Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-09-13T12:04:10.405Z Has data issue: false hasContentIssue false

12 - Synthesis of High-Pressure Silicate Polymorphs Using Multi-Anvil Press

Published online by Cambridge University Press:  03 August 2023

Yingwei Fei
Affiliation:
Carnegie Institution of Washington, Washington DC
Michael J. Walter
Affiliation:
Carnegie Institution of Washington, Washington DC
Get access

Summary

Multi-anvil press (MAP) is a major type of apparatus for phase equilibrium, material synthesis, and property investigations at up to 120 GPa of static compression. Here I summarize the fundamental aspects of the MAP techniques, highlighting uncertainties in pressure and temperature in experiments using tungsten carbide (WC) anvils with 3 mm and 5 mm truncation edge lengths (TEL). To illustrate the application of the MAP for synthesizing millimeter-sized single crystals of deep mantle silicates, I review the theory of crystal growth and compile relevant phase diagrams. The theory informs synthesis methods such as slow cooling of a fluid solution and growing crystals in a thermal gradient. The updated phase diagrams involve Mg2SiO4, MgSiO3, and H2O at pressures up to 27 GPa and touch upon iron-bearing compositions. Also reviewed briefly are techniques to characterize the compositions and structures of synthesis products.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akashi, A., Nishihara, Y., Takahashi, E., Nakajima, Y., Tange, Y., Funakoshi, K.i. (2009). Orthoenstatite/clinoenstatite phase transformation in MgSiO3 at high‐pressure and high‐temperature determined by in situ X‐ray diffraction: implications for nature of the X discontinuity. Journal of Geophysical Research: Solid Earth, 114, B04206.CrossRefGoogle Scholar
Akella, J., Kennedy, G. C. (1971). Melting of gold, silver, and copper – proposal for a new high-pressure calibration scale. Journal of Geophysical Research, 76, 4969.CrossRefGoogle Scholar
Arimoto, T., Irifune, T., Nishi, M., Tange, Y., Kunimoto, T., Liu, Z. (2019). Phase relations of MgSiO3–FeSiO3 system up to 64 GPa and 2300 K using multianvil apparatus with sintered diamond anvils. Physics of the Earth and Planetary Interiors, 295, 106297.CrossRefGoogle Scholar
Avrami, M. (1939). Kinetics of phase change. I General theory. Journal of Chemical Physics, 7, 1103.CrossRefGoogle Scholar
Baron, M. A., Lord, O. T., Myhill, R., et al. (2017). Experimental constraints on melting temperatures in the MgO–SiO2 system at lower mantle pressures. Earth and Planetary Science Letters, 472, 186.Google Scholar
Bassett, W. A. (2009). Diamond anvil cell, 50th birthday. High Pressure Research 29, 163186.Google Scholar
Bertka, C. M., Fei, Y. (1997). Mineralogy of the Martian interior up to core–mantle boundary pressures. Journal of Geophysical Research: Solid Earth, 102, 52515264.CrossRefGoogle Scholar
Brandeis, G., Jaupart, C., Allègre, C. J. (1984). Nucleation, crystal growth and the thermal regime of cooling magmas. Journal of Geophysical Research, 89, 10161.CrossRefGoogle Scholar
Bridgman, P. W. (1925). Certain physical properties of single crystals of tungsten, antimony, bismuth, tellurium, cadmium, zinc, and tin. Proceedings of the American Academy of Arts and Sciences. American Academy of Arts and Sciences, pp. 305383.Google Scholar
Chang, Y.-Y., Jacobsen, S. D., Bina, C. R., et al. (2015). Comparative compressibility of hydrous wadsleyite and ringwoodite: effect of H2O and implications for detecting water in the transition zone. Journal of Geophysical Research: Solid Earth, 120, 82598280.CrossRefGoogle Scholar
Chen, B., Li, J., Hauck, I. S. A. (2008). Non-ideal liquidus curve in the Fe-S system and Mercury’s snowing core. Geophysical Research Letters, 35, L07201, doi:07210.01029/02008GL033311.CrossRefGoogle Scholar
Chen, J., Inoue, T., Weidner, D. J., Wu, Y., Vaughan, M. T. (1998). Strength and water weakening of mantle minerals, olivine, wadsleyite and ringwoodite. Geophysical Research Letters, 25, 575578.Google Scholar
Chen, J., Inoue, T., Yurimoto, H., Weidner, D. J. (2002). Effect of water on olivine–wadsleyite phase boundary in the (Mg, Fe)2SiO4 system. Geophysical Research Letters, 29, 22-2122-24.CrossRefGoogle Scholar
Christensen, U. (1995). Effects of phase transitions on mantle convection. Annual Review of Earth and Planetary Sciences, 23, 6587.Google Scholar
Davies, E. J., Carter, P. J., Root, S., et al. (2020). Silicate melting and vaporization during rocky planet formation. Journal of Geophysical Research (Planets), 125, e06227.Google Scholar
Dobson, D. P., Jones, A. P., Rabe, R., et al. (1996). In-situ measurement of viscosity and density of carbonate melts at high pressure. Earth and Planetary Science Letters, 143, 207215.Google Scholar
Du, Z., Lee, K. K. M. (2014). High-pressure melting of MgO from (Mg,Fe)O solid solutions. Geophysical Research Letters, 41, 8061.Google Scholar
Fei, H., Yamazaki, D., Sakurai, M., et al. (2017). A nearly water-saturated mantle transition zone inferred from mineral viscosity. Science Advances, 3, e1603024.CrossRefGoogle ScholarPubMed
Fei, Y., Bertka, C. M. (1999). Phase transitions in the Earth’s mantle and mantle mineralogy. Mantle Petrology: Field Observations and High Pressure Experimentation, 6, 189207.Google Scholar
Fei, Y., Mao, H. K., Mysen, B. O. (1991). Experimental determination of element partitioning and calculation of phase relations in the MgO–FeO–SiO2 system at high pressure and high temperature. Journal of Geophysical Research: Solid Earth, 96, 21572169.CrossRefGoogle Scholar
Fei, Y., Van Orman, J., Li, J., et al. (2004). Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. Journal of Geophysical Research: Solid Earth, 109, B02305.Google Scholar
Frost, D., Poe, B., Trønnes, R., Liebske, C., Duba, A., Rubie, D. (2004). A new large-volume multianvil system. Physics of the Earth and Planetary Interiors, 143, 507514.CrossRefGoogle Scholar
Fu, S., Yang, J., Karato, S.-i., et al. (2019). Water concentration in single-crystal (Al,Fe)-bearing bridgmanite grown from the hydrous melt: implications for dehydration melting at the topmost lower mantle. Geophysical Research Letters, 46, 10,34610,357.Google Scholar
Haines, J., Leger, J., Bocquillon, G. (2001). Synthesis and design of superhard materials. Annual Review of Materials Science, 31, 1.Google Scholar
Hall, H. T. (1958). Some high-pressure, high-temperature apparatus design considerations: equipment for use at 100000 atmospheres and 3000°C. Review of Scientific Instruments, 29, 267275.CrossRefGoogle Scholar
Hall, H. T. (1962). Anvil guide device for multiple-anvil high pressure apparatus. Review of Scientific Instruments, 33, 1278.Google Scholar
Hernlund, J. (2006). A numerical model for steady-state temperature distributions in solid-medium high-pressure cell assemblies. American Mineralogist, 91, 295.Google Scholar
Hirose, K., Fei, Y., Ma, Y., Mao, H.-K. (1999). The fate of subducted basaltic crust in the Earth’s lower mantle. Nature, 397, 5356.Google Scholar
Hirose, K., Komabayashi, T., Murakami, M., Funakoshi, K.i. (2001). In situ measurements of the majorite–akimotoite–perovskite phase transition boundaries in MgSiO3. Geophysical Research Letters, 28, 43514354.CrossRefGoogle Scholar
Hummer, D. R., Fei, Y. (2012). Synthesis and crystal chemistry of Fe3+-bearing (Mg, Fe3+)(Si, Fe3+)O3 perovskite. American Mineralogist, 97, 19151921.Google Scholar
Huppertz, H. (2004). Multianvil high-pressure/high-temperature synthesis in solid state chemistry. Zeitschrift für Kristallographie – Crystalline Materials, 219, 330338.Google Scholar
Inoue, T. (1994). Effect of water on melting phase relations and melt composition in the system Mg2SiO4–MgSiO3–H2O up to 15 GPa. Physics of the Earth and Planetary Interiors, 85, 237263.Google Scholar
Inoue, T., Weidner, D. J., Northrup, P. A., Parise, J. B. (1998). Elastic properties of hydrous ringwoodite (γ-phase) in Mg2SiO4. Earth and Planetary Science Letters, 160, 107113.CrossRefGoogle Scholar
Inoue, T., Yurimoto, H., Kudoh, Y. (1995). Hydrous modified spinel, Mg1. 75SiH0. 5O4: a new water reservoir in the mantle transition region. Geophysical Research Letters, 22, 117120.Google Scholar
Irifune, T., Kurio, A., Sakamoto, S., Inoue, T., Sumiya, H. (2003). Materials: ultrahard polycrystalline diamond from graphite. Nature, 421, 599.Google Scholar
Irifune, T., Nishiyama, N., Kuroda, K., et al. (1998). The postspinel phase boundary in Mg2SiO4 determined by in situ X-ray diffraction. Science, 279, 16981700.CrossRefGoogle ScholarPubMed
Irifune, T., Ringwood, A. (1993). Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle. Earth and Planetary Science Letters, 117, 101110.Google Scholar
Ishii, T., Liu, Z., Katsura, T. (2019). A breakthrough in pressure generation by a Kawai-type multi-anvil apparatus with tungsten carbide anvils. Engineering, 5, 434440.Google Scholar
Ishii, T., Shi, L., Huang, R., et al. (2016). Generation of pressures over 40 GPa using Kawai-type multi-anvil press with tungsten carbide anvils. Review of Scientific Instruments, 87, 024501.Google Scholar
Ishii, T., Yamazaki, D., Tsujino, N., et al. (2017). Pressure generation to 65 GPa in a Kawai-type multi-anvil apparatus with tungsten carbide anvils. High Pressure Research, 37, 507.Google Scholar
Ito, E. (2012). Development of the Kawai-type multi-anvil apparatus (KMA) and its application to high pressure Earth science. Journal of Physics: Conference Series, 377, 012001.Google Scholar
Ito, E., Schubert, G., Romanowicz, B., Dziewonski, A. (2007). Theory and practice-multianvil cells and high-pressure experimental methods. Treatise on Geophysics, 2, 197230.CrossRefGoogle Scholar
Ito, E., Takahashi, E. (1989). Postspinel transformations in the system Mg2SiO4–Fe2SiO4 and some geophysical implications. Journal of Geophysical Research: Solid Earth, 94, 1063710646.CrossRefGoogle Scholar
Iwasa, Y., Arima, T., Fleming, R. M., et al. (1994). New phases of C60 synthesized at high pressure. Science, 264, 1570.CrossRefGoogle ScholarPubMed
Jacobsen, S. D., Liu, Z., Ballaran, T. B., Littlefield, E. F., Ehm, L., Hemley, R. J. (2010). Effect of H2O on upper mantle phase transitions in MgSiO3: Is the depth of the seismic X-discontinuity an indicator of mantle water content? Physics of the Earth and Planetary Interiors, 183, 234244.CrossRefGoogle Scholar
Jacobsen, S. D., Smyth, J. R., Spetzler, H., Holl, C. M., Frost, D. J. (2004). Sound velocities and elastic constants of iron-bearing hydrous ringwoodite. Physics of the Earth and Planetary Interiors, 143, 4756.CrossRefGoogle Scholar
Kanzaki, M. (1991). Stability of hydrous magnesium silicates in the mantle transition zone. Physics of the Earth and Planetary Interiors, 66, 307.Google Scholar
Karato, S.-i. (2011). Water distribution across the mantle transition zone and its implications for global material circulation. Earth and Planetary Science Letters, 301, 413423.Google Scholar
Karato, S.-i., Wu, P. (1993). Rheology of the upper mantle: a synthesis. Science, 260, 771778.Google Scholar
Katsura, T., Funakoshi, K.-i., Kubo, A., et al. (2004a). A large-volume high-pressure and high-temperature apparatus for in situ X-ray observation, “SPEED-Mk. II.” Physics of the Earth and Planetary Interiors, 143, 497506.Google Scholar
Katsura, T., Ito, E. (1989). The system Mg2SiO4–Fe2SiO4 at high pressures and temperatures: precise determination of stabilities of olivine, modified spinel, and spinel. Journal of Geophysical Research: Solid Earth, 94, 1566315670.Google Scholar
Katsura, T., Shatskiy, A., Manthilake, M. G. M., et al. (2009). P–V–T relations of wadsleyite determined by in situ X‐ray diffraction in a large‐volume high‐pressure apparatus. Geophysical Research Letters, 36, L11307.Google Scholar
Katsura, T., Yamada, H., Nishikawa, O., et al. (2004b). Olivine–wadsleyite transition in the system (Mg, Fe)2SiO4. Journal of Geophysical Research: Solid Earth, 109, B20209.CrossRefGoogle Scholar
Katsura, T., Yoneda, A., Yamazaki, D., Yoshino, T., Ito, E. (2010). Adiabatic temperature profile in the mantle. Physics of the Earth and Planetary Interiors, 183, 212218.Google Scholar
Kawazoe, T., Buchen, J., Marquardt, H. (2015). Synthesis of large wadsleyite single crystals by solid-state recrystallization. American Mineralogist, 100, 23362339.Google Scholar
Keppler, H., Frost, D. J., Miletich, R. (2005). Introduction to minerals under extreme conditions. EMU Notes in Mineralogy, 7, 130.Google Scholar
Kitamura, K., Yamamoto, J. K., Iyi, N., Kirnura, S., Hayashi, T. (1992). Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system. Journal of Crystal Growth, 116, 327.Google Scholar
Knibbe, J., Luginbühl, S., Stoevelaar, R., et al. (2018). Calibration of a multi-anvil high-pressure apparatus to simulate planetary interior conditions. EPJ Techniques and Instrumentation, 5, 114.Google Scholar
Kubo, T., Ohtani, E., Funakoshi, K.-i. (2004). Nucleation and growth kinetics of the α-β transformation in Mg2SiO4determined by in situ synchrotron powder X-ray diffraction. American Mineralogist, 89, 285.Google Scholar
Kulka, B. L., Dolinschi, J. D., Leinenweber, K. D., Prakapenka, V. B., Shim, S.-H. (2020). The Bridgmanite–Akimotoite–Majorite triple point determined in large volume press and laser-heated diamond anvil cell. Minerals, 10, 67.Google Scholar
Le Godec, Y., Hamel, G., Solozhenko, V. L., et al. (2009). Portable multi-anvil device for in situ angle-dispersive synchrotron diffraction measurements at high pressure and temperature. Journal of Synchrotron Radiation, 16, 513523.Google Scholar
Leinenweber, K. D., Tyburczy, J. A., Sharp, T. G., et al. (2012). Cell assemblies for reproducible multi-anvil experiments (the COMPRES assemblies). American Mineralogist, 97, 353368.CrossRefGoogle Scholar
Li, B., Kung, J., Liebermann, R. C. (2004). Modern techniques in measuring elasticity of Earth materials at high pressure and high temperature using ultrasonic interferometry in conjunction with synchrotron X-radiation in multi-anvil apparatus. Physics of the Earth and Planetary Interiors, 143, 559574.Google Scholar
Li, J., Agee, C. B. (1996). Geochemistry of mantle–core differentiation at high pressure. Nature, 381, 686689.Google Scholar
Li, J., Hadidiacos, C., Mao, H. K., Fei, Y., Hemley, R. J. (2003). Effect of pressure on thermocouples in a multi-anvil apparatus. High Pressure Research, 23, 389401.CrossRefGoogle Scholar
Liebermann, R. C. (2011). Multi-anvil, high pressure apparatus: a half-century of development and progress. High Pressure Research, 31, 493532.CrossRefGoogle Scholar
Liebske, C., Frost, D. J. (2012). Melting phase relations in the MgO–MgSiO3 system between 16 and 26 GPa: implications for melting in Earth’s deep interior. Earth and Planetary Science Letters, 345, 159170.Google Scholar
Lindsley, D. H., Davis, B. T. C., Macgregor, D. (1964). Ferrosilite (FeSiO3): synthesis at high pressures and temperatures. Science, 144, 7374.Google Scholar
Liu, J., Dorfman, S. M., Zhu, F., et al. (2018). Valence and spin states of iron are invisible in Earth’s lower mantle. Nature Communications, 9, 1284.Google Scholar
Liu, Y., Li, H., Lai, X., Zhu, F., Rapp, R. P., Chen, B. (2020). Casting octahedra for reproducible multi-anvil experiments by 3D-printed molds. Minerals, 10, 4.Google Scholar
Mao, H., Bell, P. (1971). Behavior of thermocouples in the single-stage piston-cylinder apparatus. Carnegie Institution of Washington Yearbook, 69, 207216.Google Scholar
Mao, H.-K., Chen, B., Chen, J., et al. (2016). Recent advances in high-pressure science and technology. Matter and Radiation at Extremes, 1, 5975.CrossRefGoogle Scholar
Millot, M., Dubrovinskaia, N., Černok, A., et al. (2015). Shock compression of stishovite and melting of silica at planetary interior conditions. Science, 347, 418420.Google Scholar
Mitra, N. R., Decker, D. L., Vanfleet, H. B. (1967). Melting curves of copper, silver, gold, and platinum to 70 kbar. Physical Review, 161, 613.Google Scholar
Mrosko, M., Koch-Müller, M., McCammon, C., Rhede, D., Smyth, J. R., Wirth, R. (2015). Water, iron, redox environment: effects on the wadsleyite–ringwoodite phase transition. Contributions to Mineralogy and Petrology, 170, 9.Google Scholar
Müller, J., Koch-Müller, M., Rhede, D., Wilke, F. D., Wirth, R. (2017). Melting relations in the system CaCO3–MgCO3 at 6 GPa. American Mineralogist, 102, 24402449.Google Scholar
Myhill, R., Frost, D. J., Novella, D. (2017). Hydrous melting and partitioning in and above the mantle transition zone: insights from water-rich MgO–SiO2–H2O experiments. Geochimica et Cosmochimica Acta, 200, 408.Google Scholar
Nishihara, Y., Doi, S., Kakizawa, S., Higo, Y., Tange, Y. (2020). Effect of pressure on temperature measurements using WRe thermocouple and its geophysical impact. Physics of the Earth and Planetary Interiors, 298, 106348.CrossRefGoogle Scholar
Ohtani, E. (2015). Hydrous minerals and the storage of water in the deep mantle. Chemical Geology, 418, 515.CrossRefGoogle Scholar
Ohtani, E., Mizobata, H., Yurimoto, H. (2000). Stability of dense hydrous magnesium silicate phases in the systems Mg2SiO4–H2O and MgSiO3–H2O at pressures up to 27 GPa. Physics and Chemistry of Minerals, 27, 533544.Google Scholar
Okuchi, T., Purevjav, N., Tomioka, N., et al. (2015). Synthesis of large and homogeneous single crystals of water-bearing minerals by slow cooling at deep-mantle pressures. American Mineralogist, 100, 14831492.Google Scholar
Perrillat, J. P., Chollet, M., Durand, S., et al. (2016). Kinetics of the olivine–ringwoodite transformation and seismic attenuation in the Earth’s mantle transition zone. Earth and Planetary Science Letters, 433, 360.Google Scholar
Poli, S., Schmidt, M. W. (2002). Petrology of subducted slabs. Annual Review of Earth and Planetary Sciences, 30, 207235.Google Scholar
Presnall, D., Gasparik, T. (1990). Melting of enstatite (MgSiO3 from 10 to 16.5 GPa and the forsterite (Mg2SiO4)‐majorite (MgSiO3) eutectic at 16.5 GPa: implications for the origin of the mantle. Journal of Geophysical Research: Solid Earth, 95, 1577115777.CrossRefGoogle Scholar
Presnall, D. C. (1995). Phase diagrams of Earth-forming minerals. Mineral Physics and Crystallography: A Handbook of Physical Constants, 2, 248268.Google Scholar
Presnall, D. C., Weng, Y.-H., Milholland, C. S., Walter, M. J. (1998). Liquidus phase relations in the system MgO–MgSiO3 at pressures up to 25 GPa—constraints on crystallization of a molten Hadean mantle. Physics of the Earth and Planetary Interiors, 107, 8395.CrossRefGoogle Scholar
Purevjav, N., Okuchi, T., Hoffmann, C. (2020). Strong hydrogen bonding in a dense hydrous magnesium silicate discovered by neutron Laue diffraction. IUCrJ, 7, 370374.Google Scholar
Rohrbach, A., Ballhaus, C., Golla-Schindler, U., Ulmer, P., Kamenetsky, V. S., Kuzmin, D. V. (2007). Metal saturation in the upper mantle. Nature, 449, 456.CrossRefGoogle ScholarPubMed
Rohrbach, A., Schmidt, M. W. (2011). Redox freezing and melting in the Earth’s deep mantle resulting from carbon–iron redox coupling. Nature 472, 209212.Google Scholar
Rubie, D. C. (1999). Characterising the sample environment in multianvil high-pressure experiments. Phase Transitions, 68, 431451.Google Scholar
Rubie, D. C., Ross, C. R., II (1994). Kinetics of the olivine–spinel transformation in subducting lithosphere: experimental constraints and implications for deep slab processes. Physics of the Earth and Planetary Interiors, 86, 223.Google Scholar
Schmandt, B., Jacobsen, S. D., Becker, T. W., Liu, Z., Dueker, K. G. (2014). Dehydration melting at the top of the lower mantle. Science, 344, 12651268.CrossRefGoogle ScholarPubMed
Schwarz, M. R. (2010). Multianvil calibration and education: a four probe method to measure the entire force-versus-pressure curve in a single run – performed as an interdisciplinary lab-course for students. Journal of Physics: Conference Series, 215, 012193.Google Scholar
Secco, R., Schloessin, H. (1989). The electrical resistivity of solid and liquid Fe at pressures up to 7 GPa. Journal of Geophysical Research: Solid Earth, 94, 58875894.Google Scholar
Shatskiy, A., Fukui, H., Matsuzaki, T., et al. (2007). Growth of large (1 mm) MgSiO3 perovskite single crystals: a thermal gradient method at ultrahigh pressure. American Mineralogist, 92, 17441749.Google Scholar
Shatskiy, A., Katsura, T., Litasov, K., et al. (2011). High pressure generation using scaled-up Kawai-cell. Physics of the Earth and Planetary Interiors, 189, 92108.Google Scholar
Shatskiy, A., Litasov, K. D., Matsuzaki, T., et al. (2009b). Single crystal growth of wadsleyite. American Mineralogist, 94, 11301136.CrossRefGoogle Scholar
Shatskiy, A., Litasov, K. D., Terasaki, H., Katsura, T., Ohtani, E. (2010a). Performance of semi-sintered ceramics as pressure-transmitting media up to 30 GPa. High Pressure Research, 30, 443450.Google Scholar
Shatskiy, A., Yamazaki, D., Borzdov, Y. M., et al. (2010b). Stishovite single-crystal growth and application to silicon self-diffusion measurements. American Mineralogist, 95, 135143.CrossRefGoogle Scholar
Shatskiy, A., Yamazaki, D., Morard, G., et al. (2009a). Boron-doped diamond heater and its application to large-volume, high-pressure, and high-temperature experiments. Review of Scientific Instruments, 80, 023907.Google Scholar
Shen, G., Lazor, P. (1995). Measurement of melting temperatures of some minerals under lower mantle pressures. JGR, 100, 17,699617,713.Google Scholar
Siebert, J., Badro, J., Antonangeli, D., Ryerson, F. J. (2012). Metal–silicate partitioning of Ni and Co in a deep magma ocean. Earth and Planetary Science Letters, 321, 189.Google Scholar
Smyth, J. R., Holl, C. M., Frost, D. J., Jacobsen, S. D., Langenhorst, F., McCammon, C. A. (2003). Structural systematics of hydrous ringwoodite and water in Earth’s interior. American Mineralogist, 88, 14021407.Google Scholar
Sokol, A. G., Borzdov, Y. M., Palyanov, Y. N., Khokhryakov, A. F. (2015). High-temperature calibration of a multi-anvil high pressure apparatus. High Pressure Research, 35, 139147.Google Scholar
Stagno, V., Ojwang, D. O., McCammon, C. A., Frost, D. J. (2013). The oxidation state of the mantle and the extraction of carbon from Earth’s interior. Nature, 493, 84.Google Scholar
Stalder, R. (2002). Synthesis of enstatite single crystals at high pressure. European Journal of Mineralogy, 14, 637640.Google Scholar
Stewart, A., Van Westrenen, W., Schmidt, M., Melekhova, E. (2006). Effect of gasketing and assembly design: a novel 10/3.5 mm multi-anvil assembly reaching perovskite pressures. High Pressure Research, 26, 293299.Google Scholar
Stewart, A. J., Schmidt, M. W., van Westrenen, W., Liebske, C. (2007). Mars: a new core-crystallization regime. Science, 316, 13231325.Google Scholar
Tange, Y., Takahashi, E., Nishihara, Y., Funakoshi, K.-I., Sata, N. (2009) Phase relations in the system MgO–FeO-SiO2 to 50 GPa and 2000°C: an application of experimental techniques using multianvil apparatus with sintered diamond anvils. Journal of Geophysical Research (Solid Earth), 114, B02214.Google Scholar
Thomson, A. R., Walter, M. J., Kohn, S. C., Brooker, R. A. (2016). Slab melting as a barrier to deep carbon subduction. Nature, 529, 7679.Google Scholar
Tschauner, O., Ma, C., Beckett, J. R., Prescher, C., Prakapenka, V. B., Rossman, G. R. (2014). Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite. Science, 346, 1100.Google Scholar
Walker, D. (1991). Lubrication, gasketing, and precision in multi-anvil experiments. American Mineralogist, 76, 10921100.Google Scholar
Walker, D., Carpenter, M. A., Hitch, C. M. (1990). Some simplifications to multianvil devices for high-pressure experiments. American Mineralogist, 75, 10201028.Google Scholar
Walker, D., Li, J. (2020). Castable solid pressure media for multi-anvil devices. Matter and Radiation at Extremes, 5(1) 018402.Google Scholar
Walker, D., Norby, L., Jones, J. H. (1993). Superheating effects on metal–silicate partitioning of siderophile elements. Science, 262, 18581860.Google Scholar
Walter, M. J., Thibault, Y., Wei, K., Luth, R. W. (1995). Characterizing experimental pressure and temperature conditions in multi-anvil apparatus. Canadian Journal of Physics, 73, 273.Google Scholar
Wood, B. J., Walter, M., Wade, J. (2006). Accretion of the Earth and segregation of its core. Nature, 442, 825833. doi:810.1038/nature04763.Google Scholar
Woodland, A. B. (1998). The orthorhombic to high-P monoclinic phase transition in Mg–Fe Pyroxenes: Can it produce a seismic discontinuity? Geophysical Research Letters, 25, 1241.Google Scholar
Xu, F., Xie, L., Yoneda, A., et al. (2020). TiC–MgO composite: an X-ray transparent and machinable heating element in a multi-anvil high pressure apparatus. High Pressure Research, 40, 257.Google Scholar
Yamazaki, D., Ito, E., Yoshino, T., et al. (2014). Over 1 Mbar generation in the Kawai-type multianvil apparatus and its application to compression of (Mg0.92Fe0.08)SiO3 perovskite and stishovite. Physics of the Earth and Planetary Interiors, 228, 262.Google Scholar
Yamazaki, D., Ito, E., Yoshino, T., et al. (2019). High-pressure generation in the Kawai-type multianvil apparatus equipped with tungsten–carbide anvils and sintered-diamond anvils, and X-ray observation on CaSnO3 and (Mg,Fe)SiO3 perovskite and stishovite. Comptes Rendus Geoscience, 351, 253259.Google Scholar
Yamazaki, D., Ito, E. (2020) High pressure generation in the Kawai-type multianvil apparatus equipped with sintered diamond anvils. High Pressure Research, 40, 3.Google Scholar
Yoshino, T., Manthilake, G., Matsuzaki, T., Katsura, T. (2008). Dry mantle transition zone inferred from the conductivity of wadsleyite and ringwoodite. Nature, 451, 326329.Google Scholar
Zhai, S., Ito, E. (2011). Recent advances of high-pressure generation in a multianvil apparatus using sintered diamond anvils. Geoscience Frontiers, 2, 101106.Google Scholar
Zhang, J., Li, B., Utsumi, W., Liebermann, R. C. (1996). In situ X-ray observations of the coesite–stishovite transition: reversed phase boundary and kinetics. Physics and Chemistry of Minerals, 23, 1.Google Scholar
Zhang, L., Fei, Y. (2008). Melting behavior of (Mg,Fe)O solid solutions at high pressure. Geophysical Research Letters, 35, L13302.Google Scholar
Zhou, D., Dong, J., Si, Y., Zhu, F., Li, J. (2020). Melting curve of potassium chloride from in situ ionic conduction measurements. Minerals, 10(3), 250.Google Scholar
Zhu, F., Li, J., Liu, J., Dong, J., Liu, Z. (2019a). Metallic iron limits silicate hydration in Earth’s transition zone. Proceedings of the National Academy of Science, 116, 22526.Google Scholar
Zhu, F., Li, J., Liu, J., Lai, X., Chen, B., Meng, Y. (2019b). Kinetic control on the depth distribution of superdeep diamonds. Geophysical Research Letters, 46, 1984.Google Scholar
Zhu, F., Liu, J., Lai, X., et al. (2020). Synthesis, elasticity and spin state of an intermediate MgSiO3–FeAlO3 bridgmanite: implications for iron in Earth’s lower mantle. Journal of Geophysical Research: Solid Earth, 127(7), e2020JB019964.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×