Skip to main content Accessibility help
×
Home
Hostname: page-component-dc8c957cd-wvfx2 Total loading time: 0.324 Render date: 2022-01-28T00:13:51.856Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

16 - Proton Stability in Supergravity Unified Theories

Published online by Cambridge University Press:  30 December 2016

Pran Nath
Affiliation:
Northeastern University, Boston
Get access

Summary

Baryon number in particle theory has been of interest for several decades. In 1929 Herman Weyl [1] conjectured such a conservation, and later in 1938 Stueckelberg [2] made it more concrete. This was done by postulating different transformation laws for light particles and heavy particles where the leptons were the light and the nucleons the heavy particles. The conservation of baryons was put on an equal footing to the conservation of the electric charge in further work by Wigner [3]. On the experimental side, the earliest work on putting a lower limit on the proton lifetime was by Goldhaber [4]. In 1954 Goldhaber proposed that spontaneous fission of Th232 after excitation by nucleon decay would be followed by a rearrangement energy due to the loss of a nucleon, and this would cause fission of the residual nucleus. This allowed Goldhaber to put a lower limit of 1.4 × 1014 years on the nucleon lifetime. This limit was soon improved to a lower limit of 1 × 1022 years for bound nucleons in a direct experiment using a liquid scintillation counter 30 m below the Earth's surface by Reines, Cowan, and Goldhaber [5] (for a review of the early history of experiment on proton lifetime limits see Gurr et al. [6] and Perkins [7], and for a broad overview of proton stability in grand unified theories, strings, and branes see Nath and Fileviez Perez [8]). On the theoretical side, an issue arose regarding the absolute conservation of baryon number. It was pointed out by Lee and Yang [9] that if heavy particle number is the result of a gauge invariance, there would be a longrange force associated with such a conservation, but no such long range force is observed. On the other hand, if baryon number is a global symmetry, there is no reason that a global symmetry would guarantee an absolute conservation of baryon number. Indeed, such a symmetry would be violated by anomalies [10] and by gravitational interactions [11–14], specifically worm hole effects [15]. The first concrete model for proton decay via a possible new superweak interaction was discussed by Yamaguchi in 1959 [16]. This work stimulated the first deep underground proton decay experiment in 1960 [7, 17].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] H., Weyl, Z. Phys. 56, 330 (1929) [Surveys High Energ. Phys. 5, 261> (1986)].
[2] E. C. G., Stueckelberg, Helv. Phys. Acta. 11, 299 (1939).
[3] E. P., Wigner, Proc. Am. Phil. Soc. 93, 521 (1949).
[4] M., Goldhaber, in Proceedings, Neutrino Physics and Astrophysics, Boston (1988), pp. 486–489.
[5] F., Reines, C. L., Cowan, and M., Goldhaber, Phys. Rev. 96, 1157 (1954).
[6] H. S., Gurr, W. R., Kropp, F., Reines, and B., Meyer, Phys. Rev. 158, 1321 (1967).
[7] D. H., Perkins, Ann. Rev. Nucl. Part. Sci. 34, 1 (1984).
[8] P., Nath and P. Fileviez, Perez, Phys. Rep. 441, 191 (2007).
[9] T. D., Lee and C. N., Yang, Phys. Rev. 98, 1501 (1955).
[10] G. 't, Hooft, Phys. Rev. Lett. 37, 8 (1976).
[11] Y. B., Zeldovich, Phys. Lett. A 59, 254 (1976).
[12] S. W., Hawking, D. N., Page, and C. N., Pope, Phys. Lett. B 86, 175 (1979).
[13] D. N., Page, Phys. Lett. B 95, 244 (1980).
[14] J. R., Ellis, J. S., Hagelin, D. V., Nanopoulos, and K., Tamvakis, Phys. Lett. B 124, 484 (1983).
[15] G., Gilbert, Nucl. Phys. B 328, 159 (1989).
[16] Y., Yamaguchi, Proc. Theor. Phys. 22, 373 (1959).
[17] G. K., Backenstoss, H., Frauenfielder, B. D., Hyams, L. J., Koester, P. C., Marin, Nuovo Cim. 16, 749 (1960).
[18] A. D., Sakharov, Pisma Zh. Eksp. Teor. Fiz. 5, 32 (1967) [JETP Lett. 5, 24 (1967)]. [Sov. Phys. Usp. 34, 392 (1991)]. [Usp. Fiz. Nauk 161, 61 (1991)].
[19] O., Espinosa, Nucl. Phys. B 343, 310 (1990).
[20] J. C., Pati and A., Salam, Phys. Rev. Lett. 31, 661 (1973).
[21] J. C., Pati and A., Salam, Phys. Rev. D 8, 1240 (1973).
[22] H., Georgi and S. L., Glashow, Phys. Rev. Lett. 32, 438 (1974).
[23] M. R., Krishnaswamy et al., in Proceedings, Grand Unified Theories and Cosmology, Tsukuba (1983), pp. 32–37.
[24] G., Battistoni, E., Bellotti, C., Bloise, et al.,Nucl. Instrum. Meth. A 245, 277 (1986).
[25] C., Berger et al. [FREJUS Collaboration], Nucl. Instrum. Meth. A 262, 463 (1987).
[26] J. L., Thron, Nucl. Instrum. Meth. A 283, 642 (1989).
[27] R., Becker-Szendy et al., Nucl. Instrum. Meth. A 324 (1993) 363.
[28] K. S., Hirata et al. [Kamiokande-II Collaboration], Phys. Lett. B 220, 308 (1989).
[29] B., Viren [Super-Kamiokande Collaboration], hep-ex/9903029 (1999).
[30] S., Weinberg, Phys. Rev. Lett. 43, 1566 (1979).
[31] F., Wilczek and A., Zee, Phys. Rev. Lett. 43, 1571 (1979).
[32] M., Goldhaber and L. R., Sulak, Comments Nucl. Part. Phys. 10(5), 215 (1981).
[33] J. R., Ellis, D. V., Nanopoulos, and S., Rudaz, Nucl. Phys. B 202, 43 (1982).
[34] L. E., Ibanez and C., Munoz, Nucl. Phys. B 245, 425 (1984).
[35] J., Hisano, hep-ph/0004266 (2000).
[36] R., Dermisek, A., Mafi, and S., Raby, Phys. Rev. D 63, 035001 (2001).
[37] T., Nihei and J., Arafune, Prog. Theor. Phys. 93, 665 (1995).
[38] S., Aoki et al. [JLQCD Collaboration], Phys. Rev. D 62, 014506 (2000).
[39] S. J., Brodsky, J. R., Ellis, J. S., Hagelin, and C. T., Sachrajda, Nucl. Phys. B 238, 561 (1984).
[40] M. B., Gavela, S. F., King, C. T., Sachrajda, G., Martinelli, M. L., Paciello, and B., Taglienti, Nucl. Phys. B 312, 269 (1989).
[41] J. F., Donoghue and E., Golowich, Phys. Rev. D 26, 3092 (1982).
[42] N., Tsutsui et al. [CP-PACS and JLQCD Collaborations], Phys. Rev. D 70, 111501 (2004).
[43] N., Cabibbo, E. C., Swallow, and R., Winston, Ann. Rev. Nucl. Part. Sci. 53, 39 (2003).
[44] K. S., Babu et al., arXiv:1311.5285 [hep-ph] (2013).
[45] L. M., Krauss and F., Wilczek, Phys. Rev. Lett. 62, 1221 (1989).
[46] S., Weinberg, Phys. Rev. D 26, 287 (1982).
[47] N., Sakai and T., Yanagida, Nucl. Phys. B 197, 533 (1982).
[48] R. L., Arnowitt and P., Nath, Phys. Rev. D 49, 1479 (1994).
[49] S., Dimopoulos, S., Raby, and F., Wilczek, Phys. Lett. B 112, 133 (1982).
[50] P., Nath, A. H., Chamseddine, and R. L., Arnowitt, Phys. Rev. D 32, 2348 (1985).
[51] J., Hisano, H., Murayama, and T., Yanagida, Nucl. Phys. B 402, 46 (1993).
[52] T., Goto and T., Nihei, Phys. Rev. D 59, 115009 (1999).
[53] B., Bajc, P. Fileviez, Perez, and G., Senjanovic, Phys. Rev. D 66, 075005 (2002).
[54] D., Emmanuel-Costa, and S., Wiesenfeldt, Nucl. Phys. B 661, 62 (2003).
[55] V., Lucas and S., Raby, Phys. Rev. D 55, 6986 (1997).
[56] K. S., Babu, J. C., Pati, and F., Wilczek, Nucl. Phys. B 566, 33 (2000).
[57] T., Fukuyama, A., Ilakovac, T., Kikuchi, S., Meljanac, and N., Okada, Eur. Phys. J. C 42, 191 (2005).
[58] B., Dutta, Y., Mimura, and R. N., Mohapatra, Phys. Rev. Lett. 94, 091804 (2005).
[59] G., Aad et al. [ATLAS Collaboration], Phys. Lett. B 716, 1 (2012).
[60] S., Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 716, 30 (2012).
[61] M., Liu and P., Nath, Phys. Rev. D 87(9), 095012 (2013) [arXiv:1303.7472 [hep-ph]].
[62] J., Hisano, H., Murayama, and T., Yanagida, Phys. Rev. Lett. 69, 1014 (1992).
[63] H., Murayama and A., Pierce, Phys. Rev. D 65, 055009 (2002).
[64] B., Bajc, P. Fileviez, Pérez, and G., Senjanovíc, arXiv:hep-ph/0210374 (2002); I., Dorsner, P. Fileviez, Pérez, and G., Rodrigo, Phys. Lett. B 649, 197 (2007).
[65] T. C., Yuan, Phys. Rev. D 33, 1894 (1986).
[66] K. S., Babu and R. N., Mohapatra, Phys. Rev. D 86, 035018 (2012)
[67] P., Nath and R. M., Syed, Phys. Rev. D 93(5), 055005 (2016).
[68] M., Claudson, M. B., Wise, and L. J., Hall, Nucl. Phys. B 195, 297 (1982).
[69] S., Chadha and M., Daniel, Nucl. Phys. B 229, 105 (1983).
[70] T., Ibrahim and P., Nath, Phys. Rev. D 62, 095001 (2000).
[71] I. R., Klebanov and E., Witten, Nucl. Phys. B 664, 3 (2003).
[72] M., Cvetic and R., Richter, Nucl. Phys. B 762, 112 (2007).
[73] S. M., Barr, Phys. Lett. B 112, 219 (1982).
[74] J. P., Derendinger, J. E., Kim, and D. V., Nanopoulos, Phys. Lett. B 139, 170 (1984).
[75] M., Cvetic, J., Halverson, and R., Richter, arXiv:0910.2239 [hep-th] (2009).

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×