Skip to main content Accessibility help
Hostname: page-component-5d6d958fb5-gz6rp Total loading time: 1.134 Render date: 2022-11-26T19:45:26.080Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

18 - Virtual dentitions: touching the hidden evidence

Published online by Cambridge University Press:  12 September 2009

Roberto MacChiarelli
Laboratoire de Géobiologie, Biochronologie et Paléontologie Humaine, France
Luca Bondioli
Museo Nazionale Preistorico Etnografico “Luigi Pigorini”, Sezione di Antropologia, Italy
Arnaud Mazurier
Etudes Recherches Matériaux, Dép. Géosciences, France
Joel D. Irish
University of Alaska, Fairbanks
Greg C. Nelson
University of Oregon
Get access



Recent advances in dental developmental biology, quantitative genetics, and micro-anatomy (e.g. Dean, 2000, 2006; Hlusko, 2004; Hlusko et al., 2004; Jernvall, 2000; Jernvall and Jung, 2000; Mitsiadis and Smith, 2006; Olejniczak et al., 2004; Pereira et al., 2006; Smith T. M., 2006; Smith T. M. et al., 2006a; Thesleff et al., 2001) have made clear that a critical amount of structural data is preserved in primate dental tissues. Such data can be used to reconstruct/assess evolutionary pathways and phylogenetic relationships, adaptive strategies, growth rates and developmental timing, and age- and sex-related variation patterns in fossil taxa; they may even be used to tentatively outline aspects of their life-history, including fluctuating health conditions and seasonally related individual–environment dynamic relationships recorded during growth (Beynon et al., 1998; Chaimanee et al., 2006; Dean and Leakey, 2004; Dean et al., 2001; FitzGerald et al., 2006; Guatelli-Steinberg et al., 2005; Kelley and Smith, 2003; Lacruz et al., 2006; Macchiarelli et al., 2006; Marivaux et al., 2006a; Ramirez-Rozzi and Bermúdez de Castro, 2004; Schwartz et al., 2003; Smith P. et al., 2006; Smith T. M. et al., 2005a, 2006b; Sponheimer et al., 2006). Nonetheless, a significant portion of this valuable paleobiological archive is hidden deep within the crown and root(s). Since it is not possible or, in the case of scarce fossils, desirable to section every specimen, non-invasive analytical approaches can be used in addition to histomorphometry.

Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Alt, K. W. and Buitrago-Téllez, C. H. (2004). Dental paleoradiology: applications in paleoanthropology and paleopathology. Journal of the Canadian Association of Radiologists, 55, 258–63Google ScholarPubMed
Amano, M., Agematsu, H., Abe, al. (2006). Three-dimensional analysis of pulp chambers in maxillary second deciduous molars. Journal of Dentistry, 34, 503–8CrossRefGoogle ScholarPubMed
Andrews, P. and Martin, L. (1991). Hominoid dietary evolution. Philosophical Transactions of the Royal Society of London, Series B, 334, 199–209CrossRefGoogle ScholarPubMed
Avishai, G., Müller, R., Gabet, al. (2004). New approach to quantifying developmental variation in the dentition using serial microtomographic imaging. Microscopy Research and Technique, 65, 263–9CrossRefGoogle ScholarPubMed
Bayle, P., Braga, J., Mazurier, A., Radovčic, J., and Macchiarelli, R. (2007). Dental developmental patterns in Neandertals: a high-resolution 3D analysis. American Journal of Physical Anthropology, Suppl. 41, 70 (abstract)Google Scholar
Begun, D., Ward, C. V., and Rose, M. D. (1997). Events in hominoid evolution. In Function, Phylogeny, and Fossils: Miocene Hominoid Evolution and Adaptation, ed. Begun, D., Ward, C. V., and Rose, M. D.. New York: Plenum Press, pp. 389–415CrossRefGoogle Scholar
Beynon, A. D., Dean, M. C., Leakey, M. G., Reid, D. J., and Walker, A. (1998). Comparative dental development and microstructure of Proconsul teeth from Rusinga Island, Kenya. Journal of Human Evolution, 35, 163–209CrossRefGoogle ScholarPubMed
Bravin, A., Fielder, S., Coan, al. (2003). Comparison between a position sensitive germanium detector and a taper optics CCD “FRELON” camera for diffraction enhanced imaging. Nuclear Instruments and Methods in Physics Research A, 510, 35–40CrossRefGoogle Scholar
Brunet, M., Guy, F., Pilbeam, al. (2005). New material of the earliest hominid from the Upper Miocene of Chad. Nature, 434, 752–5CrossRefGoogle ScholarPubMed
Chaimanee, Y., Yamee, C., Tian, al. (2006). Khoratpithecus piriyai, a Late Miocene hominoid of Thailand. American Journal of Physical Anthropology, 131, 311–23CrossRefGoogle ScholarPubMed
Conroy, G. C. (1991). Enamel thickness in South African australopithecines: noninvasive evaluation by computed tomography. Palaeontologica Africana, 28, 53–9Google Scholar
Conroy, G. C. and Vannier, M. H. (1987). Dental development of the Taung skull from computerized tomography. Nature, 329, 625–7CrossRefGoogle ScholarPubMed
Conroy, G. C., Lichtman, J. W., and Martin, L. B. (1995). Some observations on enamel thickness and enamel prism packing in the Miocene hominoid Otavipithecus namibiensis. American Journal of Physical Anthropology, 98, 595–600CrossRefGoogle ScholarPubMed
Coppa, A., Bondioli, L., Cucina, al. (2006). Early Neolithic dentistry. Nature, 440, 755–6CrossRefGoogle ScholarPubMed
Davis, G. R. and Wong, F. S. L. (1996). X-ray microtomography of bones and teeth. Physiological Measurement, 17, 121–46CrossRefGoogle ScholarPubMed
Dean, M. C. (2000). Progress in understanding hominoid dental development. Journal of Anatomy, 197, 77–101CrossRefGoogle ScholarPubMed
Dean, M. C. (2006). Tooth microstructure tracks the pace of human life-history evolution. Proceedings of the Royal Society, B273, 2799–808CrossRefGoogle Scholar
Dean, M. C. and Leakey, M. G. (2004). Enamel and dentine development and the life history profile of Victoriapithecus macinnesi from Maboko Island, Kenya. Annals of Anatomy, 186, 405–12CrossRefGoogle ScholarPubMed
Dean, M. C., Leakey, M. G., Reid, al. (2001). Growth processes in teeth distinguish modern humans from Homo erectus and earlier hominins. Nature, 414, 628–31CrossRefGoogle ScholarPubMed
Donoghue, P. C. J., Bengtson, S., Dong, al. (2006). Synchrotron X-ray tomographic microscopy of fossil embryos. Nature, 442, 680–3CrossRefGoogle ScholarPubMed
Dowker, S. E. P., Elliott, J. C., Davis, G. R., Wilson, R. M., and Cloetens, P. (2006). Three-dimensional study of human dental fissure enamel by synchrotron X-ray microtomography. European Journal of Oral Sciences, 114 (Suppl. 1), 353–9CrossRefGoogle ScholarPubMed
Fajardo, R. J., Ryan, T. M., and Kappelman, J. (2002). Assessing the accuracy of high-resolution X-ray computed tomography of primate trabecular bone by comparisons with histological sections. American Journal of Physical Anthropology, 118, 1–10CrossRefGoogle ScholarPubMed
Feldkamp, L. A., Davis, L. C., and Kress, J. W. (1984). Practical cone-beam algorithm. Journal of the Optical Society of America, 1, 612–19CrossRefGoogle Scholar
FitzGerald, C., Saunders, S., Bondioli, L., and Macchiarelli, R. (2006). Health of infants in an Imperial Roman skeletal sample: perspective from dental microstructure. American Journal of Physical Anthropology, 130, 179–89CrossRefGoogle Scholar
Gantt, D. G., Kappleman, J., Ketcham, R. A., Alder, M. E., and Deahl, T. H. (2006). Three-dimensional reconstruction of enamel thickness and volume in humans and hominoids. European Journal of Oral Sciences, 114 (Suppl. 1), 360–4CrossRefGoogle ScholarPubMed
Grine, F. E. (1991). Computed tomography and the measurement of enamel thickness in extant hominoids: implications for its paleontological application. Palaeontologica Africana, 28, 61–9Google Scholar
Grine, F. E., Stevens, N. J., and Jungers, W. J. (2001). An evaluation of dental radiograph accuracy in the measurement of enamel thickness. Archives of Oral Biology, 46, 1117–25CrossRefGoogle ScholarPubMed
Guatelli-Steinberg, D., Reid, D. J., Bishop, T. A., and Larsen, C. S. (2005). Anterior tooth growth periods in Neandertals were comparable to those of modern humans. Proceedings of the National Academy of Sciences USA, 102, 14197–202CrossRefGoogle ScholarPubMed
Harris, E. F. and Hicks, J. D. (1998). A radiographic assessment of enamel thickness in human maxillary incisors. Archives of Oral Biology, 10, 825–31CrossRefGoogle Scholar
Harris, E. F., Hicks, J. D., and Barcroft, B. D. (2001). Tissue contributions to sex and race: differences in tooth crown size of deciduous molars. American Journal of Physical Anthropology, 115, 223–37CrossRefGoogle ScholarPubMed
Heizmann, E. P. J. and Begun, D. (2001). The oldest Eurasian hominoid. Journal of Human Evolution, 41, 463–81CrossRefGoogle ScholarPubMed
Hlusko, L. J. (2004). Integrating the genotype and phenotype in hominid paleontology. Proceedings of the National Academy of Sciences USA, 101, 2653–7CrossRefGoogle ScholarPubMed
Hlusko, L. J., Suwa, G., Kono, R. T. and Mahaney, M. C. (2004). Genetics and the evolution of primate enamel thickness: a baboon model. American Journal of Physical Anthropology, 124, 223–33CrossRefGoogle ScholarPubMed
Huber, C. D., Bookstein, F. L., and Weber, G. W. (2007). Tooth shape and enamel thickness variation in primate teeth: an approach using topographic thickness maps. American Journal of Physical Anthropology, Suppl. 41, 132 (abstract)Google Scholar
Ito, M., Ejiri, S., Jinnai, H., Kono, al. (2003). Bone structure and mineralization demonstrated using synchrotron radiation computed tomography (SR-CT) in animal models: preliminary findings. Journal of Bone and Mineral Metabolism, 21, 287–93CrossRefGoogle ScholarPubMed
Jernvall, J. (2000). Linking development with generation of novelty in mammalian teeth. Proceedings of the National Academy of Sciences USA, 97, 2641–5.CrossRefGoogle ScholarPubMed
Jernvall, J. and Jung, H.-S. (2000). Genotype, phenotype, and developmental biology of molar tooth characters. Yearbook of Physical Anthropology, 43, 171–903.0.CO;2-3>CrossRefGoogle Scholar
Kelley, J. and Smith, T. M. (2003). Age at first molar emergence in early Miocene Afropithecus turkanensis and life-history evolution in the Hominoidea. Journal of Human Evolution, 44, 307–29CrossRefGoogle ScholarPubMed
Ketcham, K. A. and Carlson, W. D. (2001). Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences. Computers and Geosciences, 27, 381–400CrossRefGoogle Scholar
Kono, R. (2004). Molar enamel thickness and distribution patterns in extant great apes and humans: new insights based on a 3-dimensional whole crown perspective. Anthropological Science, 112, 121–46CrossRefGoogle Scholar
Kono, R. T., Suwa, G., and Tanijiri, T. (2002). A three-dimensional analysis of enamel distribution patterns in human permanent first molars. Archives of Oral Biology, 47, 867–75CrossRefGoogle ScholarPubMed
Koufos, G. D. and Bonis, L. (2004). The deciduous lower dentition of Ouranopithecus macedoniensis (Primates, Hominoidea) from the Late Miocene deposits of Macedonia, Greece. Journal of Human Evolution, 46, 699–718CrossRefGoogle ScholarPubMed
Koufos, G. D. and Bonis, L. (2005). The Late Miocene hominoids Ouranopithecus and Graecopithecus. Implications about their relationships and taxonomy. Annales de Paléontologie, 91, 227–40CrossRefGoogle Scholar
Kunz, C. (2001). Synchrotron radiation: third generation sources. Journal of Physics: Condensed Matter, 13, 7499–510Google Scholar
Lacruz, R. S., Ramirez-Rozzi, F., and Bromage, T. G. (2006). Variation in enamel development of South African fossil hominids. Journal of Human Evolution, 51, 580–90CrossRefGoogle ScholarPubMed
Lihoreau, F., Boisserie, J.-R., Viriot, al. (2006). Anthracothere dental anatomy reveals a late Miocene Chado-Libyan bioprovince. Proceedings of the National Academy of Sciences USA, 23, 8763–7CrossRefGoogle Scholar
Macchiarelli, R. (in press). Dental microstructure and life history: introduction. In Dental Perspectives on Human Evolution: State of the Art Research in Dental Paleoanthropology, ed. Bailey, S. E. and Hublin, J.-J.. Dordrecht: SpringerGoogle Scholar
Macchiarelli, R. and Bondioli, L. (2005). Virtual dentitions: touching the hidden evidence. American Journal of Physical Anthropology, Suppl. 39, 177 (abstract)Google Scholar
Macchiarelli, R., Bondioli, L., Falk, al. (2004). Early Pliocene hominid tooth from Galili, Somali Region, Ethiopia. Collegium Antropologicum, 28, 65–76Google ScholarPubMed
Macchiarelli, R., Radovčic, J., Semal, P., and Weniger, G. C. (2005). A “virtual reality” for the Neanderthal fossil record: “The Neanderthal Tools” project. Bullettin et Mémoires de la Société d'Anthropologie de Paris, 17, 278 (abstract)Google Scholar
Macchiarelli, R., Bondioli, L., Debénath, al. (2006). How Neanderthal molar teeth grew. Nature, 444, 748–51CrossRefGoogle ScholarPubMed
Macchiarelli, R., Mazurier, A., and Volpato V. (in press). L'apport des nouvelles technologies à l'étude des Néandertaliens. In Les Néandertaliens, ed. Vandermeersch, B.. Paris: Comité des Travaux Historiques et Scientifiques (CTHS)Google Scholar
Macho, G. A. and Thackeray, J. F. (1992). Computed-tomography and enamel thickness of maxillary molars of Plio-Pleistocene hominids from Sterkfontein, Swartkrans, and Kromdraai (South Africa): an exploratory study. American Journal of Physical Anthropology, 89, 133–43.CrossRefGoogle Scholar
Marivaux, L., Chaimanee, Y., Tafforeau, P., and Jaeger, J.-J. (2006a). New strepsirrhine primate from the Late Eocene of Peninsular Thailand (Krabi Basin). American Journal of Physical Anthropology, 130, 425–34CrossRefGoogle Scholar
Marivaux, L., Bocat, L., Chaimanee, al. (2006b). Cynocephalid dermopterans from the Palaeogene of South Asia (Thailand, Myanmar and Pakistan): systematic, evolutionary and palaeobiogeographic implications. Zoologica Scripta, 35, 395–420CrossRefGoogle Scholar
Martin, L. (1985). Significance of enamel thickness in hominoid evolution. Nature, 314, 260–3CrossRefGoogle ScholarPubMed
Martin, L., Olejniczak, A. J., and Maas, M. C. (2003). Enamel thickness and microstructure in pithecine primates, with comments on dietary adaptations of the Middle Miocene hominoid Kenyapithecus. Journal of Human Evolution, 45, 351–67CrossRefGoogle Scholar
Maureille, B., Rougier, H., Houet, F., and Vandermeersch, B. (2001). Les dents inférieures du néandertalien Regourdou 1 (site de Regourdou, commune de Montignac, Dordogne): analyses métriques et comparatives. Paléo, 13, 183–200Google Scholar
Mazurier, A. and Macchiarelli, R. (2005). Anterior deciduous dentition in Neanderthals: topographic variation in enamel thickness and inner structural morphology. Bulletin et Mémoires de la Société d'Anthropologie de Paris, 17, 280 (abstract)Google Scholar
Mazurier, A., Bondioli, L., Bravin, A., Nemoz, C., and Macchiarelli, R. (2005). High-resolution (3D SR-µCT-based) structural analysis of the primate proximal tibia: evidence for locomotion-related topographic variation. American Journal of Physical Anthropology, Suppl. 39, 147 (abstract)Google Scholar
Mazurier, A., Volpato, V., and Macchiarelli, R. (2006). Improved noninvasive microstructural analysis of fossil tissues by means of SR-microtomography. Applied Physics A, Materials Science and Processing, 83, 229–33CrossRefGoogle Scholar
McErlain, D. D., Chhem, R. K., Bohay, R. N., and Holdsworth, D. W. (2004). Micro- computed tomography of a 500-year-old tooth: technical note. Journal of the Canadian Association of Radiologists, 55, 242–5Google ScholarPubMed
Mees, F., Swennen, R., Geet, M., and Jacobs, P., eds. (2003). Applications of X-ray Computed Tomography in the Geosciences. Geological Society, Spec. Publ. 215. London: Geological SocietyGoogle Scholar
Mitsiadis, T. A. and Smith, M. M. (2006). How do genes make teeth to order through development? Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 306 B, 177–82CrossRefGoogle Scholar
Molnar, S., Hildebolt, C., Molnar, I. M., Radovcic, J., and Gravier, M. (1993). Hominid enamel thickness: I, the Krapina Neandertals. American Journal of Physical Anthropology, 92, 131–8CrossRefGoogle ScholarPubMed
Müller, R., Campenhout, H., Damme, al. (1998). Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro-computed tomography. Bone, 23, 59–66CrossRefGoogle ScholarPubMed
Nagatoshi, K. (1990). Molar enamel thickness in European Miocene and extant Hominoidea. International Journal of Primatology, 11, 283–95CrossRefGoogle Scholar
Olejniczak, A. J. and Grine, F. E. (2005). High-resolution measurement of Neanderthal tooth enamel thickness by micro-focal computed tomography. South African Journal of Science, 101, 219–20Google Scholar
Olejniczak, A. J. and Grine, F. E. (2006). Assessment of the accuracy of dental enamel thickness measurements using microfocal X-ray computed tomography. Anatomical Record, 288 A, 263–75CrossRefGoogle Scholar
Olejniczak, A. J., Grine, F. E., and Martin, L. B. (in press). Micro-computed tomography of the primate post-canine dentition. Methodological aspects of three-dimensional data collection. In Dental Perspectives on Human Evolution: State of the Art Research in Dental Paleoanthropology, ed. Bailey, S. E. and Hublin, J.-J.. Dordrecht: SpringerGoogle Scholar
Olejniczak, A. J., Martin, L. B., and Ulhaas, L. (2004). Quantification of dentine shape in anthropoid primates. Annals of Anatomy, 186, 479–85CrossRefGoogle ScholarPubMed
Olejniczak, A. J., Smith, T. M., Tafforeau, P., Temming, H. and Hublin, J.-J. (2006a). A comparison of microtomographic systems for the analysis of dental tissues. American Journal of Physical Anthropology, Suppl. 42, 140–41 (abstract)Google Scholar
Olejniczak, A. J., Smith, T. M., Macchiarelli, al. (2006b). Enamel volume and thickness in Neanderthal molars: a microtomographic investigation. Terra Nostra, 2, 128–9 (abstract)Google Scholar
Pereira, T. V., Salzano, F. M., Mostowska, al. (2006). Natural selection and molecular evolution in primate PAX9 gene, a major determinant of tooth development. Proceedings of the National Academy of Sciences USA, 103, 5676–81CrossRefGoogle ScholarPubMed
Peters, O. A., Laib, A., Rüegsegger, P. and Barbakow, F. (2000). Three-dimensional analysis of root canal geometry by high-resolution computed tomography. Journal of Dental Research, 79, 1405–9CrossRefGoogle ScholarPubMed
Prossinger, H., Seidler, H., Wicke, al. (2003). Electronic removal of encrustations inside the Steinheim cranium reveals paranasal sinus features and deformations, and provides a revised endocranial volume estimate. Anatomical Record, 273 B, 132–44CrossRefGoogle Scholar
Rozzi, Ramirez F. and Castro, Bermúdez J. M. (2004). Surprisingly rapid growth in Neanderthals. Nature, 428, 936–9CrossRefGoogle Scholar
Rhodes, J. S., Pitt-Ford, T. R., Lynch, J. A., Liepins, P. J., and Curtis, R. V. (1999). Micro-computed tomography: a new tool for experimental endodontology. International Endodontology Journal, 32, 165–70CrossRefGoogle ScholarPubMed
Rook, L., Bondioli, L., Casali, al. (2004). The bony labyrinth of Oreopithecus bambolii. Journal of Human Evolution, 46, 345–52CrossRefGoogle ScholarPubMed
Rossi, M., Casali, F., Romani, al. (2004). Micro-CTscan in paleobiology: application to the study of dental tissues. Nuclear Instruments and Methods in Physics Research B, 213, 747–50CrossRefGoogle Scholar
Russ, J. C. (2002). The Image Processing Handbook, 4th Edn. Boca Raton: CRC PressCrossRefGoogle Scholar
Salomé, M., Peyrin, F., Cloetens, al. (1999). A synchrotron radiation microtomography system for the analysis of trabecular bone samples. Medical Physics, 26, 2194–204CrossRefGoogle ScholarPubMed
Salvo, L., Cloetens, P., Maire, al. (2003). X-ray microtomography: an attractive characterisation technique materials science. Nuclear Instruments and Methods in Physics Research B, 200, 273–86CrossRefGoogle Scholar
Scarfe, W. C., Farman, A. G., and Sukovic, P. (2006). Clinical applications of cone- beam computed tomography in dental practice. Journal of the Canadian Dental Association, 72, 75–80Google ScholarPubMed
Schwartz, G. T. (2000). Taxonomic and functional aspects of the patterning of enamel thickness distribution in extant large-bodied hominoids. American Journal of Physical Anthropology, 111, 221–443.0.CO;2-G>CrossRefGoogle ScholarPubMed
Schwartz, G. T., Liu, W., and Zheng, L. (2003). Preliminary investigation of dental microstructure in the Yuanmou hominoid (Lufengpithecus hudienensis), Yunnan Province, China. Journal of Human Evolution, 44, 189–202CrossRefGoogle ScholarPubMed
Schwartz, G. T., Thackeray, J. F., Reid, C., and Reenan, J. F. (1998). Enamel thickness and the topography of the enamel–dentine junction in South African Plio-Pleistocene hominids with special reference to the Carabelli trait. Journal of Human Evolution, 35, 523–42CrossRefGoogle ScholarPubMed
Semal, P., Toussaint, M., Maureille, al. (2005). Numérisation des restes humains néandertaliens belges. Préservation patrimoniale et exploitation scientifique. Notae Praehistoricae, 25, 25–38Google Scholar
Smith, P., Müller, R., Gabet, Y., and Avishai, G. (2006). Computerized reconstruction of prenatal growth trajectories in the dentition: implications for the taxonomic status of Neandertals. Terra Nostra, 2, 60–3Google Scholar
Smith, T. M. (2006). Experimental determination of the periodicity of incremental features in enamel. Journal of Anatomy, 208, 99–113CrossRefGoogle ScholarPubMed
Smith, T. M., Martin, L. B., and Leakey, M. G. (2003). Enamel thickness, microstructure and development in Afropithecus turkanensis. Journal of Human Evolution, 44, 283–306CrossRefGoogle ScholarPubMed
Smith, T. M., Martin, L. B., Reid, D. J., Bonis, L., and Koufous, G. D. (2005a). An examination of dental development in Graecopithecus freybergi (Ouranopithecus macedoniensis). Journal of Human Evolution, 46, 551–77Google Scholar
Smith, T. M., Olejniczak, A. J., Martin, L. B., and Reid, D. J. (2005b). Variation in hominoid molar enamel thickness. Journal of Human Evolution, 48, 575–92CrossRefGoogle Scholar
Smith, T. M., Olejniczak, A. J., Reid, D. J., Ferrell, R. J. and Hublin, J.-J. (2006a). Modern human molar enamel thickness and enamel-dentine junction shape. Archives of Oral Biology, 51, 974–95CrossRefGoogle Scholar
Smith, T. M., Olejniczak, A. J., Tafforeau, al. (2006b). Molar crown thickness, volume, and development in South African Middle Stone Age humans. South African Journal of Science, 102, 1–5Google Scholar
Sponheimer, M., Passey, B. H., Ruiter, D. al. (2006). Isotopic evidence for dietary variability in the early hominin Paranthropus robustus. Science, 314, 980–2CrossRefGoogle ScholarPubMed
Spoor, C. F., Zonneveld, F. W., and Macho, G. A. (1993). Linear measurements of cortical bone and dental enamel by computed tomography: applications and problems. American Journal of Physical Anthropology, 91, 469–84CrossRefGoogle ScholarPubMed
Spoor, F., Jeffery N., and Zonneveld, F. (2000). Imaging skeletal growth and evolution. In Development, Growth and Evolution: Implications for the Study of the Hominid Skeleton, ed. O'Higgins, P. and Cohn., M.London: Academic Press, pp. 123–61Google Scholar
Suwa, G. and Kono, R. T. (2005). A micro-CT based study of linear enamel thickness in the mesial cusp section of human molars: reevaluation of methodology and assessment of within-tooth, serial, and individual variation. Anthropological Science, 113, 273–89CrossRefGoogle Scholar
Tafforeau, P., Boistel, R., Boller, al. (2006). Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens. Applied Physics A, Materials Science and Processing, 83, 195–202CrossRefGoogle Scholar
Thesleff, I., Keranen, S., and Jernvall, J. (2001). Enamel knots as signalling centers linking tooth morphogenesis and odontoblast differentiation. Advances in Dental Research, 15, 14–18CrossRefGoogle Scholar
Vandermeersch, B. and Trinkaus, E. (1995). The postcranial remains of the Regourdou 1 Neandertal: the shoulder and arm remains. Journal of Human Evolution, 28, 439–76CrossRefGoogle Scholar
Volpato, V., Couture, C., Vandermeersch, B., and Macchiarelli, R. (2006). Endostructural characterisation of the Regourdou 1 Neandertal proximal arm: bilateral asymmetry and handedness. Terra Nostra, 2, 140–1 (abstract)Google Scholar
Weber, G. W., Seidler, H., Woldearagay, al. (2004). GLL 33. 3rd Lower Molar, Australopithecus cf. A. afarensis. Digital Archive of Fossil Hominoids, 6. Vienna-Addis Ababa: Institute of Anthropology and ARCCH (CD-ROM, ISBN 3–9501135–5-X)Google Scholar
Zilberman, U. and Smith, P. (1992). A comparison of tooth structure in Neanderthals and early Homo sapiens sapiens: a radiographic study. Journal of Anatomy, 180, 387–93Google ScholarPubMed
Zilberman, U., Skinner, M., and Smith, P. (1992). Tooth components of mandibular deciduous molars of Homo sapiens sapiens and Homo sapiens neanderthalensis: a radiographic study. American Journal of Physical Anthropology, 87, 255–62CrossRefGoogle ScholarPubMed
Zollikofer, C. P. E. and León, Ponce M. S. (2005). Virtual Reconstruction: A Primer in Computer-Assisted Paleontology and Biomedicine. Hoboken, NJ: Wiley-Interscience.Google Scholar
Cited by

Save book to Kindle

To save this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats