Skip to main content Accessibility help
Hostname: page-component-99c86f546-zzcdp Total loading time: 2.351 Render date: 2021-12-03T17:16:25.192Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Part VI - Stroke Rehabilitation and Recovery

Published online by Cambridge University Press:  15 December 2020

Jeffrey L. Saver
David Geffen School of Medicine, University of Ca
Graeme J. Hankey
University of Western Australia, Perth
Get access
Stroke Prevention and Treatment
An Evidence-based Approach
, pp. 485 - 550
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


ATTEND Collaborative Group. (2017). Family-led rehabilitation after stroke in India (ATTEND): a randomised controlled trial. Lancet, 390(10094), 588–99. doi:10.1016/S0140-6736(17)31447-2. Epub 2017 Jun 27. Erratum in: Lancet, 2017, 390(10094), 554. PubMed PMID: 28666682.Google Scholar
Barclay-Goddard, R, Stevenson, T, Poluha, W, Thalman, L. (2011). Mental practice for treating upper extremity deficits in individuals with hemiparesis after stroke. Cochrane Database Syst Rev, 5. CD005950. available from: PM:21563146CrossRefGoogle ScholarPubMed
Berkhemer, O, Fransen, P, Beumer, D, van den Berg, L, Lingsma, H, Yoo, A, et al. (2015). A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med, 372(1), 1120. available from: PM:25517348CrossRefGoogle ScholarPubMed
Bernhardt, J, Dewey, H, Thrift, A, Donnan, G. (2004). Inactive and alone: physical activity within the first 14 days of acute stroke unit care. Stroke, 35(4), 1005–09CrossRefGoogle ScholarPubMed
Bernhardt, J, English, C, Johnson, L, Cumming, T. (2015a). Early mobilization after stroke: early adoption but limited evidence. Stroke, 46(4), 1141–6 available from: PM:25690544CrossRefGoogle ScholarPubMed
Bernhardt, J, Langhorne, P, Lindley, R, Thrift, A, Ellery, F, Collier, J, et al. (2015b). Efficacy and safety of very early mobilisation within 24 h of stroke onset (AVERT): a randomised controlled trial. Lancet, 386, (9988), 4655. available from: PM:25892679Google Scholar
Bernhardt, J, Hayward, KS, Kwakkel, G, Ward, NS, Wolf, SL, Borschmann, K, et al. (2017). Agreed definitions and a shared vision for new standards in stroke recovery research: The Stroke Recovery and Rehabilitation Roundtable Taskforce. Neurorehabil Neural Repair, 31(9), 793–9. doi:10.1177/1545968317732668. PubMed PMID: 28934920.CrossRefGoogle Scholar
Buma, F, Kwakkel, G, Ramsey, N. (2013). Understanding upper limb recovery after stroke. Restor Neurol Neurosci, 31(6) 707–22. available from: PM:23963341Google ScholarPubMed
Cortes, JC, Goldsmith, J, Harran, MD, Xu, J, Kim, N, Schambra, HM, et al. (2017). A short and distinct time window for recovery of arm motor control early after stroke revealed with a global measure of trajectory kinematics. Neurorehabil Neural Repair, 31(6), 552–60. available from: PM 28506149CrossRefGoogle Scholar
Coupar, F, Pollock, A, Rowe, P. Weir, C, Langhorne, P. (2013). Predictors of upper limb recovery after stroke: a systematic review and meta-analysis. Clin Rehabil, 26(4), 291313.CrossRefGoogle Scholar
Coupar, F, Pollock, A, van Wijck, F, Morris, J, Langhorne, P. (2010). Simultaneous bilateral training for improving arm function after stroke. Cochrane Database Syst Rev, 4. CD006432. available from: PM:20393947Google ScholarPubMed
Cramer, S. 2008a. Repairing the human brain after stroke. II. Restorative therapies. Annul Neurol, 63(5) 549–60.Google ScholarPubMed
Cramer, S. 2008b. Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Ann Neurol, 63(3) 272–87.Google ScholarPubMed
Duncan, P., Sullivan, K., Behrman, A., Azen, S., Wu, S., Nadeau, S., et al. (2011). Body-weight-supported treadmill rehabilitation after stroke. N Engl J Med, 364(21), 2026–36. available from: PM:21612471CrossRefGoogle ScholarPubMed
English, C, Hillier, S. (2017). Circuit class therapy for improving mobility after stroke. Cochrane Database Syst Rev, 7. CD007513. available from: PM: 28573757Google ScholarPubMed
Feigin, VL, Krishnamurthi, RV, Parmar, P, Norrving, B, Mensah, GA, Bennett, DA, et al.; GBD 2013 Writing Group; GBD 2013 Stroke Panel Experts Group. (2015). Update on the global burden of ischemic and hemorrhagic stroke in 1990–2013: the GBD 2013 Study. Neuroepidemiology, 45(3), 161–76. available from: PM 26505981CrossRefGoogle ScholarPubMed
French, B, Thomas, LH, Coupe, J, McMahon, NE, Connell, L, Harrison, J, et al. (2016). Repetitive task training for improving functional ability after stroke. Cochrane Database Syst Rev, 11. CD006073. available from: PM 27841442Google ScholarPubMed
Hoonhorst, MHJ, Nijland, RHM, van den Berg, PJS, Emmelot, CH, Kollen, BJ, Kwakkel, G. (2018). Does transcranial magnetic stimulation have an added value to clinical assessment in predicting upper-limb function very early after severe stroke? Neurorehabil Neural Repair, 32(8), 682–90.CrossRefGoogle ScholarPubMed
Kohrmann, M, Juttler, E, Fiebach, J, Huttner, H, Siebert, S, Schwark, C, et al. (2006). MRI versus CT-based thrombolysis treatment within and beyond the 3 h time window after stroke onset: a cohort study. Lancet Neurol, 5(8), 661–7. available from: PM:16857571CrossRefGoogle ScholarPubMed
Krakauer, JW, Carmichael, ST. (2018). Broken Movement: The Neurobiology of Motor Recovery after Stroke. Cambridge, MA: MIT Press.Google Scholar
Kwakkel, G, Wagenaar, R, Twisk, J, Lankhorst, G, Koetsier, J. (1999). Intensity of leg and arm training after primary middle-cerebral-artery stroke: a randomised trial. Lancet, 354(9174), 191–6.CrossRefGoogle ScholarPubMed
Kwakkel, G. (2006a). Impact of intensity of practice after stroke: issues for consideration. Disabil Rehabil, 28(13–14), 823–30. available from: PM:16777769CrossRefGoogle ScholarPubMed
Kwakkel, G. (2015a). Very early mobilisation within 24 hours results in a less favorable outcome at 3 months [commentary 2]. Physiotherapy, 61(4), 220.CrossRefGoogle Scholar
Kwakkel, G, Kollen, B. (2007). Predicting improvement in the upper paretic limb after stroke: a longitudinal prospective study. Restor Neurol Neurosci, 25(5–6), 453–60. available from: PM:18334763Google ScholarPubMed
Kwakkel, G, Kollen, B. (2013). Predicting activities after stroke: what is clinically relevant? Int J Stroke, 8(1) 2532. available from: PM:23280266CrossRefGoogle ScholarPubMed
Kwakkel, G, Kollen, B, Twisk, J. (2006b). Impact of time on improvement of outcome after stroke. Stroke, 37(9), 2348–53. available from: PM:16931787CrossRefGoogle ScholarPubMed
Kwakkel, G, Meskers, C. (2014). Effects of robotic therapy of the arm after stroke. Lancet Neurol, 13(2), 132–3. available from: PM:24382581CrossRefGoogle ScholarPubMed
Kwakkel, G, van Peppen, R, Wagenaar, R, Wood Dauphinee, S, Richards, C, Ashburn, A, et al. (2004). Effects of augmented exercise therapy time after stroke: a meta-analysis. Stroke, 35(11), 2529–39. available from: PM:15472114CrossRefGoogle ScholarPubMed
Kwakkel, G, van Wegen, EEH. (2017). Family-delivered rehabilitation services at home: is the glass empty? Lancet, 390(10094), 538–9. doi:10.1016/S0140-6736(17)31489-7. Epub 2017 Jun 27. PubMed PMID: 28666681.CrossRefGoogle ScholarPubMed
Kwakkel, G, Veerbeek, J, van Wegen, E, Wolf, S. (2015b). Constraint-induced movement therapy after stroke. Lancet Neurol, 14(2), 224–34. available from: PM:25772900CrossRefGoogle ScholarPubMed
Lang CE, Strube MJ, Bland MD, Waddell KJ, Cherry-Allen KM, Nudo RJ, Dromerick AW, Birkenmeier RL. (2016). Dose response of task-specific upper limb training in people at least 6 months poststroke: a phase II, single-blind, randomized, controlled trial. Ann Neurol, 80(3), 342–54. Available from PM: 27447365CrossRefGoogle Scholar
Langhorne, P, Baylan, S. (2017). Early Supported Discharge Trialists. Early supported discharge services for people with acute stroke. Cochrane Database Syst Rev, 7. CD000443. available from: PM: 28703869CrossRefGoogle ScholarPubMed
Langhorne, P, Bernhardt, J, Kwakkel, G. (2011). Stroke rehabilitation. Lancet, 377(9778), 16931702. available from: PM:21571152CrossRefGoogle ScholarPubMed
Langhorne, P, Collier, JM, Bate, PJ, Thuy, MN, Bernhardt, J. (2018). Very early versus delayed mobilisation after stroke. Cochrane Database Syst Rev, 10. CD006187. doi:10.1002/14651858.CD006187.pub3.Google ScholarPubMed
Langhorne, P. Legg, L. (2003). Evidence behind stroke rehabilitation. J Neurol Neurosurg Psychiatry, 74(Suppl 4), iv18iv21.CrossRefGoogle ScholarPubMed
Laver, KE, Lange, B, George, S, Deutsch, JE, Saposnik, G, Crotty, M. (2017). Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev, 11. CD008349. available from: PM 29156493Google ScholarPubMed
Lazar, R, Minzer, B, Antoniello, D, Festa, J, Krakauer, J, Marshall, R. (2010). Improvement in aphasia scores after stroke is well predicted by initial severity. Stroke, 41(7), 1485–8. available from: PM:20538700CrossRefGoogle ScholarPubMed
Lejeune, T., Stoquart, G. (2015). The challenge of assessment in rehabilitation. J Rehabil Med, 47, 672. available from: PM:26074394CrossRefGoogle ScholarPubMed
Lohse, K, Lang, C, Boyd, L. (2014). Is more better? Using metadata to explore dose-response relationships in stroke rehabilitation. Stroke, 45(7), 2053–8. available from: PM:24867924CrossRefGoogle ScholarPubMed
Mehrholz, J, Pohl, M, Platz, T, Kugler, J, Elsner, B. (2018). Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev, 9, CD006876. available from: PM:30175845Google ScholarPubMed
Mehrholz, J, Thomas, S, Elsner, B. (2017). Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev, 8. CD002840. available from: PM:28815562Google ScholarPubMed
Moseley, A, Stark, A, Cameron, I, Pollock, A. (2005). Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev, 4. CD002840. available from: PM:16235304Google ScholarPubMed
Murphy, T, Corbett, D. (2009). Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neorosci, 10(12), 861–72.Google ScholarPubMed
Nijboer, T, van de Port, I, Schepers, V, Post, M, Visser-Meily, A. (2013). Predicting functional outcome after stroke: the influence of neglect on basic activities in daily living. Front Hum Neurosci, 7, 182.CrossRefGoogle ScholarPubMed
Nijland, R, van Wegen, E, Harmeling-van der Wel, B, Kwakkel, G. (2010). Presence of finger extension and shoulder abduction within 72 hours after stroke predicts functional recovery: early prediction of functional outcome after stroke: the EPOS cohort study. Stroke, 41(4), 745–50. available from: PM:20167916CrossRefGoogle ScholarPubMed
Pomeroy, V, King, L, Pollock, A, Baily-Hallam, A, Langhorne, P. (2006). Electrostimulation for promoting recovery of movement or functional ability after stroke. Cochrane Database Syst Rev, 2. CD003241. available from: PM:16625574Google ScholarPubMed
Prabhakaran, S, Zarahn, E, Riley, C, Speizer, A, Chong, J, Lazar, R, et al. (2008). Inter-individual variability in the capacity for motor recovery after ischemic stroke. Neurorehabil Neural Repair, 22(1), 6471. available from: PM:17687024CrossRefGoogle ScholarPubMed
Prabhakaran S, Ruff I, Bernstein RA. (2015). Acute stroke intervention: a systematic review. JAMA, 313(14), 1451–62. Available from: PM: 25871671CrossRefGoogle Scholar
Saver JL, Goyal M, van der Lugt A, et al. (2016). Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: a meta-analysis. JAMA, 316(12),1279–88. Available from: PM: 27673305CrossRefGoogle Scholar
Saunders, DH, Sanderson, M, Hayes, S, Kilrane, M, Greig, CA, Brazzelli, M, Mead, GE. (2016). Physical fitness training for stroke patients. Cochrane Database Syst Rev, 3. CD003316. available from: PM 27010219Google ScholarPubMed
Schulz, K, Altman, D, Moher, D. (2010). CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. J Clin Epidemiol, 63(8), 834–40. available from: PM:20346629Google ScholarPubMed
Scrutinio, D, Lanzillo, B, Guida, P, Mastropasqua, F, Monitillo, V, Pusineri, M, et al. (2017). Development and validation of a predictive model for functional outcome after stroke rehabilitation: the Maugeri model. Stroke, 48(12), 3308–15. available from: PM:29051222CrossRefGoogle ScholarPubMed
Smith, MC, Barber, PA, Stinear, CM. (2017). The TWIST algorithm predicts time to walking independently after stroke. Neurorehabil Neural Repair, 31(10–11), 955–64. available from: PM 29090654CrossRefGoogle ScholarPubMed
Stinear, C. (2010). Prediction of recovery of motor function after stroke. Lancet Neurol, 9(12), 1228–32. available from: PM:21035399CrossRefGoogle ScholarPubMed
Stinear, CM, Byblow, WD, Ackerley, SJ, Smith, MC, Borges, VM, Barber, PA. (2017). PREP2: A biomarker-based algorithm for predicting upper limb function after stroke. Ann Clin Transl Neurol, 4(11), 811–20. available from: PM 29159193CrossRefGoogle ScholarPubMed
Stinear, CM. (2017). Prediction of motor recovery after stroke: advances in biomarkers. Lancet Neurol, 16(10), 826–36. available from: PM:28920888CrossRefGoogle ScholarPubMed
Thieme, H, Morkisch, N, Mehrholz, J, Pohl, M, Behrens, J, Borgetto, B, Dohle, C. (2018). Mirror therapy for improving motor function after stroke. Cochrane Database Syst Rev, 7, CD008449. available from: PM:22419334Google ScholarPubMed
van de Port, I, Wevers, L, Lindeman, E, Kwakkel, G. (2012). Effects of circuit training as alternative to usual physiotherapy after stroke: randomised controlled trial. BMJ, 344, e2672. available from: PM:22577186CrossRefGoogle ScholarPubMed
van Delden, A, Beek, PJ, Roerdink, M, Kwakkel, G, Peper, C. (2015). Unilateral and bilateral upper-limb traning interventions after stroke have similar effects on bimanual coupling strength. Neurorehabil Neural Repair, 29(3) 255–67.CrossRefGoogle Scholar
van Delden, A, Peper, C, Beek, P, Kwakkel, G. (2012). Unilateral versus bilateral upper limb exercise therapy after stroke: a systematic review. J Rehabil Med, 44 (2), 106117. available from: PM:22266762CrossRefGoogle ScholarPubMed
van Delden, A, Peper, C, Nienhuys, K, Zijp, N, Beek, J, Kwakkel, G. (2013). Unilateral versus bilateral upper limb training after stroke: the Upper Limb Training After Stroke clinical trial. Stroke, 44(9), 2613–16.CrossRefGoogle ScholarPubMed
van Kordelaar, J, van Wegen, E, Nijland, R, Daffertshofer, A, Kwakkel, G. (2013). Understanding adaptive motor control of the paretic upper limb early poststroke: the EXPLICIT-stroke program. Neurorehabil Neural Repair, 27(9), 854–63. available from: PM:23884015CrossRefGoogle ScholarPubMed
van der Vliet R, Selles RW, Andrinopoulou ER, Nijland R, Ribbers GM, Frens MA, Meskers C, Kwakkel G. (2020). Predicting upper limb motor impairment recovery after stroke: a mixture model. Ann Neurol, 2020 (in press). Available at PM: 31925838Google Scholar
Veerbeek, J, Koolstra, M, Ket, J, van Wegen, E, Kwakkel, G. (2011a). Effects of augmented exercise therapy on outcome of gait and gait-related activities in the first 6 months after stroke: a meta-analysis. Stroke, 42(11), 3311–15. available from: PM:21998062CrossRefGoogle ScholarPubMed
Veerbeek, J, Kwakkel, G, van Wegen, E, Ket, J, Heymans, M. (2011b). Early prediction of outcome of activities of daily living after stroke: a systematic review. Stroke, 42(5), 1482–8. available from: PM:21474812CrossRefGoogle ScholarPubMed
Veerbeek, J, van Wegen, E, Harmeling-van der Wel, B, Kwakkel, G. (2011c). Is accurate prediction of gait in nonambulatory stroke patients possible within 72 hours poststroke? The EPOS study. Neurorehabil Neural Repair, 25(3), 268–74. available from: PM:21186329CrossRefGoogle ScholarPubMed
Veerbeek, J, van Wegen, E, van Peppen, R, Van der Wees, P, Hendriks, E, Rietberg, M, et al. (2014). What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS One, 9(2), e87987. available from: PM:24505342CrossRefGoogle ScholarPubMed
Veerbeek, JM, Langbroek-Amersfoort, AC, van Wegen, EE, Meskers, CG, Kwakkel, G. (2017). Effects of robot-assisted therapy for the upper limb after stroke. Neurorehabil Neural Repair, 31(2), 107–21. doi:10.1177/1545968316666957. Review. PubMed PMID: 27597165.CrossRefGoogle ScholarPubMed
Veerbeek, JM, Winters, C, van Wegen, EEH, Kwakkel, G. (2018). Is the proportional recovery rule applicable to the lower limb after a first-ever ischemic stroke? PLoS One, 13(1), e0189279. available from: PM:29329286CrossRefGoogle ScholarPubMed
Vloothuis JDM, Mulder M, Nijland RHM, Goedhart QS, Konijnenbelt M, Mulder H, Hertogh CMPM, van Tulder M, van Wegen EEH, Kwakkel G. (2019). Caregiver-mediated exercises with e-health support for early supported discharge after stroke (CARE4STROKE): a randomized controlled trial. PLoS One, 14(4), e0214241. Available from PM: 30958833CrossRefGoogle Scholar
Vloothuis, JDM, Mulder, M, Veerbeek, JM, Konijnenbelt, M, Visser-Meily, JMA, Ket, JCF, et al. (2016). Caregiver-mediated exercises for improving outcomes after stroke. Cochrane Database Syst Rev, 12. CD011058. doi:10.1002/14651858.CD011058.pub2.CrossRefGoogle ScholarPubMed
Wang X, You S, Sato S, Yang J, Carcel C, Zheng D, Yoshimura S, Anderson CS, Sandset EC, Robinson T, Chalmers J, Sharma VK. (2018). Current status of intravenous tissue plasminogen activator dosage for acute ischaemic stroke: An updated systematic review. Stroke Vasc Neurol, 3(1), 28–33. Available from PM: 29600005CrossRefGoogle Scholar
Winters, C, van Wegen, E, Daffertshofer, A, Kwakkel, G. (2015). Generalizability of the proportional recovery model for the upper extremity after an ischemic stroke. Neurorehabil Neural Repair, 29(7), 614–22. available from: PM:25505223CrossRefGoogle ScholarPubMed
World Health Organization. (2001). International Classification of Functioning, Disability and Health (ICF). Geneva: WHO.Google Scholar
Albert, ML, Sparks, RW, Helm, NA. (1973). Melodic intonation therapy for aphasia. Arch Neurol, 29(2)130–1.CrossRefGoogle ScholarPubMed
Baddeley, AD, Wilson, BA. (1994). When implicit learning fails: amnesia and the problem of error elimination. Neuropsychologia, 32, 5368.CrossRefGoogle ScholarPubMed
Barker-Collo, S, Feigin, VL, Lawes, CM, Parag, V, Senior, H, Rodgers, A. (2009). Reducing attention deficits after stroke using attention process training: a randomized controlled trial. Stroke, 40(10), 3293–8CrossRefGoogle ScholarPubMed
Barker-Collo, S, Feigin, VL, Parag, V, Lawes, CMM, Senior, H. (2010). Auckland Stroke Outcomes Study Part 2: Cognition and functional outcomes 5 years poststroke. Neurology, 75, 1608–18.CrossRefGoogle ScholarPubMed
Black-Schaffer, RM, Osberg, JS. (1990). Return to work after stroke: development of a predictive model. Arch Phys Med Rehabil, 71(5), 285–90.Google ScholarPubMed
Bowen, A, Hazelton, C, Pollock, A, Lincoln, NB. (2013). Cognitive rehabilitation for spatial neglect following stroke. Cochrane Database Syst Rev, 7. CD003586. doi:10.1002/14651858.CD003586.pub3.CrossRefGoogle ScholarPubMed
Bowen, A, Hesketh, A, Patchick, E, Young, A, Davies, L, Vail, A, et al. (2012). Clinical effectiveness, cost effectiveness and service users’ perceptions of early, well-resourced communication therapy following a stroke: a randomised controlled trial (the ACT NoW Study). Health Technol Assess, 16(26), 1160.CrossRefGoogle Scholar
Bowen, A, Knapp, P, Gillespie, D, Nicolson, DJ, Vail, A. (2011). Non-pharmacological interventions for perceptual disorders following stroke and other adult-acquired, non-progressive brain injury. Cochrane Database Syst Rev, 4. CD007039.CrossRefGoogle ScholarPubMed
Brady MC, Ali M, VandenBerg K, Williams J, Williams LR, Abo M, et al. (2020). RELEASE: a protocol for a systematic review based, individual participant data, meta- and network meta-analysis, of complex speech-language therapy interventions for stroke-related aphasia.Aphasiology, 34, (2), 137–57.Google Scholar
Brady, MC, Godwin, J, Kelly, Enderby P, Elders, A, Campbell, P. (2018). Attention control comparisons with SLT for people with aphasia following stroke: methodological concerns raised following a systematic review. Clin Rehabil, 32(10), 1383–95. doi 0269215518780487.CrossRefGoogle ScholarPubMed
Brady, MC, Kelly, H, Godwin, J, Enderby, P, Campbell, P. (2016). Speech and language therapy for aphasia following stroke. Cochrane Database Syst Rev, 6. CD000425. doi:10.1002/14651858.CD000425.pub4.CrossRefGoogle ScholarPubMed
Breitenstein, C, Grewe, T, Flöel, A, Ziegler, W, Springer, L, Martus, P, et al., for the FCET2EC study group. (2017). Intensive speech and language therapy in patients with chronic aphasia after stroke: a randomized, open-label, blinded-endpoint, controlled trial in a health-care setting. Lancet, 389(10078), 1528–38.CrossRefGoogle Scholar
Burgess, PW, Shallice, T. (1997). The Hayling and Brixton Tests. Bury St. Edmunds: Thames Valley Test Company.Google Scholar
Chung, CSY, Pollock, A, Campbell, T, Durward, BR, Hagen, S. (2013). Cognitive rehabilitation for executive dysfunction in adults with stroke or other adult non-progressive acquired brain damage. Cochrane Database Syst Rev, 4. CD008391. doi:10.1002/14651858.CD008391.pub2.CrossRefGoogle ScholarPubMed
Ciccone N, West D, Cream A, Cartwright J, Rai T, Granger A, et al. (2016) Constraint-induced aphasia therapy (CIAT): a randomised controlled trial in very early stroke rehabilitation. Aphasiology, 30(5), 566–84.CrossRefGoogle Scholar
Cicerone, KD, Langenbahn, DM, Braden, C, Malec, JF, Kalmar, K, Fraas, M, et al. (2011). Evidence-based cognitive rehabilitation: updated review of the literature from 2003 through 2008. Arch Phys Med Rehabil, 92, 519–30.CrossRefGoogle ScholarPubMed
das Nair, R, Cogger, H, Worthington, E, Lincoln, NB. (2016). Cognitive rehabilitation for memory deficits after stroke. Cochrane Database Syst Rev, 9. CD002293. doi:10.1002/14651858.CD002293.pub3.CrossRefGoogle ScholarPubMed
das Nair, R, Lincoln, N. (2007). Cognitive rehabilitation for memory deficits following stroke. Cochrane Database Syst Rev, 3. CD002293. doi:10.1002/14651858.CD002293.pub2.CrossRefGoogle Scholar
David, R, Enderby, P, Bainton, D. (1982). Treatment of acquired aphasia: speech therapists and volunteers compared. J Neurol Neurosurg Psychiatry, 45(11), 957–61.CrossRefGoogle ScholarPubMed
Dickey, L, Kagan, A, Lindsay, MP, Fang, J, Rowland, A, Black, S. (2010). Incidence and profile of inpatient stroke-induced aphasia in Ontario, Canada. Arch Phys Med Rehabil, 91(2), 196202.CrossRefGoogle ScholarPubMed
Engelter, ST, Gostynski, M, Papa, S, Frei, M, Born, C, Ajdacic-Gross, V, et al. (2006). Epidemiology of aphasia attributable to first ischemic stroke: incidence, severity, fluency, etiology, and thrombolysis. Stroke, 37(6), 1379–84.CrossRefGoogle ScholarPubMed
Evans, JJ. (2003). Rehabilitation of executive deficits. In Wilson, BA, ed., Neuropsychological Rehabilitation. Abingdon: Swets and Zeitlinger.Google Scholar
Evans, JJ. (2009). The cognitive group, Part 2: Memory. In Wilson, BA, Gracey, F, Evans, JJ, Bateman, A, eds., Neuropsychological Rehabilitation: Theory, Therapy and Outcomes. Cambridge: Cambridge University Press.Google Scholar
Evans, JJ. (2013). Disorders of memory. In Goldstein, LH, McNeil, JE, eds., Clinical Neuropsychology: A Practical Guide to Assessment and Management for Clinicians. 2nd ed. Chichester: Wiley.Google Scholar
Evans, JJ, Needham, P, Wilson, BA, Brentnall, S. (2003). Which memory impaired people make good use of memory aids? Results of a survey of people with acquired brain injury. J Int Neuropsychol Soc, 9, 925935.CrossRefGoogle ScholarPubMed
Fong, KNK, Chan, MKL, Ng, PPK, Tsang, MHN, Chow, KKY, Lau, CWL, et al. (2007). The effect of voluntary trunk rotation and half-field eye-patching for patients with unilateral neglect in stroke: a randomized controlled trial. Clin Rehabil, 21, 729–41.CrossRefGoogle ScholarPubMed
Frassinetti, F, Angeli, V, Meneghello, F, Avanzi, S, Ladavas, E. (2002) Long-lasting amelioration of visuospatial neglect by prism adaptation. Brain, 125, 608–23.CrossRefGoogle ScholarPubMed
Gialanella, B. (2011) Aphasia assessment and functional outcome prediction in patients with aphasia after stroke. J Neurol, 258(2), 343–9.CrossRefGoogle ScholarPubMed
Gialanella, B, Prometti, P. (2009). Rehabilitation length of stay in patients suffering from aphasia after stroke. Top Stroke Rehabil, 16(6):437–44.CrossRefGoogle ScholarPubMed
Gillespie, DC, Bowen, A, Chung, CS. Cockburn, J, Knapp, P, Pollock, A. (2015) Rehabilitation for post-stroke cognitive impairment: an overview of recommendations arising from systematic reviews of current evidence. Clin Rehabil, 29(2), 120–8.CrossRefGoogle ScholarPubMed
Godecke, E, Rai, T, Cadilhac, DA, Armstrong, E, Middleton, S, Ciccone, N, et al., (2018). Statistical analysis plan (SAP) for the Very Early Rehabilitation in Speech (VERSE) after stroke trial: an international 3-arm clinical trial to determine the effectiveness of early, intensive, prescribed, direct aphasia therapy. Int J Stroke, 13(8), 863–80.CrossRefGoogle ScholarPubMed
Hoffmann, T, Bennett, S, Koh, CL, McKenna, KT. (2010). Occupational therapy for cognitive impairment in stroke patients. Cochrane Database Syst Rev, 9. CD006430. doi:10.1002/14651858.CD006430.pub2.CrossRefGoogle ScholarPubMed
Howard, D, Patterson, K, Franklin, S, Orchard-lisle, V, Morton, J. (1985). The facilitation of picture naming in aphasia. Cogn Neuropsychol, 2(1), 4980.CrossRefGoogle Scholar
Hurkmans, J, de Bruijn, M, Boonstra, AM, Jonkers, R, Bastiaanse, R, Arendzen, H, et al. (2012). Music in the treatment of neurological language and speech disorders: A systematic review. Aphasiology, 26(1), 119.CrossRefGoogle Scholar
Intercollegiate Stroke Working Party. (2016). National Clinical Guideline for Stroke. 5th ed. Royal College of Physicians. Available at: Accessed 24th January 2020.Google Scholar
Jokinen, H, Melkas, S, Ylikoski, R, Pohjasvaara, T, Kaste, M, Erkinjuntti, T, et al. (2015). Post-stroke cognitive impairment is common even after successful clinical recovery. Eur J Neurol, 22, 1288–94.CrossRefGoogle ScholarPubMed
Krasny-Pacini, A, Chevignard, M, Evans, JJ. (2014). Goal management training for rehabilitation of executive functions: a systematic review of effectiveness in patients with acquired brain injury. Disabil Rehabil, 36, 105–16.CrossRefGoogle ScholarPubMed
Levine, B, Robertson, IH, Clare, L, Carter, G, Hong, J, Wilson, BA, et al. (2000). Rehabilitation of executive functioning: an experimental-clinical validation of goal management training. J Int Neuropsychol Soc, 6, 299312.CrossRefGoogle ScholarPubMed
Loetscher, T, Lincoln, NB. (2013). Cognitive rehabilitation for attention deficits following stroke. Cochrane Database Syst Rev, 5. CD002842.Google ScholarPubMed
Luauté, J, Halligan, P, Rode, G, Rossetti, Y, Boisson, D. (2006). Visuo-spatial neglect: a systematic review of current interventions and their effectiveness. Neurosci Biobehav Rev, 30(7), 961–82.CrossRefGoogle ScholarPubMed
Middleton, LE, Lam, B, Fahmi, H, Black, SE, McIlroy, WE, Stuss, DT, et al. (2014). Frequency of domain-specific cognitive impairment in sub-acute and chronic stroke. Neurorehabilitation, 34(2), 305–12.CrossRefGoogle ScholarPubMed
Mizuno, K, Tsuji, T, Takebayashi, T, Fujiwara, T, Hase, K, Liu, M. (2011). Prism adaptation therapy enhances rehabilitation of stroke patients with unilateral spatial neglect: a randomized, controlled trial. Neurorehabil Neural Repair, 25, 711–20.CrossRefGoogle ScholarPubMed
National Institute for Health and Care Excellence (NICE). (2013). Stroke rehabilitation: long-term rehabilitation after stroke. Retrieved from Scholar
Nouwens, F, de Lau, LM, Visch-Brink, EG, van de Sandt-Koenderman, WM, Lingsma, HF, Goosen, S, et al. (2017). Efficacy of early cognitive-linguistic treatment for aphasia due to stroke: a randomised controlled trial (Rotterdam Aphasia Therapy Study-3). Eur Stroke J, 2(2), 126–36.CrossRefGoogle Scholar
Palmer R, Dimairo M, Cooper C, Enderby P, Brady M, Bowen A, Latimer N, Julious S, Cross E, Alshreef A , Harrison M, et al. (2019). Self-managed, computerised speech and language therapy for patients with chronic aphasia post-stroke compared with usual care or attention control (Big CACTUS) : a multicentre, single-blinded, randomised controlled trial. Lancet Neurol, 18(9), 821–33.CrossRefGoogle Scholar
Paolucci, S, Matano, A, Bragoni, M, Coiro, P, De Angelis, D, Fusco, FR, et al. (2005). Rehabilitation of left brain-damaged ischemic stroke patients: the role of comprehension language deficits. Cerebrovasc Dis, 20(5), 400–06.CrossRefGoogle ScholarPubMed
Pedersen, PM, Vinter, K, Olsen, TS. (2004). Aphasia after stroke: type, severity and prognosis. The Copenhagen Aphasia Study. Cerebrovasc Dis, 17(1), 3543.CrossRefGoogle ScholarPubMed
Pollock, A, Hazelton, C, Henderson, CA, Angilley, J, Dhillon, B, Langhorne, P, et al. (2011). Interventions for visual field defects in patients with stroke. Cochrane Database Syst Rev, 10. CD008388. doi:10.1002/14651858.CD008388.pub2.Google ScholarPubMed
Pollock, A, Hazelton, C, Rowe, FJ, Jonuscheit, S, Kernohan, A, Angilley, J, et al. (2019). Interventions for visual field defects in patients with stroke. Cochrane Database Syst Rev, 5. CD008388. doi:10.1002/14651858.CD008388.pub3.Google Scholar
Pulvermuller, F, Neininger, B, Elbert, T, Mohr, B, Rockstroh, B, Koebbel, P, Taub, E. (2001). Constraint-induced therapy of chronic aphasia after stroke. Stroke, 32(7): 1621–6.CrossRefGoogle ScholarPubMed
Robertson, IH, McMillan, TM, MacLeod, E, Edgeworth, J, Brock, D. (2002). Rehabilitation by limb activation training reduces left-sided motor impairment in unilateral neglect patients: a single-blind randomised control trial. Neuropsychol Rehabil, 12, 439–54.CrossRefGoogle Scholar
Rowe, FJ, Wright, D, Brand, D, Jackson, C, Harrison, S, Maan, T, et al. (2013). A prospective profile of visual field loss following stroke: prevalence, type, rehabilitation, and outcome. Biomed Res Int, 2013, 719096.CrossRefGoogle Scholar
Sackley, CM, Walker, MF, Burton, CR, Watkins, CL, Mant, J, Roalfe, AK, et al. (2015). An occupational therapy intervention for residents with stroke related disabilities in UK care homes (OTCH): cluster randomised controlled trial. BMJ, 350, h468.CrossRefGoogle ScholarPubMed
Sarno, MT. (1969). The Functional Communication Profile: Manual of Directions. Vol. 42. New York: Institute of Rehabilitation Medicine, New York University Medical Center.Google Scholar
Seghier, ML, Patel, E, Prejawa, S, Ramsden, S, Selmer, A, Li, L, et al. (2016). The PLORAS database: a data repository for predicting language outcome and recovery after stroke. Neuroimage, 124(Pt B), 1208–12.CrossRefGoogle ScholarPubMed
Sickert, A, Anders, LC, Munte, TF, Sailer, M. (2014). Constraint-induced aphasia therapy following sub-acute stroke: a single-blind, randomised clinical trial of a modified therapy schedule. J Neurol Neurosurg Psychiatry, 85(1), 51–5.CrossRefGoogle ScholarPubMed
SIGN. (2010). 118 Management of patients with stroke: rehabilitation, prevention and management of complications, and discharge planning. A national clinical guideline. Edinburgh: Scottish Intercollegiate Guidelines Network. ISBN 978 1 905813 63 6. Scholar
Stahl, B, Mohr, B, Büscher, V, Dreyer, FR, Lucchese, G, Pulvermüller, F. (2017) Efficacy of intensive aphasia therapy in patients with chronic stroke: a randomised controlled trial. J Neurol Neurosurg Psychiatry, 89, 586–92.Google ScholarPubMed
Tate, RL, Perdices, M, McDonald, S, Togher, L, Rosenkoetter, U. (2014). The design, conduct and report of single-case research: resources to improve the quality of the neurorehabilitation literature. Neuropsychol Rehabil, 24, 315–31.CrossRefGoogle ScholarPubMed
Tatemichi, TK, Desmond, DW, Stern, Y, Paik, M, Sano, M, Bagiella, E. (1994). Cognitive impairment after stroke – frequency, patterns, and relationship to functional abilities. J Neurol Neurosurg Psychiatry, 57, 202–07.CrossRefGoogle ScholarPubMed
Tunnard, C, Wilson, BA. (2014). Comparison of neuropsychological rehabilitation techniques for unilateral neglect: an ABACADAEAF single-case experimental design. Neuropsychol Rehabil, 24, 382–99.CrossRefGoogle ScholarPubMed
van der Meulen, I, van de Sandt-Koenderman, ME, Ribbers, GM. (2012). Melodic Intonation Therapy: present controversies and future opportunities. Arch Phys Med Rehabil, 93(1 Suppl), S46–52.CrossRefGoogle ScholarPubMed
van der Meulen, I, van de Sandt-Koenderman, WM, Heijenbrok-Kal, MH, Visch-Brink, EG, Ribbers, GM. (2014). The efficacy and timing of melodic intonation therapy in subacute aphasia. Neurorehabil Neural Repair, 28(6),3644.CrossRefGoogle ScholarPubMed
Vataja, R, Pohjasvaara, T, Mäntylä, R, Ylikoski, R, Leppävuori, A, Leskelä, M, et al. (2003). MRI correlates of executive dysfunction in patients with ischaemic stroke. Eur J Neurol, 10, 625–31.CrossRefGoogle ScholarPubMed
von Cramon, DY, von Cramon, GM, Mai, N. (1991). Problem-solving deficits in brain-injured patients: a therapeutic approach. Neuropsychol Rehabil, 1, 4564.CrossRefGoogle Scholar
Wallace, SJ, Worrall, L, Rose, T, Le Dorze, G, Breitenstein, C, Hilari, K, et al. (2019). A core outcome set for aphasia treatment research: the ROMA consensus statement. Int J Stroke, 14(2), 180–5. doi:1747493018806200.CrossRefGoogle ScholarPubMed
Whitworth, A, Webster, J, Howard, D. (2005). A Cognitive Neuropsychological Approach to Assessment and Intervention in Aphasia: A Clinician’s Guide. Hove: Psychology Press.CrossRefGoogle Scholar
Wilson, BA. (2002). Towards a comprehensive model of cognitive rehabilitation. Neuropsychol Rehabil, 12, 97110.CrossRefGoogle Scholar
Wilson, BA, Alderman, N, Burgess, PW, Emslie, H, Evans, JJ. (1996). The Behavioural Assessment of Dysexecutive Syndrome. Flempton: Thames Valley Test Company.Google Scholar
Wilssens, I, Vandenborre, D, van Dun, K, Verhoeven, J, Visch-Brink, E, Marien, P. (2015). Constraint-induced aphasia therapy versus intensive semantic treatment in fluent aphasia. Am J Speech Lang Pathol, 24(2), 281–94.CrossRefGoogle ScholarPubMed
Westerberg, H, Jacobaeus, H, Hirvikoski, T, Clevberger, P, Ostensson, ML, Bartfai, A, et al. (2007). Computerized working memory training after stroke – a pilot study. Brain Inj, 21(1), 21–9.CrossRefGoogle ScholarPubMed
Adkins, DL, Jones, TA. (2005). D-amphetamine enhances skilled reaching after ischemic cortical lesions in rats. Neurosci Lett, 380, 214–18.CrossRefGoogle ScholarPubMed
Alaverdashvili, M, Lim, DH, Whishaw, IQ. (2007). No improvement by amphetamine on learned non-use, attempts, success or movement in skilled reaching by the rat after motor cortex stroke. Eur J Neurosci, 25, 3442–52.CrossRefGoogle ScholarPubMed
Albert, ML, Bachman, DL, Morgan, A, Helm-Estabrooks, N. (1988). Pharmacotherapy for aphasia. Neurology, 38, 877–9.CrossRefGoogle ScholarPubMed
Aroniadou, VA, Teyler, TJ. (1991). The role of NMDA receptors in long-term potentiation (LTP) and depression (LTD) in rat visual cortex. Brain Res, 562, 136–43.CrossRefGoogle Scholar
Artola, A, Singer, W. (1989). NMDA receptors and developmental plasticity in visual neocortex. In Collingridge, GL Watkins, JC, eds., The NMDA Receptor. Oxford: Oxford University Press, pp. 153–66.Google Scholar
Bachman, DL, Morgan, A. (1988). The role of pharmacotherapy in the treatment of aphasia. Aphasiology, 3–4, 225–8.Google Scholar
Barbay, S, Zoubina, EV, Dancause, N, Frost, SB, Eisner-Janowicz, I, Stowe, AM, et al. (2006). A single injection of D-amphetamine facilitates improvements in motor training following a focal cortical infarct in squirrel monkeys. Neurorehabil Neural Repair, 20, 455–8.CrossRefGoogle ScholarPubMed
Blandina, P, Goldfarb, J, Walcott, J, Green, JP. (1991). Serotonergic modulation of the release of endogenous norepinephrine from rat hypothalamic slices. J Pharmacol Exp Ther, 256, 341–7.Google ScholarPubMed
Bliss, TV, Collingridge, GL. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature, 361, 31–9.CrossRefGoogle ScholarPubMed
Boyeson, MG, Callister, TR, Cavazos, JE. (1992a). Biochemical and behavioral effects of a sensorimotor cortex injury in rats pretreated with the noradrenergic neurotoxin DSP-4. BehavNeurosci, 106, 964–73.Google ScholarPubMed
Boyeson, MG, Feeney, DM. (1990). Intraventricular norepinephrine facilitates motor recovery following sensorimotor cortex injury. Pharmacol BiochemBehav, 35, 497501.CrossRefGoogle ScholarPubMed
Boyeson, MG, Harmon, RL. (1993). Effects of trazodone and desipramine on motor recovery in brain-injured rats. Am J Phys Med Rehabil, 72, 286–93.CrossRefGoogle ScholarPubMed
Boyeson, MG, Harmon, RL, Jones, JL. (1994). Comparative effects of fluoxetine, amitriptyline and serotonin on functional motor recovery after sensorimotor cortex injury. Am J Phys Med Rehabil, 73, 7683.CrossRefGoogle ScholarPubMed
Boyeson, MG, Krobert, KA, Grade, CM, Scherer, PJ. (1992b). Unilateral, but not bilateral, locus coeruleus lesions facilitate recovery from sensorimotor cortex injury. Pharmacol Biochem Behav, 43, 771–7.CrossRefGoogle Scholar
Boyeson, MG, Scherer, PJ, Grade, CM, Krobert, KA. (1993). Unilateral locus coeruleus lesions facilitate motor recovery from cortical injury through supersensitivity mechanisms. Pharmacol Biochem Behav, 44, 297305.CrossRefGoogle ScholarPubMed
Brailowsky, S, Knight, RT, Efron, R. (1986). Phenytoin increases the severity of cortical hemiplegia in rats. Brain Res, 376, 71–7.CrossRefGoogle ScholarPubMed
Bröcher, S, Artola, A, Singer, W. (1992). Agonists of cholinergic and noradrenergic receptors facilitate synergistically the induction of long-term potentiation in slices of rat visual cortex. Brain Res, 573, 2736.CrossRefGoogle ScholarPubMed
Brown, AW, Bjelke, B, Fuxe, K. (2004). Motor response to amphetamine treatment, task-specific training, and limited motor experience in a postacute animal stroke model. Exp Neurol, 190, 102–08.CrossRefGoogle Scholar
Burgard, EC, Decker, G, Sarvey, JM. (1989). NMDA receptor antagonists block norepinephrine-induced long- lasting potentiation and long-term potentiation in rat dentate gyrus. Brain Res, 482, 351–5.CrossRefGoogle ScholarPubMed
Burgard, EC, Sarvey, JM. (1990). Muscarinic receptor activation facilitates the induction of long-term potentiation (LTP) in the rat dentate gyrus. Neurosci Lett, 116, 3439.CrossRefGoogle ScholarPubMed
Bütefisch, CM, Kleiser, R, Körber, B, Müller, K, Wittsack, HJ, Hömberg, V, et al. (2005). Recruitment of contralesional motor cortex in stroke patients with recovery of hand function. Neurology, 64, 1067–9.CrossRefGoogle ScholarPubMed
Chen, MJ, Sutton, RL, Feeney, DM. (1986). Recovery of function after brain injury in rat and cat: beneficial effects of phenylpropanolamine. Abstracts Soc Neurosci, 12, 881.Google Scholar
Chollet, F, Tardy, J, Albucher, JF, Thalamas, C, Berard, E, Lamy, C, et al. (2011). Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial. Lancet Neurol, 10, 123–30.Google ScholarPubMed
Cohen, BM, Lipinski, JF. (1986). In vivo potencies of antipsychotic drugs in blocking alpha 1 noradrenergic and dopamine D2 receptors: implications for drug mechanisms of action. Life Sci, 39, 2571–80.CrossRefGoogle ScholarPubMed
Cramer, SC. (2011). An overview of therapies to promote repair of the brain after stroke. Head Neck, 33, (Suppl 1), S57.CrossRefGoogle ScholarPubMed
Cramer, SC, Nelles, G, Benson, RR, Kaplan, JD, Parker, RA, Kwong, KK, et al. (1997). A functional MRI study of subjects recovered from hemiparetic stroke. Stroke, 28, 2518–27.CrossRefGoogle ScholarPubMed
Crisostomo, EA, Duncan, PW, Propst, MA, Dawson, DB, Davis, JN. (1988). Evidence that amphetamine with physical therapy promotes recovery of motor function in stroke patients. Ann Neurol, 23, 94–7.CrossRefGoogle ScholarPubMed
Dahl, D, Sarvey, JM. (1989). Norepinephrine induces pathway-specific long-lasting potentiation and depression in the hippocampal dentate gyrus. Proc Natl Acad Sci USA, 86, 4776–80.CrossRefGoogle ScholarPubMed
Dam, M, Tonin, P, De Boni, A, Pizzolato, G, Casson, S, Ermani, M, et al. (1996). Effects of fluoxetine and maprotiline on functional recovery in poststroke hemiplegic patients undergoing rehabilitation therapy. Stroke, 27, 1211–14.CrossRefGoogle ScholarPubMed
Delanoy, RL, Tucci, DL, Gold, PE. (1983). Amphetamine effects on long term potentiation in dentate granule cells. Pharmacol Biochem Behav, 18, 137–9.CrossRefGoogle ScholarPubMed
Dietrich, WD, Alonso, O, Busto, R, Ginsberg, MD. (1990). Influence of amphetamine treatment on somatosensory function of the normal and infarcted rat brain. Stroke, 21 (Suppl. III), III-147-III–150.Google ScholarPubMed
Dose, JM, Dhillon, HS, Maki, A, Kraemer, PJ, Prasad, RM. (1997). Lack of delayed effects of amphetamine, methoxamine, and prazosin (adrenergic drugs) on behavioral outcome after lateral fluid percussion brain injury in the rat. J Neurotrauma, 14, 327–37.CrossRefGoogle ScholarPubMed
Dunbar, GL, Smith, GA, Look, SK, Whalen, RJ. (1989). d-Amphetamine attenuates learning and motor deficits following cortical injury in rats. Abstracts Soc Neurosci, 15, 132.Google Scholar
Dunwiddie, TV, Roberson, NL, Worth, T. (1982). Modulation of long-term potentiation: effects of adrenergic and neuroleptic drugs. Pharmacol Biochem Behav, 17, 1257–64.CrossRefGoogle ScholarPubMed
El Husseini, N, Goldstein, LB, Peterson, ED, Zhao, X, Pan, W, Olson, D.M, et al. (2012). Depression and antidepressant use after stroke and transient ischemic attack. Stroke, 43, 1609–16.CrossRefGoogle ScholarPubMed
Enderby, P, Broeckx, J, Hospers, W, Schildermans, F, Deberdt, W. (1994). Effect of piracetam on recovery and rehabilitation after stroke: a double-blind, placebo-controlled study. Clin Neuropharmacol, 17, 320–31.CrossRefGoogle ScholarPubMed
Feeney, DM. (1991). Pharmacologic modulation of recovery after brain injury: a reconsideration of diaschisis. J Neurol Rehabil, 5, 113–28.Google Scholar
Feeney, DM, Gonzalez, A, Law, WA. (1981). Amphetamine restores locomotor function after motor cortex injury in the rat. Proc West Pharmacol Soc, 24, 1517.Google ScholarPubMed
Feeney, DM, Gonzalez, A, Law, WA. (1982). Amphetamine, haloperidol, and experience interact to affect the rate of recovery after motor cortex injury. Science, 217, 855–7.CrossRefGoogle ScholarPubMed
Feeney, DM, Hovda, DA. (1983). Amphetamine and apomorphine restore tactile placing after motor cortex injury in the cat. Psychopharmacology, 79, 6771.CrossRefGoogle ScholarPubMed
Feeney, DM, Hovda, DA. (1985). Reinstatement of binocular depth perception by amphetamine and visual experience after visual cortex ablation. Brain Res, 342, 352–6.CrossRefGoogle ScholarPubMed
Feeney, DM, Westerberg, VS. (1990). Norepinephrine and brain damage: alpha noradrenergic pharmacology alters functional recovery after cortical trauma. Can J Psychol, 44, 233–52.CrossRefGoogle ScholarPubMed
Fiorelli, M, Blin, J, Bakchine, S, Laplane, D, Baron, JC. (1991). PET studies of cortical diaschisis in patients with motor hemi-neglect. J Neurol Sci, 104, 135–42.CrossRefGoogle ScholarPubMed
FOCUS Trial Collaboration. (2019). Effects of fluoxetine on functional outcomes after acute stroke (FOCU): a pragmatic, double-blind, randomized, controlled trial. Lancet, 393, 265–74.Google Scholar
Fuxe, K, Ungerstedt, U. (1970). Histochemical, biochemical and functional studies on central monoamine neurons after acute and chronic amphetamine administration. In Costa, E, Garattini, S, eds., Amphetamines and Related Compounds. New York: Raven Press, pp. 257288.Google Scholar
Gladstone, DJ, Danells, CJ, Armesto, A, Mcllroy, WE, Staines, WR, Graham, SJ, et al. (2006). Physiotherapy coupled with dextroamphetamine for motor rehabilitation after hemiparetic stroke: a randomized, double-blind, placbo-controlled trial. Stroke, 37, 179–85.CrossRefGoogle Scholar
Gold, PE, Delanoy, RL, Merrin, J. (1984). Modulation of long-term potentiation by peripherally administered amphetamine and epinephrine. Brain Res, 305, 103–07.CrossRefGoogle ScholarPubMed
Goldstein, LB. (1990). Pharmacology of recovery after stroke. Stroke, 21 (Suppl. III), III-139–III-142.Google ScholarPubMed
Goldstein, LB. (1995). Right vs. left sensorimotor cortex suction-ablation in the rat: no difference in beam-walking recovery. Brain Res, 674, 167–70.CrossRefGoogle ScholarPubMed
Goldstein, LB. (1997). Effects of bilateral and unilateral locus coeruleus lesions on beam-walking recovery after subsequent unilateral sensorimotor cortex suction-ablation in the rat. Restor Neurol Neurosci, 11, 5563.Google ScholarPubMed
Goldstein, LB. (1998). Potential effects of common drugs on stroke recovery. Arch Neurol, 55, 454–6.CrossRefGoogle ScholarPubMed
Goldstein, LB. (2000). Effects of amphetamines and small related molecules on recovery after stroke in animals and man. Neuropharmacology, 39, 852–9.CrossRefGoogle ScholarPubMed
Goldstein, LB. (2006). Neurotransmitters and motor activity: effects on functional recovery after brain injury. NeuroRx, 3, 451–7.CrossRefGoogle ScholarPubMed
Goldstein, LB. (2009). Amphetamine trials and tribulations. Stroke, 40 (Suppl. 1), S133S135.CrossRefGoogle ScholarPubMed
Goldstein, LB, Bullman, S. (1997). Effects of dorsal noradrenergic bundle lesions on recovery after sensorimotor cortex injury. Pharmacol Biochem Behav, 58, 1151–7.CrossRefGoogle ScholarPubMed
Goldstein, LB, Bullman, S. (1999). Age but not sex affects motor recovery after unilateral sensorimotor cortex suction-ablation in the rat. Restor Neurol Neurosci, 15, 3943.Google ScholarPubMed
Goldstein, LB, Bullman, S. (2002). Differential effects of haloperidol and clozapine on motor recovery after sensorimotor cortex injury in the rat. Neurorehabil Neural Repair, 16, 321–5.CrossRefGoogle Scholar
Goldstein, LB, Coviello, A, Miller, GD, Davis, JN. (1991). Norepinephrine depletion impairs motor recovery following sensorimotor cortex injury in the rat. Restor Neurol Neurosci, 3, 41–7.Google ScholarPubMed
Goldstein, LB, Davis, JN. (1988). Physician prescribing patterns following hospital admission for ischemic cerebrovascular disease. Neurology, 38, 1806–09.CrossRefGoogle ScholarPubMed
Goldstein, LB, Davis, JN. (1990a). Clonidine impairs recovery of beam-walking in rats. Brain Res, 508, 305–09.CrossRefGoogle Scholar
Goldstein, LB, Davis, JN. (1990b). Influence of lesion size and location on amphetamine-facilitated recovery of beam-walking in rats. Behav Neurosci, 104, 318–25.CrossRefGoogle ScholarPubMed
Goldstein, LB, Davis, J.N. (1990c). Post-lesion practice and amphetamine-facilitated recovery of beam-walking in the rat. Restor Neurol Neurosci, 1, 311–14.Google ScholarPubMed
Goldstein, LB, Hasselblad, V, McCrory, DC, Matchar, DB. (1995). Meta-analysis and comparison of randomized trials of endarterectomy for symptomatic carotid stenosis. Neurology, 45 (Suppl 4), A375.CrossRefGoogle Scholar
Goldstein, LB, Matchar, DB, Morgenlander, JC, Davis, JN. (1990). Influence of drugs on the recovery of sensorimotor function after stroke. J NeuroloRehabi, 4, 137–44.Google Scholar
Goldstein, LB, Poe, HV, Davis, JN. (1989). An animal model of recovery of function after stroke: Facilitation of recovery by an a2-adrenergic receptor antagonist. Ann Neurol, 26, 157.Google Scholar
Grade, C, Redford, B, Chrostowski, J, Toussaint, L, Blackwell, B. (1998). Methylphenidate in early poststroke recovery: a double-blind, placebo-controlled study. Arch Phys Med Rehabil, 79, 1047–50.CrossRefGoogle ScholarPubMed
Green, J, Forster, A, Bogle, S, Young, J. (2002). Physiotherapy for patients with mobility problems more than 1 year after stroke: a randomised controlled trial. Lancet, 359, 199203.CrossRefGoogle ScholarPubMed
Gupta, SR, Mlcoch, AG, Scolaro, C, Moritz, T. (1995). Bromocriptine treatment of nonfluent aphasia. Neurology, 45, 2170–3.CrossRefGoogle ScholarPubMed
Hernandez, TD, Holling, LC. (1994). Disruption of behavioral recovery by the anti-convulsant phenobarbital. Brain Res, 635, 300–06.CrossRefGoogle ScholarPubMed
Hernandez, TD, Jones, GH, Schallert, T. (1989). Co-administration of Ro 15–1788 prevents diazepam-induced retardation of recovery of function. Brain Res, 487, 8995.CrossRefGoogle ScholarPubMed
Hovda, DA, Bailey, B, Montoya, S, Salo, AA, Feeney, DM. (1983). Phentermine accelerates recovery of function after motor cortex injury in rats and cats. FASEB J, 42, 1157.Google Scholar
Hovda, DA, Feeney, DM. (1984). Amphetamine with experience promotes recovery of locomotor function after unilateral frontal cortex injury in the cat. Brain Res, 298, 358–61.CrossRefGoogle ScholarPubMed
Hovda, DA, Sutton, RL, Feeney, DM. (1987). Recovery of tactile placing after visual cortex ablation in cat: a behavioral and metabolic study of diaschisis. Exp Neurol, 97, 391402.CrossRefGoogle ScholarPubMed
Hovda, DA, Sutton, RL, Feeney, DM. (1989). Amphetamine-induced recovery of visual cliff performance after bilateral visual cortex ablation in cats: measurements of depth perception thresholds. Behav Neurosci, 103, 574–84.CrossRefGoogle ScholarPubMed
Huber, W, Willmes, K, Poeck, K, Van Vleymen, B, Deberdt, W. (1997). Piracetam as an adjuvant to language therapy for aphasia: a randomized double-blind placebo-controlled pilot study. Arch Phys Med Rehabil, 78, 245–50.CrossRefGoogle ScholarPubMed
Hurwitz, BE, Dietrich, WD, McCabe, PM, Watson, BD, Ginsberg, MD, Schneiderman, N. (1989). Amphetamine-accelerated recovery from cortical barrel-field infarction: pharmacological treatment of stroke. In Ginsberg, MD, Dietrich, WD, eds., Cerebrovascular Diseases. The Sixteenth Research (Princeton) Conference. New York: Raven Press, pp. 309318.Google Scholar
Infeld, B, Davis, SM, Lichtenstein, M, Mitchell, PJ, Hopper, JL. (1995). Crossed cerebellar diaschisis and brain recovery after stroke. Stroke, 26, 90–5.CrossRefGoogle ScholarPubMed
Iriki, A, Pavlides, C, Keller, A, Asanuma, H. (1989). Long-term potentiation in the motor cortex. Science, 245, 1385–7.CrossRefGoogle ScholarPubMed
Ito, T, Miura, Y, Kadokawa, T. (1988). Effects of physostigmine and scopolamine on long-term potentiation of hippocampal population spikes in rats. Can J Physiol Pharmacol, 66, 1010–16.CrossRefGoogle ScholarPubMed
Jaspers, RMA, Van Der Sprenkel, JWB, Tulleken, CAF, Cools, AR. (1990). Local as well as remote functional and metabolic changes after focal ischemia in cats. Brain Res Bull, 24, 2332.CrossRefGoogle ScholarPubMed
Johnson, ML, Roberts, MD, Ross, AR, Witten, CM. (1992). Methylphenidate in stroke patients with depression. Am J Phys Med Rehabil, 71, 239–41.CrossRefGoogle ScholarPubMed
Jones, TA, Schallert, T. (1992). Subcortical deterioration after cortical damage: effects of diazepam and relation to recovery of function. Behav Brain Res, 51, 113.CrossRefGoogle ScholarPubMed
Kaplitz, SE. (1975). Withdrawn, apathetic geriatric patients responsive to methylphenidate. J Am Geriatr Soc, 23, 271–6.CrossRefGoogle Scholar
Keith, JR, Wu, Y, Epp, JR, Sutherland, RJ. (2007). Fluoxetine and the dentate gyrus: memory, recovery of function, and electrophysiology. Behav Pharmacol, 18, 521–31.CrossRefGoogle ScholarPubMed
Keller, A, Iriki, A, Asanuma, H. (1990). Identification of neurons producing long-term potentiation in the cat motor cortex: intracellular recordings and labeling. J Comp Neurol, 300, 4760.CrossRefGoogle Scholar
Kessler, J, Thiel, A, Karbe, H, Heiss, WD. (2000). Piracetam improves activated blood flow and facilitates rehabilitation of poststroke aphasic patients. Stroke, 31, 2112–16.CrossRefGoogle ScholarPubMed
Kikuchi, K, Nishino, K, Ohyu, H. (1999). L-DOPS-Accelerated recovery of locomotor function in rats subjected to sensorimotor cortex ablation injury: pharmacobehavioral studies. Tohoku J Exp Med, 188, 203–15.CrossRefGoogle ScholarPubMed
Kikuchi, K, Nishino, K, Ohyu, H. (2000). Increasing CNS norepinephrine levels by the precursor L-DOPS facilitates beam-walking recovery after sensorimotor cortex ablation in rats. Brain Res, 860, 130–5.CrossRefGoogle ScholarPubMed
Kline, AE, Chen, MJ, Tso-Olivas, DY, Feeney, DM. (1994). Methylphenidate treatment following ablation-induced hemiplegia in rat: experience during drug action alters effects on recovery of function. Pharmacol Biochem Behav, 48, 773–9.CrossRefGoogle ScholarPubMed
Kraglund, KL, Mortensen, JK, Damsbo, AG, Modrau, B, Simonsen, SA, Iversen, HK, et al. (2018). Neuroregeneration and Vascular Protection by Citalopram in Acute Ischemic Stroke (TALOS). Stroke, 49(11), 2568–76. doi:10.1161/STROKEAHA.CrossRefGoogle Scholar
Kulla, A, Manahan-Vaughan, D. (2002). Modulation by serotonin 5-HT(4) receptors of long-term potentiation and depotentiation in the dentate gyrus of freely moving rats. Cereb Cortex, 12, 150–62.CrossRefGoogle ScholarPubMed
Larsson, M, Ervik, M, Lundborg, P, Sundh, V, Svanborg, A. (1988). Comparison between methylphenidate and placebo as adjuvant in care and rehabilitation of geriatric patients. Comp Gerontol, 2, 53–9.Google ScholarPubMed
Lenzi, GL, Frackowiak, RSJ, Jones, T. (1982). Cerebral oxygen metabolism and blood flow in human cerebral infarction. J Cereb Blood Flow Metab, 2, 321–35.CrossRefGoogle Scholar
Lipsey, JR, Pearlson, GD, Robinson, RG, Rao, K, Price, TR. (1984). Nortriptyline treatment of post-stroke depression: a double-blind study. Lancet, 1, 297300.CrossRefGoogle ScholarPubMed
Maling, HM, Acheson, GH. (1946). Righting and other postural activity in low-decerebrate and in spinal cats after d-amphetamine. J Neurophysiol, 9, 379–86.CrossRefGoogle ScholarPubMed
Manahan-Vaughan, D, Kulla, A. (2003). Regulation of depotentiation and long-term potentiation in the dentate gyrus of freely moving rats by dopamine D2-like receptors. Cereb Cortex, 13, 123–35.CrossRefGoogle ScholarPubMed
Martin, WRW, Raichle, ME. (1983). Cerebellar blood flow and metabolism in cerebral hemisphere infarction. Ann Neurol, 14, 168–76.Google ScholarPubMed
Martinsson, L, Eksborg, S, Wahlgren, NG. (2003). Intensive early physiotherapy combined with dexamphetamine treatment in severe stroke: a randomized, controlled pilot study. Cerebrovasc Dis, 16, 338–45.CrossRefGoogle ScholarPubMed
Martinsson, L, Hardemark, H, Eksborg, S. (2007). Amphetamines for improving recovery after stroke. Cochrane Database Syst Rev, 1. CD002090.Google ScholarPubMed
Marzo, A, Bai, J, Otani, S. (2009). Neuroplasticity regulation by noradrenaline in mammalian brain. Curr Neuropharmacol, 7, 286–95.CrossRefGoogle ScholarPubMed
Masotto, C., Apud, J. A., & Racagni, G. (1985). Neurochemical studies on GABAergic and aminergic systems in the rat brain following acute and chronic piracetam administration. Pharmacol Res Commun, 17, 749–72.CrossRefGoogle ScholarPubMed
Mead, GE, Hsieh, CF, Hackett, M. (2013). Selective serotonin reuptake inhibitors for stroke recovery. JAMA, 310, 1066–7.CrossRefGoogle ScholarPubMed
Meyer, PM, Horel, JA, Meyer, DR. (1963). Effects of dl-amphetamine upon placing responses in neodecorticate cats. J Comp PhysiolPsychol, 56, 402–04.Google ScholarPubMed
Nishino, K, Sasaki, T, Takahashi, K, Chiba, M, Ito, T. (2001). The norepinephrine precursor L-threo-3, 4-dihydroxyphenylserine facilitates motor recovery in chronic stroke patients. J Clin Neurosci, 8, 547–50.CrossRefGoogle ScholarPubMed
Olpe, HR, Karlsson, G. (1990). The effects of baclofen and two GABA B-receptor antagonists on long-term potentiation. Naunyn Schmiedeberg Arch Pharmacol, 342, 194–7.CrossRefGoogle Scholar
Peroutka, SJ, U’Pritchard, DC, Greenberg, DA, Snyder, SH. (1977). Neuroleptic drug interactions with norepinephrine alpha receptor binding sites in rat brain. Neuropharmacology, 16, 549–56.CrossRefGoogle ScholarPubMed
Prasad, RM, Dose, JM, Dhillon, HS, Carbary, T, Kraemer, PJ. (1995). Amphetamine affects the behavioral outcome of lateral fluid percussion brain injury in the rat. Restor Neurol Neurosci, 9, 6575.Google ScholarPubMed
Ramic, M, Emerick, AJ, Bollnow, MR, O’Brien, TE, Tsai, SY, Kartje, GL. (2006). Axonal plasticity is associated with motor recovery following amphetamine treatment combined with rehabilitation after brain injury in the adult rat. Brain Res, 1111, 176–86.CrossRefGoogle ScholarPubMed
Reding, MJ, Orto, LA, Winter, SW, Fortuna, IM, Di Ponte, P, McDowell, FH. (1986). Antidepressant therapy after stroke. A double-blind trial. Arch Neurol, 43, 763–5.CrossRefGoogle ScholarPubMed
Reding, MJ, Solomon, B, Borucki, SJ. (1995). Effect of dextroamphetamine on motor recovery after stroke. Neurology, 45 (Suppl. 4), A222.Google Scholar
Roffler-Tarlov, S, Schildkraut, JJ, Draskoczy, PR. (1973). Effects of acute and chronic administration of desmethylimipramine on the content of norepinephrine and other monamines in the rat brain. Biochem Pharmacol, 22, 2923–6.CrossRefGoogle Scholar
Sabe, L, Salvarezza, F, Cuerva, AG, Leiguarda, R, Starkstein, S. (1995). A randomized, double-blind, placebo-controlled study of bromocriptine in nonfluent aphasia. Neurology, 45, 2272–4.CrossRefGoogle ScholarPubMed
Santarelli, L, Saxe, M, Gross, C, Surget, A, Battaglia, F, Dulawa, S, et al. (2003). Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science, 301, 805–09.CrossRefGoogle ScholarPubMed
Satoh, M, Ishihara, K, Iwama, T, Takagi, H. (1986). Aniracetam augments, and midazolam inhibits, the long-term potentiation in guinea-pig hippocampal slices. Neurosci Lett, 68, 216–20.CrossRefGoogle ScholarPubMed
Schallert, T, Hernandez, TD, Barth, TM. (1986). Recovery of function after brain damage: Severe and chronic disruption by diazepam. Brain Res, 379, 104–11.CrossRefGoogle ScholarPubMed
Schallert, T, Jones, TA, Weaver, MS, Shapiro, LE, Crippens, D, Fulton, R. (1992). Pharmacologic and anatomic considerations in recovery of function. Phys Med Rehabil, 6, 375–93.Google Scholar
Schmanke, TD, Avery, RA, Barth, TM. (1996). The effects of amphetamine on recovery of function after cortical damage in the rat depend on the behavioral requirements of the task. J Neurotrauma, 13, 293307.CrossRefGoogle ScholarPubMed
Sonde, L, Nordström, M, Nilsson, C-G, Lökk, J, Viitanen, M. (2001). A double-blind placebo-controlled study of the effects of amphetamine and physiotherapy after stroke. Cerebrovasc Dis, 12, 253–7.CrossRefGoogle ScholarPubMed
Stanton, PK, Sarvey, JM. (1985). Blockade of norepinephrine-induced long-lasting potentiation in the hippocampal dentate gyrus by an inhibitor of protein synthesis. Brain Res, 361, 276–83.CrossRefGoogle ScholarPubMed
Stroemer, RP, Kent, TA, Hulsebosch, CE. (1994). Amphetamines permanently promote recovery following cortical infarction. Abstracts Soci Neurosci, 20, 186.Google Scholar
Stroemer, RP, Kent, TA, Hulsebosch, CE. (1995). Neocortical neural sprouting, synaptogenesis, and behavioral recovery after neocortical infarction in rats. Stroke, 26, 2135–44.CrossRefGoogle ScholarPubMed
Sutton, RL, Feeney, DM. (1992). α-Noradrenergic agonists and antagonists affect recovery and maintenance of beam-walking ability after sensorimotor cortex ablation in the rat. Restor Neurol Neurosci, 4, 111.Google ScholarPubMed
Sutton, RL, Hovda, DA, Feeney, DM. (1989). Amphetamine accelerates recovery of locomotor function following bilateral frontal cortex ablation in cats. Behav Neurosci, 103, 837–41.CrossRefGoogle ScholarPubMed
Tanaka, M, Kondo, S, Hirai, S. Ishiguro, K, Ishihara, T, Morimatsu, M. (1992). Crossed cerebellar diaschisis accompanied by hemiataxia: a PET study. J Neurol Neurosurg Psychiatry, 55, 121–5.CrossRefGoogle ScholarPubMed
Theodore, DR, Meier-Ruge, W, Abraham, J. (1992). Microvascular morphometry in primate diaschisis. Microvasc Res, 43, 147–55.CrossRefGoogle ScholarPubMed
Treig, T, Werner, C, Sachse, M, Hesse, S. (2003). No benefit from D-amphetamine when added to physiotherapy after stroke: a randomized, placebo-controlled study. Clin Rehabil, 17, 590–9.CrossRefGoogle ScholarPubMed
Troisi, E, Paolucci, S, Silvestrini, M, Matteis, M, Vernieri, F, Grasso, MG., et al (2002). Prognostic factors in stroke rehabilitation: the possible role of pharmacological treatment. Acta Neurol Scand, 105, 100–06.CrossRefGoogle ScholarPubMed
Van Hasselt, P. (1973). Effect of butyrophenones on motor function in rats after recovery from brain damage. Neuropharmacology, 12, 245–7.CrossRefGoogle Scholar
Wade, DT, Collen, FM, Robb, GF, Warlow, CP. (1992). Physiotherapy intervention late after stroke and mobility. Br Med J, 304, 609–13.Google ScholarPubMed
Walker-Batson, D, Curtis, S, Natarajan, R, Ford, J, Dronkers, N, Salmeron, E, et al. (2001). A double-blind, placebo-controlled study of the use of amphetamine in the treatment of aphasia. Stroke, 32, 2093–8.CrossRefGoogle ScholarPubMed
Walker-Batson, D, Smith, P, Curtis, S, Unwin, H, Greenlee, R. (1995). Amphetamine paired with physical therapy accelerates motor recovery after stroke – further evidence. Stroke, 26, 2254–9.CrossRefGoogle ScholarPubMed
Weaver, MS, Chen, MJ, Westerberg, VS, Feeney, DM. (1988). Locus coeruleus lesions facilitate recovery of locomotor function after sensorimotor cortex contusion in the rat. Abstracts Soc Neurosci, 14, 405.Google Scholar
Wigstrom, H, Gustafsson, B. (1985). Facilitation of hippocampal long-lasting potentiation by GABA antagonists. Acta Physiol Scand, 125, 159–72.CrossRefGoogle ScholarPubMed
Williams, S, Johnston, D. (1988). Muscarinic depression of long-term potentiation in CA3 hippocampal neurons. Science, 242, 84–7.CrossRefGoogle ScholarPubMed
Wilson, MS, Hamm, RJ. (2002). Effects of fluoxetine on the 5-HT1A receptor and recovery of cognitive function after traumatic brain injury in rats. Am J Phys Med Rehabil, 81, 364–72.CrossRefGoogle ScholarPubMed
Antal, A, Alekseichuk, I, Bikson, M, Brockmöller, J, Brunoni, AR, Chen, R, et al. (2017). Low intensity transcranial electric stimulation: safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol, 128(9), 17741809.CrossRefGoogle ScholarPubMed
Barker, AT, Jalinous, R, Freeston, IL. (1985). Non-invasive magnetic stimulation of the human motor cortex. Lancet, 1, 1106–07.Google ScholarPubMed
Bath, PM, Lee, HS, Everton, LF. (2018). Swallowing therapy for dysphagia in acute and subacute stroke. Cochrane Database Syst Rev, 10. CD000323. doi:10.1002/14651858.CD000323.pub3.CrossRefGoogle ScholarPubMed
Bikson, M, Grossman, P, Thomas, C, Zannou, AL, Jiang, J, Adnan, T, et al. (2016). Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimul, 9(5), 641–61.CrossRefGoogle Scholar
Boggio, PS, Nunes, A, Rigonatti, SP. (2007). Repeated sessions of non-invasive brain DC stimulation is associated with motor function improvement in stroke patients. Restor Neurol Neurosci, 25, 123–9.Google Scholar
Bolognini, N, Pascual-Leone, A, Fregni, F. (2009). Using non-invasive brain stimulation to augment motor training-induced plasticity. J Neuroeng Rehabil, 6(8).CrossRefGoogle ScholarPubMed
Brunoni, AR, Nitsche, MA, Bolognini, N, Bikson, M, Wagner, T, Merabet, L, et al. (2012). Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul, 5(3), 175–95.CrossRefGoogle ScholarPubMed
Cabrera, LY, Evans, EL, Hamilton, RH. (2014). Ethics of the electrified mind: defining issues and perspectives on the principled use of brain stimulation in medical research and clinical care. Brain Topogr, 27(1), 3345.CrossRefGoogle ScholarPubMed
Chaieb, L, Antal, A, Pisoni, A, Saiote, C, Opitz, A, Ambrus, GG, et al. (2014). Safety of 5 kHz tACS. Brain Stimul, 7(1), 92–6.CrossRefGoogle ScholarPubMed
Chang, MC, Kim, DY, Park, DH. (2015). Enhancement of cortical excitability and lower limb motor function in patients with stroke by transcranial direct current stimulation. Brain Stimul, 8(3), 561–6.CrossRefGoogle ScholarPubMed
Chiang, CF, Lin, MT, Hsiao, MY, Yeh, YC, Liang, YC, Wang, TG (2018). Comparative efficacy of noninvasive neurostimulation therapies for acute and subacute poststroke dysphagia: a systematic review and network meta-analysis. Arch Phys Med Rehabil, 100(4), 739–50. doi:10.1016/j.apmr.2018.09.117.Google ScholarPubMed
Dmochowski, JP, Datta, A, Bikson, M, Su, Y, Parra, LC. (2011). Optimized multi-electrode stimulation increases focality and intensity at target. J Neural Eng, 8(4), 046011.CrossRefGoogle ScholarPubMed
Elsner, B, Kugler, J, Pohl, M, Mehrholz, J. (2015). Transcranial direct current stimulation (tDCS) for improving aphasia in patients with aphasia after stroke. Cochrane Database Syst Rev, 5. CD009760.Google ScholarPubMed
Elsner, B, Kugler, J, Pohl, M, Mehrholz, J. (2016a). Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke. Cochrane Database Syst Rev, 3. CD009645. doi:10.1002/14651858.CD009645.pub3.CrossRefGoogle ScholarPubMed
Elsner, B, Kugler, J, Pohl, M, Mehrholz, J. (2016b). Transcranial direct current stimulation for improving spasticity after stroke: a systematic review with meta-analysis. J Rehabil Med, 48(7), 565–70.CrossRefGoogle ScholarPubMed
Fitz, NS, Reiner, PB. (2015). The challenge of crafting policy for do-it-yourself brain stimulation. J Med Ethics, 41(5), 410–12.CrossRefGoogle ScholarPubMed
Giordano, J, Bikson, M, Kappenman, ES, Clark, VP, Coslett, HB, Hamblin, MR, et al. (2017). Mechanisms and effects of transcranial direct current stimulation. Dose Response, 15(1), 1559325816685467. doi:10.1177/1559325816685467. eCollection 2017 Jan-Mar.CrossRefGoogle ScholarPubMed
Guleyupoglu, B, Schestatsky, P, Edwards, D, Fregni, F, Bikson, M. (2013). Classification of methods in transcranial electrical stimulation (tES) and evolving strategy from historical approaches to contemporary innovations. J Neurosci Methods, 219(2), 297311.CrossRefGoogle ScholarPubMed
Hao, Z, Wang, D, Zeng, Y, Lui, M. (2013). Repetitive transcranial magnetic stimulation for improving function after stroke. Cochrane Database Syst Rev, 5. CD008862.CrossRefGoogle ScholarPubMed
Kang, EK, Baek, MJ, Kim, S, Paik, NJ. (2009). Non-invasive cortical stimulation improves post-stroke attention decline. Restor Neurol Neurosci, 27(6), 645–50.Google ScholarPubMed
Kazuta, T, Takeda, K, Osu, R, Tanaka, S, Oishi, A, Kondo, K, Liu, M. (2017). Transcranial direct current stimulation improves audioverbal memory in stroke patients. Am J Phys Med Rehabil, 96(8), 565–71.CrossRefGoogle ScholarPubMed
Kim, JH, Kim, DW, Chang, WH, Kim, YH, Kim, K, Im, CH. (2014). Inconsistent outcomes of transcranial direct current stimulation may originate from anatomical differences among individuals: electric field simulation using individual MRI data. Neurosci Lett, 564, 610.CrossRefGoogle ScholarPubMed
Koyama, S, Tanaka, S., Tanabe, S, Sadato, N. (2015). Dual-hemisphere transcranial direct current stimulation over primary motor cortex enhances consolidation of a ballistic thumb movement. Neurosci Lett, 588, 4953. doi:20.1016/j.neulet.2014.11.043. epub 2014 Nov 28.CrossRefGoogle ScholarPubMed
Krause, B, Marquez-Ruiz, J, Cohen Kadosh, R. (2013). The effect of transcranial direct current stimulation: a role for cortical excitation/inhibition balance? Front Hum Neurosci, 7, 602.CrossRefGoogle ScholarPubMed
Kuo, HI, Bikson, M, Datta, A, Minhas, P, Paulus, W, Kuo, M. F, et al. (2013). Comparing cortical plasticity induced by conventional and high-definition 4 x 1 ring tDCS: a neurophysiological study. Brain Stimul, 6(4), 644–8.CrossRefGoogle ScholarPubMed
Lang, N, Siebner, HR, Ward, NS. Lee, L, Nitsche, MA. Paulus, W., Rothwell, JC, et al. (2005). How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? Eur J Neurosci, 22(2), 495504.CrossRefGoogle ScholarPubMed
Li, Y, Fan, J, Yang, J, He, C, Li, S. (2018). Effects of repetitive transcranial magnetic stimulation on walking and balance function after stroke: a systematic review and meta-analysis. Am J Phys Med Rehabil, 97(11), 773–81.CrossRefGoogle ScholarPubMed
Li, Y, Qu, Y, Yuan, M, Du, T. (2015). Low-frequency repetitive transcranial magnetic stimulation for patients with aphasia after stroke: a meta-analysis. J Rehabil Med, 47, 675–81.CrossRefGoogle ScholarPubMed
Liebetanz, D, Koch, R, Mayenfels, S, Konig, F, Paulus, W, Nitsche, MA. (2009). Safety limits of cathodal transcranial direct current stimulation in rats. Clin Neurophysiol, 120, 1161–7.CrossRefGoogle ScholarPubMed
Lu, H, Zhang, T, Wen, M, Sun, L. (2015). Impact of repetitive transcranial magnetic stimulation on post-stroke dysmnesia and the role of BDNF Val66Met SNP. Med Sci Monit, 21, 761–8. doi:10.12659/MSM.892337.Google ScholarPubMed
Machii, K, Cohen, D, Ramos-Estebanez, C, Pascual-Leone, A. (2006). Safety of rTMS to non-motor cortical areas in healthy participants and patients. Clin Neurophysiol, 117(2), 455–71.CrossRefGoogle ScholarPubMed
Marquez, J, van Vliet, P, McElduff, P, Lagopoulos, J, Parsons, M. (2015). Transcranial direct current stimulation (tDCS): does it have merit in stroke rehabilitation? A systematic review. Int J Stroke, 10(3), 306–16.CrossRefGoogle ScholarPubMed
Marshall, L, Binder, S. (2013). Contribution of transcranial oscillatory stimulation to research on neural networks: an emphasis on hippocampo-neocortical rhythms. Front Hum Neurosci, 7, 614.CrossRefGoogle ScholarPubMed
McClintock, SM, Reti, IM, Carpenter, LL, McDonald, WM, Dubin, M, Taylor, SF, et al.; National Network of Depression Centers rTMS Task Group; American Psychiatric Association Council on Research Task Force on Novel Biomarkers and Treatments. (2018). Consensus recommendations for the Clinical Application of Repetitive Transcranial Magnetic Stimulation (rTMS) in the treatment of depression. J Clin Psychiatry, 79(1). pii: 16cs10905. doi:10.4088/JCP.16cs10905.CrossRefGoogle ScholarPubMed
McCreery, DB, Agnew, WF, Yuen, TG, and Bullara, L. (1990). Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation. IEEE Trans Biomed Eng, 37, 9961001.CrossRefGoogle ScholarPubMed
Meinzer, M, Darkow, R, Lindenberg, R, Flöel, A. (2016). Electrical stimulation of the motor cortex enhances treatment outcome in post-stroke aphasia. Brain, 139(Pt 4), 1152–63.CrossRefGoogle ScholarPubMed
Moliadze, V, Antal, A, Paulus, W. (2010a). Boosting brain excitability by transcranial high frequency stimulation in the ripple range. J Physiol, 588(24), 48914904.CrossRefGoogle ScholarPubMed
Moliadze, V, Antal, A, Paulus, W. (2010b). Electrode-distance dependent after-effects of transcranial direct and random noise stimulation with extracephalic reference electrodes. Clin Neurophysiol, 121, 2165–71.CrossRefGoogle ScholarPubMed
Nitsche, MA, Cohen, L, Wassermann, EM, Priori, A, Lang, N, Antal, A, et al. (2008). Transcranial direct current stimulation: state of the art 2008. Brain Stimul, 1, 206–23.CrossRefGoogle ScholarPubMed
Nitsche, MA, Nitsche, MS, Klein, CC. (2003). Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clin Neurophysiol, 114, 600–04.CrossRefGoogle ScholarPubMed
Nitsche, MA, Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol, 527(3), 633–9.CrossRefGoogle ScholarPubMed
Paulus, W, Peterchev, AV, Ridding, M. (2013). Transcranial electric and magnetic stimulation: technique and paradigms. Handb Clin Neurol, 116, 329–42.CrossRefGoogle ScholarPubMed
Peterchev, AV, Wagner, TA, Miranda, PC, Nitsche, MA, Paulus, W, Lisanby, SH, et al. (2012). Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices. Brain Stimul, 5(4), 435–53.CrossRefGoogle ScholarPubMed
Priori, A, Hallett, M, Rothwell, JC. (2009). Repetitive transcranial magnetic stimulation or transcranial direct current stimulation? Brain Stimul, 2(4), 241–5.CrossRefGoogle ScholarPubMed
Radman, T, Ramos, RL, Brumberg, JC, Bikson, M. (2009). Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimul, 2(4), 215–28.CrossRefGoogle ScholarPubMed
Reato, D, Rahman, A, Bikson, M, Parra, LC. (2013). Effects of weak transcranial alternating current stimulation on brain activity – a review of known mechanisms from animal studies. Front Hum Neurosci, 7, 687.CrossRefGoogle ScholarPubMed
Redfearn, JWT, Lippold, OC, Constain, R. (1964). A preliminary account of the clinical effects of polarizing the brain in certain psychiatric disorders. Br J Psychiatry, 110, 773–85.CrossRefGoogle ScholarPubMed
Romero, JR, Anschel, D, Sparing, R, Gangitano, M, Pascual-Leone, A. (2002). Subthreshold low frequency repetitive transcranial magnetic stimulation selectively decreases facilitation in the motor cortex. Clin Neurophysiol, 113, 101–07.CrossRefGoogle ScholarPubMed
Rossi, S, Hallett, M, Rossini, PM, Pascual-Leone, A; Safety of TMS Consensus Group. (2009). Safety, ethical considerations and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol, 120, 2008–39.CrossRefGoogle ScholarPubMed
Saiote, C, Turi, Z, Paulus, W, Antal, A. (2013). Combining functional magnetic resonance imaging with transcranial electrical stimulation. Front Hum Neurosci, 7, 435.CrossRefGoogle ScholarPubMed
Salazar, APS, Vaz, PG, Marchese, RR, Stein, C, Pinto, C, Pagnussat, AS. (2018). Noninvasive brain stimulation improves hemispatial neglect after stroke: a systematic review and meta-analysis. Arch Phys Med Rehabil, 99(2), 355–66.e1.CrossRefGoogle ScholarPubMed
Schlaug, G, Renga, V, Nair, DG. (2008). Transcranial direct current stimulation in stroke recovery. Arch Neurol, 65(12), 1571–6.CrossRefGoogle ScholarPubMed
Shaker, HA, Sawan, SAE, Fahmy, EM, Ismail, RS, Elrahman, SAEA. (2018). Effect of transcranial direct current stimulation on cognitive function in stroke patients. Egypt J Neurol Psychiatr Neurosurg, 54(1), 32. doi:10.1186/s41983-018-0037-8.CrossRefGoogle ScholarPubMed
Shen, X, Liu, M, Cheng, Y, Jia, C, Pan, X, Gou, Q, et al. (2017). Repetitive transcranial magnetic stimulation for the treatment of post-stroke depression: a systematic review and meta-analysis of randomized controlled clinical trials. J Affect Disord, 211, 6574.CrossRefGoogle ScholarPubMed
Silvanto, J, Pascual-Leone, A. (2008). State-dependency of transcranial magnetic stimulation. Brain Topogr, 21(1), 110.CrossRefGoogle ScholarPubMed
Smith, DV, Clithero, JA. (2009). Manipulating executive function with transcranial direct current stimulation. Front Integr Neurosci, 3, 26.Google ScholarPubMed
Sohn, MK, Jee, SJ, Kim, YW. (2013). Effect of transcranial direct current stimulation on postural stability and lower extremity strength in hemiplegic stroke patients. Ann Rehabil Med, 37(6), 759–65.CrossRefGoogle ScholarPubMed
Spielmann, K, van de Sandt-Koenderman, WME, Heijenbrok-Kal, MH, Ribbers, GM. (2018). Transcranial direct current stimulation does not improve language outcome in subacute poststroke aphasia. Stroke, 49(4), 1018–20.CrossRefGoogle Scholar
Tahtis, V, Kaski, D, Seemungal, BM. (2014). The effect of single session bi-cephalic transcranial direct current stimulation on gait performance in sub-acute stroke: a pilot study. Restor Neurol Neurosci, 32(4), 527–32.Google ScholarPubMed
Talelli, P, Wallace, A, Dileone, M, Hoad, D, Cheeran, B, Oliver, R, et al. (2012). Theta burst stimulation in the rehabilitation of the upper limb: a semirandomized, placebo-controlled trial in chronic stroke patients. Neurorehabil Neural Repair, 26(8), 976–87.CrossRefGoogle ScholarPubMed
Tanaka, S, Hanakawa, T, Honda, M, Watanabe, K. (2009). Enhancement of pinch force in the lower leg by anodal transcranial direct current stimulation. Exp Brain Res, 196(3), 459–65.CrossRefGoogle ScholarPubMed
Tanaka, S, Takeda, K, Otaka, Y, Kita, K, Osu, R, Honda, M, et al. (2011). Single session of transcranial direct current stimulation transiently increases knee extensor force in patients with hemiparetic stroke. Neurorehabil Neural Repair, 25(6), 565–9.CrossRefGoogle ScholarPubMed
Terney, D, Chaieb, L, Moliadze, V, Antal, A, Paulus, W. (2008). Increasing Human brain excitability by transcranial high-frequency random noise stimulation. J Neurosci, 28, 14147–55.CrossRefGoogle ScholarPubMed
Valiengo, LC, Goulart, AC, de Oliveira, JF, Benseñor, IM, Lotufo, PA, Brunoni, AR. (2017). Transcranial direct current stimulation for the treatment of post-stroke depression: results from a randomised, sham-controlled, double-blinded trial. J Neurol Neurosurg Psychiatry, 8(2), 170–5.Google Scholar
Wagner, T, Fregni, F, Fecteau, S, Grodzinsky, A, Zahn, M, Pascual-Leone, A. (2007a). Transcranial direct current stimulation: a computer-based human model study. Neuroimage, 35, 1113–24.CrossRefGoogle ScholarPubMed
Wagner, T, Valero-Cabre, A, Pascual-Leone, A. (2007b). Noninvasive human brain stimulation. Ann Rev Biomed Eng, 9, 527–65.CrossRefGoogle ScholarPubMed
Wolters, A, Sandbrink, F, Schlottmann, A, Kunesch, E, Stefan, K, Cohen, LG, et al. (2003). A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex. J Neurophysiol, 89(5), 2339–45.CrossRefGoogle ScholarPubMed
Yun, GJ, Chun, MH, Kim, BR. (2015). The effects of transcranial direct-current stimulation on cognition in stroke patients. J Stroke, 17(3), 354–8.CrossRefGoogle ScholarPubMed
Zhang, L, Xing, G, Fan, Y, Guo, Z, Chen, H, Mu, Q. (2017). Short- and long-term effects of repetitive transcranial magnetic stimulation on upper limb motor function after stroke: a systematic review and meta-analysis. Clin Rehabil, 31(9), 1137–53.sssCrossRefGoogle Scholar