Skip to main content Accessibility help
×
Home
Hostname: page-component-6c8bd87754-r6xbn Total loading time: 0.341 Render date: 2022-01-18T21:09:30.953Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

5 - Symmetries and Noether's theorems

Published online by Cambridge University Press:  08 October 2009

Katherine Brading
Affiliation:
Wolfson College, Oxford
Elena Castellani
Affiliation:
Università degli Studi, Florence
Get access

Summary

Introduction

Emmy Noether's greatest contributions to science were in algebra, but for physicists her name will always be remembered for her paper of 1918 on an invariance problem in the calculus of variations. The most celebrated part of this work, associated with her ‘first theorem’, has to do with the connection between continuous (global) symmetries in Lagrangian dynamics and conservation principles, though the main focus of the paper was the relationship between this and the second part of her paper, where she gives a systematic treatment of the more subtle and general case of continuous local symmetries (symmetries depending on arbitrary functions of the spacetime coordinates).

The connection between global or ‘rigid’ symmetries and conservation principles in classical mechanics was hardly news in 1918. As Kastrup (1987) discusses in his historical review, it had been appreciated in the previous century by Lagrange, Hamilton, Jacobi, and Poincaré, and an anticipation of Noether's first theorem in the special cases of the 10-parameter Lorentz and Galilean groups had been given by Herglotz in 1911 and Engel in 1916, respectively. Noether's own contribution is often praised for its degree of generality, and not without reason. But interestingly it does not cover the cases in which the symmetry transformation preserves the Lagrangian or Lagrangian density only up to a divergence term. It does not therefore cover such cases as the boost symmetry in classical pre-relativistic dynamics, although modern treatments of Noether's first theorem commonly rectify this defect.

Type
Chapter
Information
Symmetries in Physics
Philosophical Reflections
, pp. 89 - 109
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
17
Cited by

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×