journal of Zoology, 242, 97–117CrossRefGoogle Scholar
Glimcher, M. J., Cohensolal, L., Kossiva, D., & Dericqles, A. (1990). Biochemical analyses of fossil enamel and dentin. Paleobiology, 16, 219–32CrossRefGoogle Scholar
Goaz, P. W. & White, S. C. (1994). Oral Radiology: Principles and Interpretation. St Louis: Mosby
Gobetz, K. E. & Bozarth, S. R. (2001). Implications for Late Pleistocene Mastodon diet from opal phytoliths in tooth calculus. Quaternary Research, 55, 115–22CrossRefGoogle Scholar
Goldstein, J. I., Newbury, D. E., Echlin, P., Joy, D. C., Romig, A. D., Lyman, C. E., Fiori, C., & Lifshin, E. (1992). Scanning Electron Microscopy and X-ray Microanalysis. New York: Plenum PressCrossRefGoogle Scholar
Goodman, A. H., Armelagos, G. J., & Rose, J. C. (1980). Enamel hypoplasias as indicators of stress in three prehistoric populations from Illinois. Human Biology, 52, 515–28Google ScholarPubMed
Goodman, A. H., Armelagos, G. J., & Rose, J. C. (1984a). The chronological distribution of enamel hypoplasias from prehistoric Dickson Mounds populations. American Journal of Physical Anthropology, 65, 259–66CrossRefGoogle Scholar
Goodman, A. H., Lallo, J., Armelagos, G. J., & Rose, J. C. (1984b). Health changes at Dickson Mounds, Illinois (A.D. 950–1300). In Cohen, M. N. & Armelagos, G. J. (eds.), Palaeopathology at the Origins of Agriculture. New York: Academic Press, pp. 271–306Google Scholar
Goodman, A. H., Martinez, C., & Chavez, A. (1991). Nutritional supplementation and the development of linear enamel hypoplasias in children from Tezonteopan, Mexico. American Journal of Clinical Nutrition, 53, 773–81CrossRefGoogle ScholarPubMed
Goodman, A. H. & Rose, J. C. (1990). Assessment of systemic physiological perturbations from dental enamel hypoplasias and associated histological structures. Yearbook of Physical Anthropology, 33, 59–110CrossRefGoogle Scholar
Goodman, A. H., Thomas, R. B., Swedlund, A. C., & Armelagos, G. J. (1988). Biocultural perspectives of stress in prehistoric, historical and contemporary population research. Yearbook of Physical Anthropology, 31, 169–202CrossRefGoogle Scholar
Goose, D. H. (1963). Dental measurement: an assessment of its value in Anthropological studies. In Brothwell, D. R. (ed.), Dental Anthropology. London: Pergamon Press, pp. 125–48Google Scholar
Goose, D. H. (1971). The inheritance of tooth size in British families. In Dahlberg, A. A. (ed.), Dental Morphology and Evolution. Chicago: University of Chicago Press, pp. 263–70Google Scholar
Goose, D. H. & Appleton, J. (1982). Human Dentofacial Growth. Oxford: PergamonGoogle Scholar
Goose, D. H. & Lee, G. R. T. (1971). The mode of inheritance of Carabelli's trait. Human Biology, 43, 64–9Google ScholarPubMed
Goose, D. H. & Roberts, E. E. (1982). Size and morphology of children's teeth in North Wales. In Kurtén, B. (ed.), Teeth: Form, Function, and Evolution. New York: Columbia University Press, pp. 228–36Google Scholar
Gordon, K. D. (1988). A review of methodology and quantification in dental microwear analysis. Scanning Microscopy, 2, 1139–47Google ScholarPubMed
Gould, S. J. (1975). On the scaling of tooth size in mammals. American Zoologist, 15, 351–62CrossRefGoogle Scholar
Grant, A. (1975a). Fauna remains. In Cunliffe, B. (ed.), Excavations at Porchester Castle: II Saxon. Reports of the Research Committee of the Society of Antiquaries of London, 33. London: Thames & Hudson, pp. 262–96Google Scholar
Grant, A. (1975b). The animal bones. In Cunliffe, B. (ed.), Excavations at Portchester Castle: I Roman. Reports of the Research Committee of the Society of Antiquaries of London, 32. London: Thames & Hudson, pp. 378–408Google Scholar
Grant, A. (1975c). The use of tooth wear as a guide to the age of domestic animals. In Cunliffe, B. (ed.), Excavations at Portchester Castle: I Roman. Reports of the Research Committee of the Society of Antiquaries of London, 32. London: Thames & Hudson, pp. 437–50Google Scholar
Grant, A. (1977). Mammals. In Cunliffe, B. (ed.), Excavations at Portchester Castle: III Medieval. Reports of the Research Committee of the Society of Antiquaries of London, 34. London: Thames & Hudson, pp. 213–332Google Scholar
Grant, A. (1978). Variation in dental attrition in animals and its relevance to age estimation. In Brothwell, D., Thomas, K. D., & Clutton-Brock, J. (eds.), Research Problems in Zooarchaeology, Occasional Publications 3. London: University of London, Institute of Archaeology, pp. 103–6Google Scholar
Grant, A. (1982). The use of tooth wear as a guide to the age of domestic animals. In Wilson, B., Grigson, C., & Payne, S. (eds.), Ageing and Sexing Animal Bones from Archaeological Sites. British Archaeological Reports, British Series 109. Oxford: British Archaeological Reports, pp. 91–108Google Scholar
Gray, S. W. & Lamons, F. P. (1959). Skeletal development and tooth eruption in Atlanta children. American Journal of Orthodontics, 45, 272–7CrossRefGoogle Scholar
Grayson, D. K. (1984). Quantitative Zooarchaeology. New York: Academic PressGoogle Scholar
Greene, D. L. (1984). Fluctuating dental asymmetry and measurement error. American Journal of Physical Anthropology, 65, 283–9CrossRefGoogle ScholarPubMed
Grigson, C. (1982a). Sex and age determination of bones and teeth of domestic cattle: a review of the literature. In Wilson, B., Grigson, C., & Payne, S. (eds.), Ageing and Sexing Animal Bones from Archaeological Sites. British Archaeological Reports, British Series 109. Oxford: British Archaeological Reports, pp. 7–73Google Scholar
Grigson, C. (1982b). Sexing Neolithic cattle skulls and horncores. In Wilson, B., Grigson, C., & Payne, S. (eds.), Ageing and Sexing Animal Bones from Archaeological Sites. British Archaeological Reports, British Series 109. Oxford: British Archaeological Reports, pp. 24–35Google Scholar
Grigson, C. (1989). Size and sex: morphometric evidence for the domestication of cattle in the Near East. In Milles, A., Williams, D., & Gardner, N. (eds.), The Beginnings of Agriculture. BAR International Series 496. Oxford: British Archaeological Reports, pp. 77–109Google Scholar
Grine, F. E. (1986). Dental evidence for dietary differences in Australopithecus and Paranthropus: a quantitative analysis of permanent molar microwear. Journal of Human Evolution, 15, 783–822CrossRefGoogle Scholar
Grine, F. E. (1987). Quantitative analysis of occlusal microwear in Australopithecus and Paranthropus. Scanning Microscopy, 1, 647–56Google ScholarPubMed
Grine, F. E., Fosse, G., Krause, D. W., & Jungers, W. L. (1986). Analysis of enamel ultrastructure in archaeology: the identification of Ovis aries and Capra hircus dental remains. Journal of Archaeological Science, 13, 579–95CrossRefGoogle Scholar
Grine, F. E., Krause, D. W., Fosse, G., & Jungers, W. L. (1987). Analysis of individual, intraspecific and interspecific variability of caprine tooth enamel structure. Acta Odontologica Scandinavica, 45, 1–23CrossRefGoogle ScholarPubMed
Grün, R. & Stringer, C. B. (2000). Tabun revisited: revised ESR chronology and new ESR and U-series analyses of dental material from Tabun C1. Journal of Human Evolution, 39, 601–12CrossRefGoogle ScholarPubMed
Grüneberg, H. (1963). The Pathology of Development. Oxford: Blackwell Scientific PublicationsGoogle Scholar
Grüneberg, H. (1965). Genes and genotypes affecting the teeth of the mouse. Journal of Embryology and Experimental Morphology, 14, 137–59Google ScholarPubMed
Guatelli-Steinberg, D. (2000). Linear enamel hypoplasia in gibbons (Hylobates lar carpenteri). American Journal of Physical Anthropology, 112, 395–4103.0.CO;2-H>CrossRefGoogle Scholar
Guatelli-Steinberg, D. (2001). What can developmental defects of enamel reveal about physiological stress in non-human primates? Evolutionary Anthropology, 10, 138–51CrossRefGoogle Scholar
Guatelli-Steinberg, D. (2003). Macroscopic and microscopic analyses of linear enamel hypoplasia in Plio-Pleistocene South African hominins with respect to aspects of enamel development and morphology. American Journal of Physical Anthropology, 120, 309–22CrossRefGoogle ScholarPubMed
Guatelli-Steinberg, D. & Lukacs, J. R. (1998). Preferential expression of linear enamel hypoplasia on the sectorial premolars of Rhesus monkeys (Macaca mulatta). American Journal of Physical Anthropology, 107, 179–863.0.CO;2-Q>CrossRefGoogle Scholar
Guatelli-Steinberg, D. & Lukacs, J. R. (1999). Interpreting sex differences in enamel hypoplasia in human and non-human primates: developmental, environmental and cultural considerations. Yearbook of Physical Anthropology, 42, 73–1263.0.CO;2-K>CrossRefGoogle Scholar
Guatelli-Steinberg, D. & Skinner, M. (2000). Prevalence and etiology of linear enamel hypoplasia in monkeys and apes from Asia and Africa. Folia Primatologia, 71, 115–32CrossRefGoogle ScholarPubMed
Gustafson, A. G. (1955). The similarity between contralateral pairs of teeth. Odontologisk Tidskrift, 63, 245–8Google ScholarPubMed
Gustafson, A. G. & Persson, P. (1957). The relationship between Sharpey's fibres and the deposition of cementum. Odontologisk Tidskrift, 65, 457–63Google Scholar
Gustafson, G. (1950). Age determinations on teeth. Journal of the American Dental Association, 41, 45–54CrossRefGoogle Scholar
Gustafson, G. (1966). Forensic Odontology. London: Staples PressCrossRef
Gustafson, G. & Gustafson, A. G. (1967). Microanatomy and histochemistry of enamel. In Miles, A. E. W. (ed.), Structural and Chemical Organization of Teeth. London: Academic Press, pp. 135–62Google Scholar
Gustafson, G. & Koch, G. (1974). Age estimation up to 16 years of age based on dental development. Odontologisk Revy, 25, 297–306Google ScholarPubMed
Gysi, A. (1931). Metabolism in adult enamel. Dental Digest, 37, 661–8Google Scholar
Habermehl, K. H. (1961). Die Alterbestimmung bei Haustieren, Pelztieren und beim jagdbaren Wildtieren. Berlin: Paul PareyGoogle Scholar
Habermehl, K. H. (1975). Die Alterbestimmung bei Haus- und Labortieren. Berlin: Paul PareyGoogle Scholar
Haeussler, A. M. & Turner, C. G. (1992). The dentition of Soviet Central Asians and the quest for New World ancestors. In Lukacs, J. R. (ed.), Culture, Ecology and Dental Anthropology. Journal of Human Ecology Special Issue 2. Delhi: Kamla-Raj Enterprises, pp. 273–97Google Scholar
Hägg, U. & Matsson, L. (1985). Dental maturity as an indicator of chronological age: the accuracy and precision of three methods. European Journal of Orthodontics, 7, 24–34Google ScholarPubMed
Haikel, Y., Frank, R. M., & Voegel, J. C. (1983). Scanning electron microscopy of the human enamel surface layer of incipient carious lesions. Caries Research, 17, 1–13CrossRefGoogle ScholarPubMed
Hall, E. R. (1981). The Mammals of North America. New York: Wiley
Halse, A. & Selvig, K. A. (1974). Incorporation of iron in rat incisor enamel. Scandinavian Journal of Dental Research, 82, 47Google ScholarPubMed
Halstead, P. & Collins, P. (2002). Sorting the sheep from the goats: morphological distinctions between the mandibles and mandibular teeth of adult Ovis and Capra. Journal of Archaeological Science, 29, 545–53CrossRefGoogle Scholar
Hamilton, J. (1978). A comparison of the age structure at mortality of some Iron Age and Romano-British cattle and sheep populations. In Parrington, M. (ed.), The Excavation of Iron Age Settlement, Bronze Age Ring Ditches and Roman Features at Ashville Trading Estate, Abingdon (Oxfordshire). CBA Research Reports 28. London: Council for British Archaeology, pp. 126–33Google Scholar
Hamilton, J. (1982). Re-examination of a sample of Iron Age sheep mandibles from Ashville Trading Estate, Abingdon Oxfordshire. In Wilson, B., Grigson, C., & Payne, S. (eds.), Ageing and Sexing Animal Bones from Archaeology Sites. British Archaeology Reports, British Series 109. Oxford: British Archaeology Reports, pp. 215–22Google Scholar
Hamlin, K. L., Pac, D. F., Sime, C. A., DeSimone, R. M., & Dusek, G. L. (2000). Evaluating the accuracy of ages obtained by two methods for Montana ungulates. Journal of Wildlife Management, 64, 441–9CrossRefGoogle Scholar
Hancox, N. M. (1972). Biology of Bone. Cambridge: Cambridge University PressGoogle Scholar
Hardie, J. M. & Bowden, G. H. (1974). The normal microbial flora of the mouth. In Skinner, F. A. & Carr, J. G. (eds.), The Normal Microbial Flora of Man. London: Academic Press, pp. 47–83Google Scholar
Harris, E. F. (1992). Laterality in human odontometrics: analysis of a contemporary American White series. In Lukacs, J. R. (ed.), Culture, Ecology & Dental Anthropology. Journal of Human Ecology Special Issue 2. Delhi: Kamla-Raj Enterprises, pp. 157–70Google Scholar
Harris, E. F. (1998a). Dental maturation. In Ulijaszek, S. J., Johnston, F. E., & Preece, M. A. (eds.), The Cambridge Encyclopedia of Human Growth and Development. Cambridge: Cambridge University Press, pp. 45–8Google Scholar
Harris, E. F. (1998b). Ontogenetic and intraspecific patterns of odontometric associations in humans. In Lukacs, J. R. (ed.), Human Dental Development, Morphology and Pathology: and Tribute to Albert, A. Dahlberg. University of Oregon Anthropological Papers 54. Eugene: University of Oregon, pp. 299–346Google Scholar
Harris, E. F. (2001). Deciduous tooth size distributions in recent humans: a world-wide survey. In Brook, A. H. (ed.), Dental Morphology 2001 Sheffield. Sheffield: Sheffield Academic Press, pp. 13–30Google Scholar
Harris, E. F. (2003). Where's the variation? Variance components in tooth sizes of the permanent dentition. Dental Anthropology, 16, 84–94Google Scholar
Harris, E. F. & Bailit, H. L. (1980). The metaconule: a morphologic and familial analysis of a molar cusp in humans. American Journal of Physical Anthropology, 53, 349–58CrossRefGoogle ScholarPubMed
Harris, E. F. & Bailit, H. L. (1988). A principal components analysis of human odontometrics. American Journal of Physical Anthropology, 75, 87–99CrossRefGoogle ScholarPubMed
Harris, E. F. & Buck, A. L. (2002). Tooth mineralization: a technical note on the Moorrees-Fanning-Hunt standards. Dental Anthropology, 16, 15–21Google Scholar
Harris, E. F. & Rathbun, T. A. (1991). Ethnic differences in the apportionment of tooth sizes. In Kelley, M. A. & Larsen, C. S. (eds.), Advances in Dental Anthropology. New York: Wiley-Liss, pp. 121–42Google Scholar
Harrison, R. J. & King, J. E. (1980). Marine Mammals. London: HutchinsonGoogle Scholar
Harshyne, W. A., Diefenbach, D. R., Alt, G. R., & Matson, G. M. (1998). Analysis of error from cementum-annuli age estimates of known-age Pennsylvania black bears. Journal of Wildlife Management, 62, 1281–91CrossRefGoogle Scholar
Hartley, W. G. (1979). Hartley's Microscopy. Charlbury, UK: Senecio PublishingGoogle Scholar
Hartman, G. D. (1995). Age determination, age structure, and longevity in the mole, Scalopus aquaticus (Mammalia: Insectivora). Journal of Zoology, 237, 107–22CrossRefGoogle Scholar
Hartman, S. E. (1989). Stereophotogrammetric analysis of occlusal morphology of extant hominoid molars: phenetics and function. American Journal of Physical Anthropology, 80, 145–66CrossRefGoogle ScholarPubMed
Haynes, G. (1991). Mammoths, Mastodonts, and Elephants. Cambridge: Cambridge University PressGoogle Scholar
Healy, W. B., Cutress, T. W., & Michie, C. (1967). Wear of sheep's teeth IV. Reduction of soil ingestion and tooth wear by supplementary feeding. New Zealand Journal of Agricultural Research, 10, 201–9CrossRefGoogle Scholar
Healy, W. B. & Ludwig, T. G. (1965). Wear of sheep's teeth I. The role of ingested soil. New Zealand Journal of Agricultural Research, 8, 737–52CrossRefGoogle Scholar
Hedges, R. E. M. & Wallace, C. J. A. (1978). The survival of biochemical information from archaeological bone. Journal of Archaeological Science, 5, 377–86CrossRefGoogle Scholar
Henderson, A. M. & Corruccini, R. S. (1976). Relationship between tooth size and body size in American Blacks. Journal of Dental Research, 54, 94–6CrossRefGoogle Scholar
Henderson, P., Marlow, C. A., Molleson, T. I., & Williams, C. T. (1983). Patterns of chemical change during fossilization. Nature, 306, 358–60CrossRefGoogle Scholar
Hershkovitz, P. (1971). Basic crown patterns and cusp homologies of mammalian teeth. In Dahlberg, A. A. (ed.), Dental Morphology and Evolution. Chicago: Chicago University Press, pp. 95–105Google Scholar
Hewer, H. E. (1964a). British Seals. London: Collins
Hewer, H. E. (1964b). The determination of age, sexual maturity, longevity and a life table in the grey seal (Halichoerus grypus). Proceedings of the Zoological Society of London, 142, 593–624CrossRefGoogle Scholar
Higham, C. W. F. (1967). Stock rearing as a cultural factor in prehistoric Europe. Proceeding of the Prehistoric Society, 33, 84–106CrossRefGoogle Scholar
Higham, C. W. F. (1968). Size trends in prehistoric European domestic fauna, and the problem of local domestication. Acta Zoologica Fennica, 120, 3–21Google Scholar
Hillson, S. W. (1979). Diet and dental disease. World Archaeology, 11, 147–62CrossRefGoogle ScholarPubMed
Hillson, S. W. (1986). Teeth. Cambridge Manuals in Archaeology. Cambridge: Cambridge University PressGoogle ScholarPubMed
Hillson, S. W. (1992a). Impression and replica methods for studying hypoplasia and perikymata on human tooth crown surfaces from archaeological sites. International Journal of Osteoarchaeology, 2, 65–78CrossRefGoogle Scholar
Hillson, S. W. (1992b). Studies of growth in dental tissues. In Lukacs, J. R. (ed.), Culture, Ecology and Dental Anthropology. Journal of Human Ecology Special Issue 2. Delhi: Kamla-Raj Enterprises, pp. 7–23Google Scholar
Hillson, S. W. (1996). Dental Anthropology. Cambridge: Cambridge University PressCrossRefGoogle Scholar
Hillson, S. W. (1998). Crown diameters, tooth crown development, and environmental factors in growth. In Lukacs, J. R. (ed.), Human Dental Development, Morphology and Pathology: and Tribute to Albert, A. Dahlberg. University of Oregon Anthropological Papers 54. Eugene: University of Oregon, pp. 17–28Google Scholar
Hillson, S. W. (2000). Dental pathology. In Katzenberg, M. A. & Saunders, S. R. (eds.), Biological Anthropology of the Human Skeleton. New York: John Wiley, pp. 249–86Google Scholar
Hillson, S. W. (2001). Recording dental caries in archaeological human remains. International Journal of Osteoarchaeology, 11, 249–89CrossRefGoogle Scholar
Hillson, S. W., Antoine, D. M., & Dean, M. C. (1999). A detailed developmental study of the defects of dental enamel in a group of post-Medieval children from London. In Mayhall, J. T. & Heikinnen, T. (eds.), Dental Morphology'98. Oulu: Oulu University Press, pp. 102–11Google Scholar
Hillson, S. W. & Bond, S. (1996). A scanning electron microscope study of bone, cement, dentine and enamel. In Bell, M., Fowler, P., & Hillson, S. (eds.), The Experimental Earthwork Project, 1960–1992. CBA Research Report. York: Council for British Archaeology, pp. 185–94Google Scholar
Hillson, S. W. & Bond, S. (1997). Relationship of enamel hypoplasia to the pattern of tooth crown growth: a discussion. American Journal of Physical Anthropology, 104, 89–1043.0.CO;2-8>CrossRefGoogle ScholarPubMed
Hillson, S. & Fitzgerald, C. (2003). Tooth size variation and dental reduction in Europe, the Middle East and North Africa between 120,000 and 5000 BP. American Journal of Physical Anthropology, Supplement 36, 114Google Scholar
Hillson, S. W., Fitzgerald, C. M., & Flinn, H. M. (in press). Alternative dental measurements – proposals and relationships with other measurements. American Journal of Physical Anthropology
Hillson, S. W., Grigson, C., & Bond, S. (1998). The dental defects of congenital syphilis. American Journal of Physical Anthropology, 107, 25–403.0.CO;2-C>CrossRefGoogle ScholarPubMed
Hillson, S. W. & Jones, B. K. (1989). Instruments for measuring surface profiles: an application in the study of ancient human tooth crown surfaces. Journal of Archaeological Science, 16, 95–105CrossRefGoogle Scholar
Hilming, F. & Pedersen, P. O. (1940). Über die Paradentalverhältnisse und die Abrasion bei rezenten ostgrönländischen Eskimos. Paradentium, 12, 69–78Google Scholar
Hinton, R. J. (1981). Form and patterning of anterior tooth wear among aboriginal human groups. American Journal of Physical Anthropology, 54, 555–64CrossRefGoogle ScholarPubMed
Hinton, R. J. (1982). Differences in interproximal and occlusal tooth wear among prehistoric Tennessee Indians: implications for masticatory function. American Journal of Physical Anthropology, 57, 103–15CrossRefGoogle ScholarPubMed
Hlusko, L. & Mahaney, M. C. (2003). Genetic contributions to expression of the baboon cingular remnant. Archives of Oral Biology, 48, 663–72CrossRefGoogle ScholarPubMed
Horowitz, S. L., Osborne, R. H., & George, F. V. (1958). Hereditary factors in tooth dimensions, a study of the anterior teeth in twins. Angle Orthodontist, 28, 87–93Google Scholar
Howells, W. W. (1973). Cranial Variation in Man. A Study by Multivariate Analysis of Patterns of Difference Among Recent Human Populations. Papers of the Peabody Museum of Archaeology and Ethnology 67. Cambridge, Massachusetts: Harvard UniversityGoogle Scholar
Howells, W. W. (1989). Skull Shapes and the Map. Craniometric Analyses in the Dispersion of Modern Homo. Papers of the Peabody Museum of Archaeology and Ethnology 79. Cambridge, Massachusetts: Harvard UniversityGoogle Scholar
Howells, W. W. (1995). Ethnic Identification of Crania from Measurements. Papers of the Peabody Museum of Archaeology and Ethnology 82. Cambridge, Massachusetts: Harvard UniversityGoogle Scholar
Hughes, T., Dempsey, P., Richards, L., & Townsend, G. C. (2000). Genetic analysis of deciduous tooth size in Australian twins. Archives of Oral Biology, 45, 997–1004CrossRefGoogle ScholarPubMed
Hunt, E. E. & Gleiser, I. (1955). The estimation of age and sex of preadolescent children from bones and teeth. American Journal of Physical Anthropology, 13, 479–87CrossRefGoogle ScholarPubMed
Hunter, J. (1771). The Natural History of the Teeth. London
Hunter, W. S. & Priest, W. R. (1960). Errors and discrepancies in measurement of tooth size. Journal of Dental Research, 39, 405–8CrossRefGoogle ScholarPubMed
Hutchinson, D. L., Larsen, C. S., & Choi, I. (1997). Stressed to the max? Physiological perturbation in the Krapina Neandertals. Current Anthropology, 38, 904–14CrossRefGoogle Scholar
Infante, P. F. & Gillespie, G. M. (1974). An epidemiologic study of linear enamel hypoplasia of deciduous anterior teeth in Guatemalan children. Archives of Oral Biology, 19, 1055–61CrossRefGoogle ScholarPubMed
International Whaling Commission (1969). Report of the meeting on age determination in whales. Report of the International Whaling Commission, 19, 131–7
Irish, J. D. (1997). Characteristic high- and low-frequency dental traits in Sub-Saharan African populations. American Journal of Physical Anthropology, 102, 455–683.0.CO;2-R>CrossRefGoogle ScholarPubMed
Iscan, M. Y. & Loth, S. R. (1984). Metamorphosis at the sternal rib end: a new method to estimate age at death in white males. American Journal of Physical Anthropology, 65, 147–56CrossRefGoogle ScholarPubMed
Iscan, M. Y. & Loth, S. R. (1986a). Determination of age from the sternal rib in White females: a test of the phase method. Journal of Forensic Sciences, 31, 990–9Google Scholar
Iscan, M. Y. & Loth, S. R. (1986b). Determination of age from the sternal rib in White males: a test of the phase method. Journal of Forensic Sciences, 31, 122–32Google Scholar
Iscan, M. Y., Loth, S. R., & Wright, R. K. (1987). Racial variation in the sternal extremity of the rib and its effect on age determination. Journal of Forensic Sciences, 32, 452–66CrossRefGoogle ScholarPubMed
Jacobi, K. P., Cook, Collins D., Corruccini, R. S., & Handler, J. S. (1992). Congenital syphilis in the past: slaves at Newton Plantation, Barbados, West Indies. American Journal of Physical Anthropology, 89, 145–58CrossRefGoogle ScholarPubMed
James, W. W. (1960). The Jaws and Teeth of Primates. London: Pitman Medical PublishingGoogle Scholar
Jernvall, J. & Thesleff, I. (2000a). Reiterative signaling and patterning during mammalian tooth morphogenesis. Mechanisms of Development, 92, 19–29CrossRefGoogle Scholar
Jernvall, J. & Thesleff, I. (2000b). Return of lost structure in the developmental control of tooth shape. In Teaford, M. F., Smith, Meredith M., & Ferguson, M. W. J. (eds.), Development, Function and Evolution of Teeth. Cambridge: Cambridge University Press, pp. 13–21Google Scholar
Johanson, G. (1971). Age determination from human teeth. Odontologisk Revy, 22, 1–126Google Scholar
Jones, S. J. (1974). Coronal cementogenesis in the horse. Archives of Oral Biology, 19, 605–14CrossRefGoogle Scholar
Jones, S. J. (1981). Cement. In Osborn, J. W. & Johns, R. B. (eds.), Dental Anatomy and Embryology. Oxford: Blackwell Scientific Publications, pp. 193–205Google Scholar
Jones, S. J. (1987). The root surface: an illustrated review of some scanning electron microscope studies. Scanning Microscopy, 1, 2003–18Google ScholarPubMed
Jones, S. J. & Boyde, A. (1972). A study of human root cementum surfaces as prepared for and examined in the scanning electron microscope. Zeitschrift für Zellforschung und Microskopische Anatomie, 130, 318–37CrossRefGoogle ScholarPubMed
Jones, S. J. & Boyde, A. (1984). Ultrastructure of dentin and dentinogenesis. In Linde, A. (ed.), Dentin and Dentinogenesis. Boca Raton: CRC Press, pp. 81–134Google Scholar
Jones, S. J. & Boyde, A. (1987). Scanning microscopic observations on dental caries. Scanning Microscopy, 1, 1991–2002Google ScholarPubMed
Jones, S. J. & Boyde, A. (1988). The resorption of dentine and cementum in vivo and in vitro. In Davidovitch, Z. (ed.), The Biological Mechanisms of Tooth Eruption and Root Resorption. Birmingham, AL: EBSCO Media, pp. 335–54Google Scholar
Jonsgard, A. (1969). Age determination of marine animals. In Andersen, H. T. (ed.), The Biology of Marine Animals. London: Academic Press, pp. 1–30
Jordan, R. E., Abrams, L., & Kraus, B. S. (1992). Kraus' Dental Anatomy and Occlusion. St Louis: Mosby
Jubb, K. V. F. & Kennedy, P. C. (1963). Pathology of Domestic Animals. New York and London: Academic Press
Kaestle, F. A. & Horsburgh, K. A. (2002). Ancient DNA in anthropology: methods, applications, and ethics. Yearbook of Physical Anthropology, 45, 92–130CrossRefGoogle Scholar
Kaifu, Y., Kasai, K., Townsend, G. C., & Richards, L. C. (2003). Tooth wear and the ‘design’ of the human dentition: a perspective from evolutionary medicine. Yearbook of Physical Anthropology, 46, 47–61CrossRefGoogle Scholar
Källestål, C. & Wall, S. (2002). Socio-economic effect on caries. Incidence data among Swedish 12–14-year-olds. Community Dentistry and Oral Epidemiology, 30, 108–14CrossRefGoogle ScholarPubMed
Karn, K. W., Shockett, H. P., Moffitt, W. C., & Gray, J. L. (1984). Topographic classification of deformities of the alveolar process. Journal of Periodontology, 55, 336–40CrossRefGoogle ScholarPubMed
Katz, D. & Suchey, J. M. (1986). Age determination of the male Os pubis. American Journal of Physical Anthropology, 69, 427–36CrossRefGoogle ScholarPubMed
Katz, D. (1989). Race differences in pubic symphyseal aging patterns in the male. American Journal of Physical Anthropology, 80, 167–72CrossRefGoogle ScholarPubMed
Kaul, S. S. & Corruccini, R. S. (1992). Dental arch length reduction through interproximal attrition in modern Australian aborigines. In Lukacs, J. R. (ed.), Culture, Ecology and Dental Anthropology. Journal of Human Ecology Special Issue 2. Delhi: Kamla-Raj Enterprises, pp. 195–200Google Scholar
Kawai, N. (1955). Comparative anatomy of the bands of Schreger. Okajimas Folia Anatomica Japonica, 27, 115–31CrossRefGoogle ScholarPubMed
Kawano, S., Tsukamoto, T., Ohtaguro, H., Tustsumi, H., Takahashi, T., Miura, I., Mukoyama, R., Aboshi, H., & Komuro, T. (1995). Sex determination from dental calculus by polymerase chain reaction (PCR) (In Japanese). Nippon Hoigaku Zasshi, 49, 193–8
Kawasaki, K., Tanaka, S., & Isikawa, T. (1980). On the daily incremental lines in human dentine. Archives of Oral Biology, 24, 939–43CrossRefGoogle Scholar
Kay, M. (1974). Dental annuli age determination on white-tailed deer from archaeological sites. Plains Anthropologist, 19, 224–7CrossRefGoogle Scholar
Kerr, P. F. (1959). Optical Mineralogy. New York: McGraw-HillGoogle Scholar
Kerr, N. W. (1991). Prevalence and natural history of periodontal disease in Scotland – the mediaeval period (900–1600 AD). Journal of Periodontal Research, 26, 346–54CrossRefGoogle Scholar
Kierdorf, U. & Becher, J. (1997). Mineralization and wear of mandibular first molars in red deer (Cervus elaphus) of known age. Journal of Zoology, 241, 135–43CrossRefGoogle Scholar
Kieser, J. A. (1990). Human Adult Odontometrics. Cambridge Studies in Biological Anthropology 4. Cambridge: Cambridge University PressCrossRefGoogle Scholar
Kieser, J. A. & Groeneveld, H. T. (1991). The reliability of human odontometric data. Journal of the Dental Association of South Africa, 46, 267–70Google ScholarPubMed
Kieser, J. A. & Groeneveld, H. T. (1998). Fluctuating dental asymmetry and prenatal exposure to tobacco smoke. In Lukacs, J. R. (ed.), Human Dental Development, Morphology and Pathology: and Tribute to Albert, A. Dahlberg. University of Oregon Anthropological Papers 54. Eugene: University of Oregon, pp. 287–97Google Scholar
Kieser, J. A., Preston, C. B., & Evans, W. G. (1983). Skeletal age at death: an evaluation of the Miles method of ageing. Journal of Archaeological Science, 10, 9–12CrossRefGoogle Scholar
Kilgore, L. (1995). Patterns of dental decay in African great apes. In Cockburn, E. (ed.), Papers on Paleopathology presented at the 22nd Annual Meeting, p. 6. Paleopathology Association
King, C. M. (1991). A review of age determination methods for the stoat Mustela erminea. Mammal Review, 21, 31–49CrossRefGoogle Scholar
King, J. E. (1964). Seals of the World. London: British Museum Natural HistoryGoogle Scholar
King, J. E. (1983). Seals of the World. London and Oxford: British Museum Natural History and Oxford University PressGoogle Scholar
King, T., Hillson, S., & Humphrey, L. T. (2002). A detailed study of enamel hypoplasia in a post-medieval adolescent of known age and sex. Archives of Oral Biology, 47, 29–39CrossRefGoogle Scholar
Kingdon, J. (1979). East African Mammals: An Atlas of Evolution in Africa. London: Academic PressGoogle Scholar
Klein, R. G. (1978). Stone age predation on large African bovids. Journal of Archaeological Science, 5, 195–217CrossRefGoogle Scholar
Klein, R. G. (1981). Stone age predation on small African bovids. South African Archaeological Bulletin, 36, 55–65CrossRefGoogle Scholar
Klein, R. G., Allwarden, K., & Wolf, C. (1983). The calculation and interpretation of ungulate age profiles from dental crown heights. In Bailey, G. (ed.), Hunter Gatherer Economy in Prehistory. Cambridge: Cambridge University PressGoogle Scholar
Klein, R. G. & Cruz-Uribe, K. (1984). The Analysis of Animal Bones from Archaeological Sites. Chicago: University of Chicago Press
Klein, R. G., Wolf, C., Freeman, L. G., & Allwarden, K. (1981). The use of dental crown heights for construction age profiles of red deer and similar species in archaeological samples. Journal of Archaeological Science, 8, 1–32CrossRefGoogle Scholar
Klevezal, G. A. (1996). Recording Structures of Mammals: Determination of Age and Reconstruction of Life History. Rotterdam: A. A. BalkemaGoogle Scholar
Klevezal, G. A. and Kleinenberg, S. E. (1967). Age Determination of Mammals from Annual Layers in Teeth and Bones. Springfield, Academy of Sciences USSR translated 1969 Department of the Interior and National Sciences Foundation, US Department of Commerce, Clearinghouse for Federal Scientific and Technical Information
Klevezal, G. A. & Stewart, B. S. (1994). Patterns and calibration of layering in tooth cementum of female Northern elephant seals, Mirounga angustirostris. Journal of Mammalogy, 75, 483–7CrossRefGoogle Scholar
Konigsberg, L. W. & Frankenberg, S. R. (1994). Paleodemography: ‘not quite dead’. Evolutionary Anthropology, 3, pp. 92–105CrossRefGoogle Scholar
Konigsberg, L. W. & Frankenberg, S. R. (2002). Deconstructing death in paleodemography. American Journal of Physical Anthropology, 117, 297–309CrossRefGoogle ScholarPubMed
Korvenkontio, V. A. (1934). Mikroskopische Untersuchungen an Nagerincisiven unter Hinweis auf die Schmelztruktur der Backenzähne. Annales Societatis Zoologici Botanicae Fennici Vanamo, 2, 1–274Google Scholar
Kratochvil, Z. (1981). Tierknochenfunde aus der grossmahrischen siedlung Mikulcice: I Das Hausschwein. Studie Archeologickeho u stavu Ceskoslovenske Akademi ved v Brno Pocnik, IX 3, Academia Praha
Kreshover, S. J. (1944). The pathogenesis of enamel hypoplasia: an experimental study. Journal of Dental Research, 23, 231–8CrossRefGoogle Scholar
Kreshover, S. J. (1960). Metabolic disturbances in tooth formation. Annals of the New York Academy of Sciences, 85, 161–7CrossRefGoogle ScholarPubMed
Kreshover, S. J. & Clough, O. W. (1953). Prenatal influences on tooth development II. Artificially induced fever in rats. Journal of Dental Research, 32, 565–72CrossRefGoogle ScholarPubMed
Kreshover, S. J., Clough, O. W., & Hancock, J. A. (1954). Vaccinia infection in pregnant rabbits and its effect on maternal and fetal dental tissues. Journal of the American Dental Association, 49, 549–62CrossRefGoogle ScholarPubMed
Krings, M., Stone, A., Schmitz, R. W., Krainitz, H., Stoneking, M., & Pääbo, S. (1997). Neandertal DNA sequences and the origin of modern humans. Cell, 90, 19–30CrossRefGoogle ScholarPubMed
Kronfeld, R. & Schour, I. (1939). Neonatal dental hypoplasia. Journal of the American Dental Association, 26, 18–32CrossRefGoogle Scholar
Kubota, K. (1963). Morphological observations of the deciduous dentition of the fur seal (Callorhinus ursinus). Bulletin of the Tokyo Medical & Dental University, 63, 75–81Google Scholar
Kubota, K. & Matsumoto, K. (1963). On the deciduous teeth shed into the amnion of the fur seal embryo. Bulletin of the Tokyo Medical & Dental University, 10, 90–3Google Scholar
Kurtén, B. (1955). Sex dimorphism and size trends in the cave bear, Ursus spelaeus Rosenmüller and Heinroth. Acta Zoologica Fennica, 90, 1–48Google Scholar
Kurtén, B. (1968). Pleistocene Mammals of Europe. London: Weidenfield & NicholsonGoogle Scholar
Kurtén, B. (1976). The Cave Bear Story. New York: Columbia University PressGoogle Scholar
Kurtén, B. (1979). The stilt-legged deer Sangamona of the North-American Pleistocene. Boreas, 8, 313–21CrossRefGoogle Scholar
Kurtén, B. & Anderson, E. (1980). Pleistocene Mammals of North America. New York: Columbia University PressGoogle Scholar
Kuykendall, K. L. (1996). Dental development in chimpanzees (Pan troglodytes): the timing of tooth calcification stages. American Journal of Physical Anthropology, 99, 135–583.0.CO;2-#>CrossRefGoogle ScholarPubMed
Kvaal, S. I. & During, E. M. (1999). A dental study comparing age estimations of the human remains from the Swedish warship Vasa. International Journal of Osteoarchaeology, 9, 170–813.0.CO;2-A>CrossRefGoogle Scholar
Kvaal, S. I., Kolltveit, K. M., Thomsen, I. O., & Solheim, T. (1995). Age estimation of adults from dental radiographs. Forensic Science International, 74, 175–85CrossRefGoogle ScholarPubMed
Lahr, M. M. (1996). The Evolution of Modern Human Diversity: a Study of Cranial Variation. Cambridge: Cambridge University PressGoogle Scholar
Lamendin, H., Baccino, E., Humbert, J. F., Tavernier, J. C., Nossintchouk, R. M., & Zerilli, A. (1992). A simple technique for age estimation in adult corpses: the two criteria dental method. Journal of Forensic Sciences, 37, 1373–9CrossRefGoogle ScholarPubMed
Landon, D. B. (1993). Testing a seasonal slaughter model for colonial New England using tooth cementum increment analysis. Journal of Archaeological Science, 20, 439–55CrossRefGoogle Scholar
Landon, D. B., Waite, C. A., Peterson, R. O., & Mech, L. D. (1998). Evaluation of age determination techniques for gray wolves. Journal of Wildlife Management, 62, 674–82CrossRefGoogle Scholar
Lane, G. (1981). Small animal dentistry. In Practice, 3, 23–30CrossRefGoogle ScholarPubMed
Larsen, C. S. (1995). Biological changes in human populations with agriculture. Annual Review of Anthropology, 24, 185–213CrossRefGoogle Scholar
Larsen, C. S. (1997). Bioarchaeology. Cambridge Studies in Biological Anthropology. Cambridge: Cambridge University PressCrossRefGoogle Scholar
Larsen, C. S., Hutchinson, D. L., Schoeninger, M. J., & Norr, L. (2001). Food and stable isotopes in La Florida: diet and nutrition before and after contact. In Larsen, C. S. (ed.), Bioarchaeology of Spanish Florida. Gainesville: University Press of Florida, pp. 52–81Google Scholar
Larsen, C. S., Shavit, R., & Griffin, M. C. (1991). Dental caries evidence for dietary change: an archaeological context. In Kelley, M. A. & Larsen, C. S. (eds.), Advances in Dental Anthropology. New York: Wiley-Liss, pp. 179–202Google Scholar
Lasker, G. W. (1951). Genetic analysis of racial traits of the teeth. Cold Spring Harbor Symposia on Quantitative Biology, XV, 191–203Google Scholar
Lavelle, C. L. B. & Moore, W. J. (1973). The incidence of agenesis and polygenesis in the primate dentition. American Journal of Physical Anthropology, 38, 671–80CrossRefGoogle ScholarPubMed
Laws, R. M. (1952). A new method of age determination for mammals. Nature, 169, 972–3CrossRefGoogle ScholarPubMed
Laws, R. M. (1953a). A new method of age determination in mammals with special reference to the elephant seal (Mirounga lenonina, L.). Falkland Islands Dependencies Survey Scientific Reports, 2, 1–11Google Scholar
Laws, R. M. (1953b). The elephant seal (Mirounga leonina, L.). Growth and age. Falkland Islands Dependencies Survey Scientific Reports, 8, 1–62Google Scholar
Laws, R. M. (1966). Age criteria for the African elephant Loxodonta africana. East African Wildlife Journal, 4, 1–37CrossRefGoogle Scholar
Laws, R. M. (1968). Dentition and ageing of the hippopotamus. East African Wildlife Journal, 6, 19–52CrossRefGoogle Scholar
Laws, R. M., Baird, A., & Bryden, M. M. (2002). Age estimation in crabeater seals (Lobodon carcinophagus). Journal of Zoology, 258, 197–203CrossRefGoogle Scholar
Leek, F. F. (1972). Teeth and bread in ancient Egypt. Journal of Egyptian Archaeology, 58, 126–32CrossRefGoogle ScholarPubMed
Legge, A. J. & Rowley-Conwy, P. (1988). Star Carr revisited – a re-analysis of the large mammals. London: Centre for Extra-Mural Studies, Birkbeck CollegeGoogle Scholar
Lehner, T. (1992). Immunology of Oral Diseases. Oxford: Blackwell Scientific PublicationsGoogle Scholar
Lester, K. S. & Hand, S. J. (1987). Chiropteran enamel structure. Scanning Microscopy, 1, 421–36Google ScholarPubMed
Leutenegger, W. & Kelly, J. T. (1977). Relationship of sexual dimorphism in canine size and body size to social, behavioural and ecological correlates in anthropoid primates. Primates, 18, 117–36CrossRefGoogle Scholar
Levers, B. G. H. & Darling, A. I. (1983). Continuous eruption of some adult human teeth of ancient populations. Archives of Oral Biology, 28, 401–8CrossRefGoogle ScholarPubMed
Levine, M. A. (1982). The use of crown height measurements and eruption-wear sequences to age horse teeth. In Wilson, B., Grigson, C., & Payne, S. (eds.), Ageing and Sexing Animal Bones from Archaeological Sites. British Archaeological Reports, British Series 109. Oxford: British Archaeological Reports, pp. 223–50Google Scholar
Levine, M. A. (1983). Mortality models and the interpretation of horse population structure. In Bailey, G. (ed.), Hunter Gatherer Economy in Prehistory. Cambridge: Cambridge University PressGoogle Scholar
Levitan, B. M. (1985). A methodology for recording the pathology and other anomalies of ungulate mandibles from archaeological sites. In Fieller, N. R. J., Gilbertson, D. D., & Ralph, N. G. A. (eds.), Palaeobiological Investigations: Research Design, Methods and Data Analysis. British Archaeology Reports International Series 266. Oxford: British Archaeology Reports, pp. 41–54Google Scholar
Lieberman, D. E. (1993a). Life history variables preserved in dental cementum microstructure. Science, 261, 1162–4CrossRefGoogle Scholar
Lieberman, D. E. (1993b). The rise and fall of seasonal mobility among hunter-gatherers. Current Anthropology, 34, 599–631CrossRefGoogle Scholar
Lieberman, D. E. (1994). The biological basis for seasonal increments in dental cementum and their application to archaeological research. Journal of Archaeological Science, 21, 525–39CrossRefGoogle Scholar
Lieberman, D. E., Deacon, T. W., & Meadow, R. H. (1990). Computer image enhancement and analysis of cementum increments as applied to teeth of Gazella gazella. Journal of Archaeological Science, 17, 519–33CrossRefGoogle Scholar
Lieberman, D. E. & Meadow, R. H. (1992). The biology of cementum increments (with an archaeological application). Mammal Review, 22, 57–78CrossRefGoogle Scholar
Limbrey, S. (1975). Soil Science and Archaeology. Studies in Archaeological Science. London: Academic PressGoogle Scholar
Lindemann, G. (1958). Forekomsten af emaljehypoplasi hos børn, som har lidt af mave – tramsygdomme. Odontologisk Tidskrift, 66, 101–26Google Scholar
Lingström, P., Birkhed, D., Granfeldt, Y., & Björck, I. (1993). pH measurements of human dental plaque after consumption of starchy foods using the microtouch and the sampling method. Caries Research, 27, 394–401CrossRefGoogle ScholarPubMed
Lipsinic, F. E., Paunovitch, E., Houston, G. D., & Robinson, S. F. (1986). Correlation of age and incremental lines in the cementum of human teeth. Journal of Forensic Sciences, 31, 982–9CrossRefGoogle ScholarPubMed
Lister, A. M. (1996). The morphological distinction between bones and teeth of Fallow Deer (Dama dama) and Red Deer (Cervus elaphus). International Journal of Osteoarchaeology, 6, 119–433.0.CO;2-8>CrossRefGoogle Scholar
Lister, A. M. & Bahn, P. (2000). Mammoths. Giants of the Ice Age. London: Marshall PublishingGoogle Scholar
Listgarten, M. A. (1968). A light and electron microscopic study of coronal cementogenesis. Archives of Oral Biology, 13, 93–114CrossRefGoogle ScholarPubMed
Liversidge, H. M. (1994). Accuracy of age estimation from developing teeth of a population of known age (0 to 5.4 years). International Journal of Osteoarchaeology, 4, 37–46CrossRefGoogle Scholar
Liversidge, H. M. & Molleson, T. I. (1999). Developing permanent tooth length as an estimate of age. Journal of Forensic Sciences, 44, 917–20CrossRefGoogle ScholarPubMed
Locker, D. (2000). Deprivation and oral health: a review. Community Dentistry & Oral Epidemiology, 28, 161–9CrossRefGoogle ScholarPubMed
Logan, W. H. G. & Kronfeld, R. (1933). Development of the human jaws and surrounding structures from birth to the age of fifteen years. Journal of the American Dental Association, 20, 379–427CrossRefGoogle Scholar
Lovejoy, C. O., Meindl, R. S., Pryzbeck, T. R., & Mensforth, R. P. (1985). Chronological metamorphosis of the auricular surface of the ilium: a new method for the determination of adult skeletal age at death. American Journal of Physical Anthropology, 68, 15–28CrossRefGoogle ScholarPubMed
Lovell, N. C. (1990). Skeletal and dental pathology of free-ranging mountain gorillas. American Journal of Physical Anthropology, 81, 399–412CrossRefGoogle ScholarPubMed
Lovell, N. C. (1991). An evolutionary framework for assessing illness and injury in nonhuman primates. Yearbook of Physical Anthropology, 34, 117–55CrossRefGoogle Scholar
Low, W. A. & Cowan, I. M. (1963). Age determination of deer by annular structure of dental cementum. Journal of Wildlife Management, 27, 466–71CrossRefGoogle Scholar
Lowe, V. P. W. (1967). Teeth as indicators of age with special reference to Red Deer (Cervus elaphus) of known age from Rhum. Journal of Zoology (London), 152, 136–53Google Scholar
Lowe, V. P. W. (1971). Root development of molar in the bank vole (Clethrionomys glareolus). Journal of Animal Ecology, 40, 49–61CrossRefGoogle Scholar
Luan, W. M., Baelum, V., Chen, X., & Fejerskov, O. (1989). Dental caries in adult and elderly Chinese. Journal of Dental Research, 68, 1771–6CrossRefGoogle ScholarPubMed
Lubell, D., Jackes, M., Schwarcz, H., Knyf, M., & Meiklejohn, C. (1994). The Mesolithic-Neolithic transition in Portugal: isotopic and dental evidence of diet. Journal of Archaeological Science, 21, 201–16CrossRefGoogle Scholar
Lubinski, P. M. (2001). Estimating age and season of death of pronghorn antelope (Antilocapra americana Ord) by means of tooth eruption and wear. International Journal of Osteoarchaeology, 11, 218–30CrossRefGoogle Scholar
Lubinski, P. M. & O'Brien, C. J. (2001). Observations on seasonality and mortality from a recent catastrophic death assemblage. Journal of Archaeological Science, 28, 833–42CrossRefGoogle Scholar
Lucy, D., Aykroyd, R. G., & Pollard, A. M. (2002). Nonparametric calibration for age estimation. Applied Statistics, 51, 183–96Google Scholar
Lucy, D., Aykroyd, R. G., Pollard, A. M., & Solheim, T. (1996). A Bayesian approach to adult human age estimation from dental observations by Johanson's age changes. Journal of Forensic Sciences, 41, 5–10CrossRefGoogle ScholarPubMed
Lucy, D. & Pollard, A. M. (1995). Further comments on the estimation of error associated with the Gustafson dental age estimation method. Journal of Forensic Sciences, 40, 222–7CrossRefGoogle ScholarPubMed
Lucy, D., Pollard, A. M., & Roberts, C. A. (1995). A comparison of three dental techniques for estimating age at death in humans. Journal of Archaeological Science, 22, 417–28CrossRefGoogle Scholar
Lukacs, J. R., Retief, D. H., & Jarrige, J. F. (1985). Dental disease in prehistoric Baluchistan. National Geographic Research, Spring 1985, 184–97Google Scholar
Lundström, A. (1948). Tooth Size and Occlusion in Twins. Basel: KargerGoogle Scholar
Lunt, D. A. (1969). An odontometric study of Medieval Danes. Acta Odontologica Scandinavica, 27, 55–113Google Scholar
Lunt, D. A. (1978). Molar attrition in Medieval Danes. In Butler, P. M. & Joysey, K. A. (eds.), Development, Function and Evolution of Teeth. London: Academic Press, pp. 465–82Google Scholar
Lussi, A. (1996). Impact of including or excluding cavitated lesions when evaluating methods for the diagnosis of occlusal caries. Caries Research, 30, 389–93CrossRefGoogle ScholarPubMed
Macdonald, D. (1984). The Encyclopedia of Mammals. London: George Allen & UnwinGoogle Scholar
MacGregor, A. (1985). Bone, Antler, Ivory and Horn. London: Croom Helm and Totowa, NJ: Barnes and NobleGoogle Scholar
Magner, L. N. (1979). A History of the Life Sciences. New York: Marcel DekkerGoogle Scholar
Mainland, I. L. (2003). Dental microwear in grazing and browsing Gotland sheep (Ovis aries) and its implications for dietary reconstruction. Journal of Archaeological Science, 30, 1513–27CrossRefGoogle Scholar
Manji, F., Fejerskov, O., & Baelum, V. (1989). Pattern of dental caries in an adult rural population. Caries Research, 23, 55–62CrossRefGoogle Scholar
Manji, F., Fejerskov, O., Baelum, V., Luan, W. M., & Chen, X. (1991). The epidemiological features of dental caries in African and Chinese populations: implications for risk assessment. In Johnson, N. W. (ed.), Volume 1. Dental Caries. Markers of High and Low Risk Groups and Individuals. Cambridge: Cambridge University Press, pp. 62–99Google Scholar
Mann, A. (1988). The nature of Taung dental maturation. Nature, 333, 123CrossRefGoogle ScholarPubMed
Mann, A., Lampl, M., & Monge, J. (1990). Patterns of ontogeny in human evolution: evidence from dental development. Yearbook of Physical Anthropology, 33, pp. 111–50CrossRefGoogle Scholar
Mann, A. E. (1975). Some Paleodemographic Aspects of the South African Australopithecines. University of Pennsylvania Publications in Anthropology 1. Philadelphia: University of PennsylvaniaGoogle Scholar
Mann, A. E., Lampl, M., & Monge, J. (1987). Maturational patterns in early hominids. Nature, 328, 673–4CrossRefGoogle ScholarPubMed
Mann, A. E., Monge, J. M., & Lampl, M. (1991). Investigation into the relationship between perikymata counts and crown formation times. American Journal of Physical Anthropology, 86, 175–88CrossRefGoogle Scholar
Mansfield, A. W. & Fisher, H. D. (1960). Age determination in the harbour seal Phoca vitulina L. Nature, 186, 92–3CrossRefGoogle ScholarPubMed
Maples, W. R. (1978). An improved technique using dental histology for the estimation of adult age. Journal of Forensic Sciences, 23, 764–70CrossRefGoogle ScholarPubMed
Maples, W. R. & Rice, P. M. (1979). Some difficulties in the Gustafson dental age estimations. Journal of Forensic Sciences, 24, 118–72CrossRefGoogle ScholarPubMed
Marsh, H. (1980). Age determination of the Dugong (Dugong dugon (Müller)) in northern Australia and its biological implications. In Perrin, W. F. & Myrick, A. C. (eds.), Growth of Odontocetes and Sirenians: Problems in Age Determination. Proceedings of the International Conference on Determining Age of Odontocete Ceteans (and Sirenians), La Jolla, California, September 5–19, 1978. Report of the International Whaling Commission, Special Issue 3. Cambridge: International Whaling Commission, pp. 181–201Google Scholar
Marsh, P. & Martin, M. (1992). Oral Microbiology. London: Chapman & HallCrossRefGoogle Scholar
Martin, T. (1997). Incisor enamel microstructure and systematics in rodents. In Koenigswald, W. & Sander, P. M. (eds.), Tooth Enamel Microstructure. Rotterdam: A. A. Balkema, pp. 163–75Google Scholar
Massler, M., Schour, I., & Poncher, H. (1941). Developmental pattern of the child as reflected in the calcification pattern of the teeth. American Journal of Diseases of Children, 62, 33–67Google Scholar
Masters, P. M. (1987). Preferential preservation of noncollagenous protein during bone diagenesis: implications for chronometric and stable isotopic measurements. Geochimica et Cosmochimica Acta, 51, 3209–14CrossRefGoogle Scholar
Matschke, G. H. (1967). Ageing European wild hogs by dentition. Journal of Wildlife Management, 31, 103–13CrossRefGoogle Scholar
Mayhall, J. T. (1992). Techniques for the study of dental morphology. In Saunders, S. R. & Katzenberg, M. A. (eds.), Skeletal Biology of Past Peoples: Research Methods. New York: Wiley-Liss, pp. 59–78Google Scholar
Mayhall, J. T. & Alvesalo, L. (1992). Sexual dimorphism in the three-dimensional determinations of the maxillary first molar: cusp height, area, volume and position. In Smith, P. & Tchernov, E. (eds.), Structure, Function and Evolution of Teeth. London: Freund Publishing House, pp. 425–36Google Scholar
Mayhall, J. T. & Kanazawa, E. (1989). Three-dimensional analysis of the maxillary first molar crowns of Canadian Inuit. American Journal of Physical Anthropology, 78, 73–8CrossRefGoogle ScholarPubMed
Mayhall, J. T. & Saunders, S. R. (1986). Dimensional and discrete dental trait asymmetry relationships. American Journal of Physical Anthropology, 69, 403–11CrossRefGoogle ScholarPubMed
Mayhew, D. F. (1978). Age structure of a sample of subfossil beavers (Castor fiber, L.). In Butler, P. M. & Joysey, K. A. (eds.), Development, Function and Evolution of Teeth. London: Academic Press, pp. 495–506Google Scholar
Mays, S. A. (2002). The relationship between molar wear and age in an early 19th century AD archaeological human skeletal series of documented age at death. Journal of Archaeological Science, 29, 861–71CrossRefGoogle Scholar
Mays, S. A., Rua, C., & Molleson, T. I. (1995). Molar crown height as a means of evaluating existing dental wear scales for estimating age at death in human skeletal remains. Journal of Archaeological Science, 22, 659–70CrossRefGoogle Scholar
Mazak, V. (1963). Eruption of permanent dentition in the genera Mustela Linnaeus, 1758 and Putorius Cuvier, 1817, with a note on the genus Martes Pinel 1972. Vestnik Ceskoslovenske Spolecnosit Zoologicke, 27, 328–34Google Scholar
McCance, R. A., Ford, E. H. R., & Brown, W. A. B. (1961). Severe undernutrition in growing and adult animals 7. Development of the skull, jaws and teeth in pigs. British Journal of Nutrition, 15, 213–24CrossRefGoogle ScholarPubMed
McKinley, J. I. (1994). The Anglo-Saxon Cemetery at Spong Hill, North Elmham. Part VIII: the Cremations. East Anglian Archaeology Report 69. Dereham: Field Archaeology Division, Norfolk Museums ServiceGoogle Scholar
Meade, G. E. (1961). The saber-toothed cat, Dinobastis serus. Bulletin of the Texas Memorial Museum, 2, 24–60Google Scholar
Meikle, M. C. (2002). Craniofacial Development, Growth and Evolution. Bressingham: Bateson PublishingGoogle Scholar
Mellanby, M. (1929). Diet and Teeth: an Experimental Study. Part I. Dental Structure in Dogs. Medical Research Council, Special Report Series, 140. London: His Majesty's Stationery OfficeGoogle Scholar
Mellanby, M. (1930). Diet and Teeth: an Experimental Study. Part II. A. Diet and Dental Disease. B. Diet and Dental Structure in Mammals other than the Dog. Medical Research Council, Special Report Series, 153. London: His Majesty's Stationery OfficeGoogle Scholar
Mellanby, M. (1934). Diet and Teeth: an Experimental Study. Part III. The Effect of Diet on the Dental Structure and Disease in Man. Medical Research Council, Special Report Series, 191. London: His Majesty's Stationery OfficeGoogle Scholar
Merriam, J. C. & Stock, C. (1932). The Felidae of Rancho la Brea. Carnegie Institution of Washington Publications, 422, 1–232Google Scholar
Miles, A. E. W. (1958). The assessment of age from the dentition. Proceedings of the Royal Society of Medicine, 51, 1057–60Google ScholarPubMed
Miles, A. E. W. (1962). Assessment of the ages of a population of Anglo-Saxons from their dentitions. Proceedings of the Royal Society of Medicine, 55, 881–6Google ScholarPubMed
Miles, A. E. W. (1963a). Dentition and the estimation of age. Journal of Dental Research, 42, 255–63CrossRefGoogle Scholar
Miles, A. E. W. (1963b). The dentition in the assessment of individual age in skeletal material. In Brothwell, D. R. (ed.), Dental Anthropology. London: Pergamon Press, pp. 191–209Google Scholar
Miles, A. E. W. (1978). Teeth as an indicator of age in man. In Butler, P. M. & Joysey, K. A. (eds.), Development, Function and Evolution of Teeth. London: Academic Press, pp. 455–62Google Scholar
Miles, A. E. W. (2001). The Miles method of assessing age from tooth wear revisited. Journal of Archaeological Science, 28, 973–82CrossRefGoogle Scholar
Miles, A. E. W. & Grigson, C. (1990). Colyer's Variations and Diseases of the Teeth of Animals. Revised Edition. Cambridge: Cambridge University PressCrossRefGoogle Scholar
Miller, C. S., Dove, S. B., & Cottone, J. A. (1988). Failure of use of cemental annulations in teeth to determine the age of humans. Journal of Forensic Sciences, 33, 137–43CrossRefGoogle ScholarPubMed
Miller, F. L. (1972). Eruption and attrition of mandibular teeth in barren-ground caribou. Journal of Wildlife Management, 36, 606–12CrossRefGoogle Scholar
Miller, F. L. (1974). Biology of the Kaminuriak population of barren ground caribou Part 2. Canadian Wildlife Service Report Series, 31Google Scholar
Miller, G. S. (1912). A Catalogue of the Mammals of Western Europe (Europe exclusive of Russia) in the Collection of the British Museum. London: British Museum (Natural History)Google Scholar
Milner, G. R. & Larsen, C. S. (1991). Teeth as artifacts of human behavior: intentional mutilation and accidental modification. In Kelley, M. A. & Larsen, C. S. (eds.), Advances in Dental Anthropology. New York: Wiley-Liss, pp. 357–78Google Scholar
Mimura, T. (1939). Horoshitsu ni mirareru Seicho-sen no shuki (The periodicity of growth lines seen in the enamel). Kobyo-shi, 13, 454–5Google Scholar
Mincer, H. H., Harris, E. F., & Berryman, H. E. (1993). The A.B.F.O. study of third molar development and its use as an estimator of chronological age. Journal of Forensic Sciences, 38, 379–90CrossRefGoogle ScholarPubMed
Mitchell, B. (1963). Determination of age in Scottish red deer from growth layers in dental cement. Nature, 198, 350–1CrossRefGoogle Scholar
Mitchell, B. (1967). Growth layers in dental cement for determining the age of Red Deer (Cervus elaphus L.). Journal of Animal Ecology, 36, 279–93CrossRefGoogle Scholar
Moffitt, S. A. (1998). Aging bison by the incremental cementum growth layers in teeth. Journal of Wildlife Management, 62, 1276–80CrossRefGoogle Scholar
Møller, I. J. (1982). Fluorides and dental fluorosis. International Dental Journal, 32, 135–47Google ScholarPubMed
Molleson, T. I. (1993). The human remains. In Farwell, D. E. & Molleson, T. I. (eds.), Excavations at Poundbury 1966–80. Dorset Natural History and Archaeological Society Monograph Series 11. Dorchester: Dorset Natural History and Archaeological Society, pp. 142–214
Molleson, T. I., Jones, K., & Jones, S. (1993). Dietary change and the effects of food preparation on microwear patterns in the Late Neolithic of abu Hureyra, northern Syria. Journal of Human Evolution, 24, 455–68CrossRefGoogle Scholar
Molnar, S. (1971). Human tooth wear, tooth function and cultural variability. American Journal of Physical Anthropology, 34, 175–90CrossRefGoogle ScholarPubMed
Moody, J. E. H. (1960). The dental and periodontal conditions of aborigines at settlements in Arnhem Land and adjacent areas. In Mountford, C. R. (ed.), Records of the American–Australian Scientific Expedition to Arnhem Land: Anthropology and Nutrition. Melbourne: Melbourne University Press, pp. 60–71Google Scholar
Moore, W. J. (1974). Growth of the Facial Skeleton in Hominoidea. London: Academic PressGoogle Scholar
Moore, W. J. & Corbett, M. E. (1971). Distribution of dental caries in ancient British populations: I Anglo-Saxon period. Caries Research, 5, 151–68CrossRefGoogle ScholarPubMed
Moore, W. J. & Corbett, M. E. (1973). Distribution of dental caries in ancient British populations: II Iron Age, Romano-British and Medieval periods. Caries Research, 7, 139–53CrossRefGoogle Scholar
Moore, W. J. & Corbett, M. E. (1975). Distribution of dental caries in ancient British populations: III The 17th century. Caries Research, 9, 163–75CrossRefGoogle ScholarPubMed
Moorrees, C. F. A., Fanning, E. A., & Hunt, E. E. (1963). Age variation of formation stages for ten permanent teeth. Journal of Dental Research, 42, 1490–502CrossRefGoogle ScholarPubMed
Moorrees, C. F. A. & Reed, R. B. (1964). Correlations among crown diameters of human teeth. Archives of Oral Biology, 9, 685–97CrossRefGoogle ScholarPubMed
Morales, A. & Rodríguez, J. (1997). Black rats (Rattus rattus) from medieval Mertola (Baixo Alentejo, Portugal). Journal of Zoology, 241, 623–42CrossRefGoogle Scholar
Moran, N. C. & O'Connor, T. P. (1994). Age attribution in domestic sheep by skeletal and dental maturation: a pilot study of available sources. International Journal of Osteoarchaeology, 4, 267–86CrossRefGoogle Scholar
Morris, P. (1972). A review of mammalian age determination methods. Mammal Review, 2, 69–104CrossRefGoogle Scholar
Morris, P. (1978). The use of teeth for estimating the age of wild mammals. In Butler, P. M. & Joysey, K. A. (eds.), Development, Function and Evolution of Teeth. London: Academic Press, pp. 483–94Google Scholar
Mountain, J. L. (1998). Molecular evolution and modern human origins. Evolutionary Anthropology, 4, 53–63Google Scholar
Muller, D. & Perizonius, W. R. K. (1980). The scoring of defects of the alveolar process in human crania. Journal of Human Evolution, 9, 113–16CrossRefGoogle Scholar
Mundorff, S. A., Featherstone, J. D. B., Bibby, B. G., Curzon, M. E. J., Eisenberg, A. D., & Espeland, M. A. (1990). Cariogenic potential of foods. I. Caries in the rat model. Caries Research, 24, 344–55CrossRefGoogle ScholarPubMed
Mundorff-Shrestha, S. A., Featherstone, J. D. B., Eisenberg, A. D., Cowles, E., Curzon, M. E. J., Espeland, M. A., & Shields, C. P. (1994). Cariogenic potential of foods. II. Relationship of food composition, plaque microbial counts, and salivary perameters to caries in the rat model. Caries Research, 28, 106–15CrossRefGoogle Scholar
Munson, P. J. (1984). Teeth of juvenile woodchucks as seasonal indicators on archaeological sites. Journal of Archaeological Science, 11, 395–404CrossRefGoogle Scholar
Murphy, T. (1959a). Gradients of dentine exposure in human molar tooth attrition. American Journal of Physical Anthropology, 17, 179–86CrossRefGoogle Scholar
Murphy, T. (1959b). The changing pattern of dentine exposure in human tooth attrition. American Journal of Physical Anthropology, 17, 167–78CrossRefGoogle Scholar
Nadachowski, A. (1991). Systematics, geographic variation, and evolution of snow voles (Chionomys) based on dental characters. Acta Theriologica, 36, 1–45CrossRefGoogle Scholar
Nalbandian, J. & Soggnaes, R. F. (1960). Structural age changes in human teeth. In Shock, N. W. (ed.), Ageing – Some Social and Biological Aspects. Symposia presented at the Chicago meeting, December 29–30, 1959. American Association for the Advancement of Science Publication 65. Washington DC: American Association for the Advancement of Science, pp. 367–82Google Scholar
Navia, J. M. (1977). Animal Models in Dental Research. Alabama: University of Alabama PressGoogle Scholar
Navia, J. M. (1994). Carbohydrates and dental health. American Journal of Clinical Nutrition, 59, 719S–27SCrossRefGoogle ScholarPubMed
Naylor, J. W., Miller, W. G., Stokes, G. N., & Stott, G. G. (1985). Cemental annulation enhancement: a technique for age determination in man. American Journal of Physical Anthropology, 68, 197–200CrossRefGoogle ScholarPubMed
Nichol, C. R. (1989). Complex segregation analysis of dental morphological variants. American Journal of Physical Anthropology, 78, 37–59CrossRefGoogle ScholarPubMed
Noddle, B. (1974). Ages of epiphyseal closure in feral and domestic goats and ages of dental eruption. Journal of Archaeological Science, 1, 195–204CrossRefGoogle Scholar
Nowak, R. M. & Paradiso, J. L. (1983). Walker's Mammals of the World. Baltimore: Johns Hopkins University PressGoogle Scholar
Nowell, G. W. (1978). An evaluation of the Miles method of ageing using the Tepe Hissar dental sample. American Journal of Physical Anthropology, 49, 271–6CrossRefGoogle ScholarPubMed
Nyvad, B. & Fejerkov, O. (1982). Root surface caries: clinical, histopathological and microbiological features and clinical implications. International Dental Journal, 32, 311–26Google ScholarPubMed
O'Brien, C. J. (2000). A re-evaluation of dental increment formation in East African mammals: implications for wildlife biology and zooarchaeology. Archaeozoologia, , 43–6Google Scholar
O'Higgins, P. & Johnson, D. R. (1988). The quantitative description and comparison of biological forms. CRC Critical Reviews in Anatomical Sciences, 1, 149–70Google Scholar
Oakley, K. P. (1969). Analytical methods of dating bones. In Brothwell, D. R. & Higgs, E. S. (eds.), Science in Archaeology. London: Thames & Hudson, pp. 35–45Google Scholar
Ogilvie, M. D., Curran, B. K., & Trinkaus, E. (1989). Incidence and patterning of dental enamel hypoplasia among the Neandertals. American Journal of Physical Anthropology, 79, 25–41CrossRefGoogle ScholarPubMed
Ognev, S. I. (1948). Mammals of USSR and Adjacent Countries: Volume 6 Rodents. Moscow: Translated 1962 Israel Programme for Scientific Translation
Olsen, S. J. (1985). Origins of the Domestic Dog. Tucson: University of Arizona PressGoogle Scholar
Osborn, D. J. and Helmy, I. (1980). Contemporary Land Mammals of Egypt (Including Sinai). Fieldiana: Zoology New Series 5. Chicago, Field Museum of Natural History
Osborn, H. F. (1907). Evolution of Mammalian Molar Teeth. To and from the triangular type, including collected and revised researches on trituberculy and new sections on the forms and homologies of the molar teeth in the different orders of mammals. Biological Studies and Addresses 1. New York: Macmillan
Osborn, J. W. (1973). Variations in structure and development of enamel. Oral Science Reviews, 3, 3–83Google ScholarPubMed
Osborn, J. W. (1978). Morphogenetic gradients: fields versus clones. In Butler, P. M. & Joysey, K. A. (eds.), Development, Function and Evolution of Teeth. London: Academic Press, pp. 171–99Google Scholar
Osborn, J. W. (ed.) (1981). Dental Anatomy and Eembryology. Oxford: Blackwell Scientific PublicationsGoogle Scholar
Osborn, J. W. & Ten Cate, A. R. (1983). Advanced Dental Histology. Dental Practitioner Handbook, 6. Bristol: John Wright
Osborne, R. H. (1963). Respective role of twin, sibling, family, and population methods in dentistry and medicine. Journal of Dental Research, 42, 1276–87CrossRefGoogle Scholar
Osborne, R. H., Horowitz, S. L., & George, F. V. (1958). Genetic variation of tooth dimensions: a twin study of the permanent anterior teeth. American Journal of Human Genetics, 10, 350–6Google ScholarPubMed
Ovchinnikov, I. V., Götherström, A., Romanova, G. P., Kharitonov, V. M., Lidén, K., & Goodwin, W. (2000). Molecular analysis of Neanderthal DNA from the northern Caucasus. Nature, 404, 490–3CrossRefGoogle ScholarPubMed
Owen, R. (1845). Odontography or a treatise on the comparative anatomy of the teeth: their physiological relations, mode of development and microscopic structure in the vertebrate animals. London: Hyppolyte BaillièreGoogle Scholar
Page, R. C. & Schroeder, H. E. (1982). Periodontitis in Man and Other Animals: a Comparative Review. Basel and New York: KargerGoogle Scholar
Passmore, R., Peterson, R. L., & Cringan, A. T. (1955). A study of mandibular tooth wear as an index to age of moose. In Peterson, R. L. (ed.), North American Moose. Toronto: University of Toronto Press, pp. 223–98Google Scholar
Pastor, R. F. (1994). A multivariate dental microwear analysis of prehistoric groups from the Indian subcontinent (abstract). American Journal of Physical Anthropology, Supplement 18, 158–9Google Scholar
Payne, S. (1973). Kill-off patterns in sheep and goats: the mandibles from Asvan Kale. Anatolian Studies, 23, 281–303CrossRefGoogle Scholar
Payne, S. (1985). Morphological distinctions between the mandibular teeth of young sheep, Ovis, and Goats, Capra. Journal of Archaeological Science, 12, 139–47CrossRefGoogle Scholar
Payne, S. (1987). Reference codes for wear states in the mandibular cheek teeth of sheep and goats. Journal of Archaeological Science, 14, 609–14CrossRefGoogle Scholar
Payne, S. (1991). Early Holocene equids from Tall-i-Mushki (Iran) and Can Hasan III (Turkey). In Meadow, R. H. & Uerpmann, H.-P. (eds.), Equids in the Ancient World. Beihefte zum Tübinger Atlas des Vorderen Orients, Reihe A (Naturwissenschaften) Nr 19/2. Wiesbaden: Dr Ludwig Reichert Verlag, pp. 132–77Google Scholar
Payne, S. & Bull, G. (1988). Components of variation in measurements of pig bones and teeth, and the use of measurements to distinguish wild from domestic pig remains. Archaeozoologia, II, 27–65Google Scholar
Pedersen, P. O. (1938). Investigations into the dental conditions of about 3000 ancient and modern Greenlanders. Dental Record, 58, 191–8Google Scholar
Pedersen, P. O. (1947). Dental investigations of Greenland Eskimos. Proceedings of the Royal Society of Medicine, 40, 726–32Google ScholarPubMed
Pedersen, P. O. (1949). The East Greenland Eskimo dentition. Meddelelser om Gr⊘nland, 142, 1–244Google Scholar
Penniman, T. K. (1952). Pictures of Ivory and Other Animal Teeth, Bone and Antler, with a Brief Commentary on their Use in Identification. Occasional Papers on Technology, 5. Oxford: Pitt Rivers Museum, University of OxfordGoogle Scholar
Penning, C., Amerongen, J. P., Seef, R. E., & Cate, Ten J. M. (1992). Validity of probing for fissure caries diagnosis. Caries Research, 26, 445–9CrossRefGoogle ScholarPubMed
Pérez-Barbería, F. J. (1994). Determination of age in Cantabrian chamois (Rupicapra rupicapra parva) from jaw tooth-row eruption and wear. Journal of Zoology, 233, 649–56CrossRefGoogle Scholar
Perrin, W. F. & Myrick, A. C. (eds.) (1980). Growth of Odontocetes and Sirenians: Problems in Age Determination. Proceedings of the International Conference on Determining Age of Odontocete Ceteans (and Sirenians), La Jolla, California, September 5–19, 1978. Report of the International Whaling Commission, Special Issue 3. Cambridge: International Whaling CommissionGoogle Scholar
Perzigian, A. J. (1981). Allometric analysis of dental variation in a human population. American Journal of Physical Anthropology, 54, 341–5CrossRefGoogle Scholar
Peters, H. & Balling, R. (1999). Teeth: where and how to make them. Trends in Genetics, 15, 59–65CrossRefGoogle Scholar
Philippas, G. G. & Applebaum, E. (1966). Age factors in secondary dentin formation. Journal of Dental Research, 45, 778–89CrossRefGoogle Scholar
Pike-Tay, A., Morcomb, C. A., & O'Farrell, M. (2000). Reconsidering the Quadratic Crown Height Method of age estimation for Rangifer from archaeological sites. Archaeozoologia, , 145–74Google Scholar
Pindborg, J. J. (1970). Pathology of the Dental Hard Tissues. Philadelphia: SaundersGoogle Scholar
Pindborg, J. J. (1982). Aetiology of developmental enamel defects not related to fluorosis. International Dental Journal, 32, 123–34Google Scholar
Plavcan, J. M. (2001). Sexual dimorphism in Primate evolution. Yearbook of Physical Anthropology, 44, 25–53CrossRefGoogle Scholar