Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-09-13T11:00:53.688Z Has data issue: false hasContentIssue false

6 - New Analysis of Shock-Compression Data for Selected Silicates

Published online by Cambridge University Press:  03 August 2023

Yingwei Fei
Affiliation:
Carnegie Institution of Washington, Washington DC
Michael J. Walter
Affiliation:
Carnegie Institution of Washington, Washington DC
Get access

Summary

The study of minerals under shock compression provides fundamental constraints on their response to conditions of extreme pressure, temperature, and strain rate and has applications to understanding meteorite impacts and the deep Earth. The recent development of facilities for real-time in situ X-ray diffraction studies under gun- or laser-based dynamic compression provides new capability for understanding the atomic-level structure of shocked solids. Here traditional shock pressure-density data for selected silicate minerals (garnets, tourmaline, nepheline, topaz, and spodumene) are examined through comparison of their Hugoniots with recent static compression and theoretical studies. The results provide insights into the stability of silicate structures and the possible nature of high-pressure phases under shock loading. This type of examination highlights the potential for in situ atomic-level measurements to address questions about phase transitions, transition kinetics, and structures formed under shock compression for silicate minerals.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahrens, T. J. (1987). Shock wave techniques for geophysics and planetary physics, in Sammis, C. G., Henyey, T. L., eds., Methods of Experimental Physics, Academic Press, pp. 185235.Google Scholar
Ahrens, T. J., Anderson, D. L., Ringwood, A. E. (1969). Equations of state and crystal structures of high-pressure phases of shocked silicates and oxides. Reviews of Geophysics, 7(4), 667707.Google Scholar
Ahrens, T. J., Gregson, V. G. (1964). Shock compression of crustal rocks – data for quartz calcite + plagioclase rocks. Journal of Geophysical Research, 69(22), 48394874.CrossRefGoogle Scholar
Ahrens, T. J., Johnson, M. L. (1995a). Shock wave data for minerals, in Ahrens, T. J., ed., Mineral Physics and Crystallography: A Handbook of Physical Constants, Vol. 2. American Geophysical Union, pp. 143184.CrossRefGoogle Scholar
Ahrens, T. J., Johnson, M. L. (1995b). Shock wave data for rocks, in Ahrens, T. J., ed., Mineral Physics and Crystallography: A Handbook of Physical Constants, Vol. 3. American Geophysical Union, pp. 3544.Google Scholar
Akaogi, M., Ohmura, N., Suzuki, T. (1998). High-pressure dissociation of Fe3Al2Si3O12 garnet: phase boundary determined by phase equilibrium experiments and calorimetry. Physics of the Earth and Planetary Interiors, 106(1), 103113.CrossRefGoogle Scholar
Akaogi, M., Tanaka, A., Kobayashi, M., Fukushima, N., Suzuki, T. (2002). High-pressure transformations in NaAlSiO4 and thermodynamic properties of jadeite, nepheline, and calcium ferrite-type phase. Physics of the Earth and Planetary Interiors, 130(1), 4958.CrossRefGoogle Scholar
Akins, J. A., Luo, S. N., Asimow, P. D., Ahrens, T. J. (2004). Shock-induced melting of MgSiO3 perovskite and implications for melts in Earth’s lowermost mantle. Geophysical Research Letters, 31(14), L14612.CrossRefGoogle Scholar
Al’tshuler, L. V., Sharipdzhanov, L. L. (1971). Additive equations of state of silicates at high pressures. Izvestiya: Physics of the Solid Earth, English Translation, 3, 167177.Google Scholar
Andrault, D., Angel, R. J., Mosenfelder, J. L., Bihan, T. L. (2015). Equation of state of stishovite to lower mantle pressures. American Mineralogist, 88(2–3), 301307.Google Scholar
Arlt, T., Angel, R. J. (2000). Displacive phase transitions in C-centered clinopyroxenes: spodumene, LiScSi2O6 and ZnSiO3. Physics and Chemistry of Minerals, 27(10), 719731.Google Scholar
Asimow, P. D. (2015). Dynamic compression, in Schubert, G., ed., Treatise on Geophysics, 2nd ed. Elsevier, pp. 393416.Google Scholar
Berryman, E. J., Zhang, D., Wunder, B., Duffy, T. S. (2019). Compressibility of synthetic Mg-Al tourmalines to 60 GPa. American Mineralogist, 104(7), 10051015.CrossRefGoogle Scholar
Coppari, F., Smith, R. F., Eggert, J. H., et al. (2013). Experimental evidence for a phase transition in magnesium oxide at exoplanet pressures. Nature Geoscience, 6(11), 926929.CrossRefGoogle Scholar
Davies, G., Gaffney, E. (1973). Identification of high-pressure phases of rocks and minerals from Hugoniot data. Geophysical Journal of the Royal Astronomical Society, 33(2), 165183.Google Scholar
Dorfman, S. M., Shieh, S. R., Meng, Y., Prakapenka, V. B., Duffy, T. S. (2012). Synthesis and equation of state of perovskites in the (Mg, Fe)3Al2Si3O12 system to 177 GPa. Earth and Planetary Science Letters, 357, 194202.Google Scholar
Duan, Y., Sun, N., Wang, S., et al. (2018). Phase stability and thermal equation of state of δ-AlOOH: implication for water transportation to the deep lower mantle. Earth and Planetary Science Letters, 494, 9298.CrossRefGoogle Scholar
Dubrovinsky, L. S., Dubrovinskaia, N. A., Prokopenko, V. B., Bihan, T. L. (2002). Equation of state and crystal structure of NaAlSiO4 with calcium-ferrite type structure in the conditions of the lower mantle. High Pressure Research, 22(2), 495499.Google Scholar
Duffy, T. S. (2005). Synchrotron facilities and the study of the Earth’s deep interior. Reports on Progress in Physics, 68(8), 18111859.Google Scholar
Duffy, T. S., Smith, R. F. (2019). Ultra-high pressure dynamic compression of geological materials. Frontiers in Earth Science, 7, 23.Google Scholar
Fan, D. W., Zhou, W. G., Liu, C. Q., et al. (2009). The thermal equation of state of (Fe0.86Mg0.07Mn0.07)3Al2Si3O12 almandine. Mineral Magazine, 73(1), 95102.Google Scholar
Finkelstein, G. J., Dera, P. K., Duffy, T. S. (2012). Single-crystal X-ray diffraction of pyrope garnet to 84 GPa. AGU Fall Meeting Abstracts, 43, MR43C-2332.Google Scholar
Gatta, G. D., Angel, R. J. (2007). Elastic behavior and pressure-induced structural evolution of nepheline: Implications for the nature of the modulated superstructure. American Mineralogist, 92(8–9), 14461455.CrossRefGoogle Scholar
Gatta, G. D., Morgenroth, W., Dera, P., Petitgirard, S., Liermann, H.-P. (2014). Elastic behavior and pressure-induced structure evolution of topaz up to 45 GPa. Physics and Chemistry of Minerals, 41(8), 569577.Google Scholar
Geiger, C. A. (2013). Garnet: a key phase in nature, the laboratory, and technology. Elements, 9(6), 447452.CrossRefGoogle Scholar
Gillet, P., El Goresy, A. (2013). Shock events in the solar system: the message from minerals in terrestrial planets and asteroids. Annual Review of Earth and Planetary Sciences, 41, 257285.CrossRefGoogle Scholar
Gleason, A. E., Bolme, C. A., Lee, H. J., et al. (2015). Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2. Nature Communications, 6, 8191.CrossRefGoogle ScholarPubMed
Graham, E. K., Ahrens, T. J. (1973). Shock wave compression of iron-silicate garnet. Journal of Geophysical Research, 78(2), 375392.Google Scholar
Greaux, S., Andrault, D., Gautron, L., Bolfan-Casanova, N., Mezouar, M. (2014). Compressibility of Ca3Al2Si3O12 perovskite up to 55 GPa. Physics and Chemistry of Minerals, 41(6), 419429.Google Scholar
Greaux, S., Nishiyama, N., Kono, Y., et al. (2011). Phase transformations of Ca3Al2Si3O12 grossular garnet to the depths of the Earth’s mantle transition zone. Physics of the Earth and Planetary Interiors, 185(3), 8999.Google Scholar
Guignot, N., Andrault, D. (2004). Equations of state of Na–K–Al host phases and implications for MORB density in the lower mantle. Physics of the Earth and Planetary Interiors, 143144, 107128.Google Scholar
Hearst, J. R., Irani, G. B., Geesaman, L. B. (1965). Piezoelectric response of Z‐cut tourmaline to shocks of up to 21 kilobars. Journal of Applied Physics, 36(11), 34403444.Google Scholar
Henry, D. J., Dutrow, B. L. (2018). Tourmaline studies through time: contributions to scientific advancements. Journal of Geosciences, 63(2), 7798.Google Scholar
Hernandez, J.-A., Morard, G., Guarguaglini, M., et al. (2020). Direct observation of shock-induced disordering of enstatite below the melting temperature. Geophysical Research Letters, 47(15), e2020GL088887.Google Scholar
Hua, H., Mirov, S., Vohra, Y. K. (1996). High-pressure and high-temperature studies on oxide garnets. Physical Review B, 54(9), 62006209.CrossRefGoogle ScholarPubMed
Jiang, F., Speziale, S., Duffy, T. S. (2004). Single-crystal elasticity of grossular-and almandine-rich garnets to 11 GPa by Brillouin scattering. Journal of Geophysical Research, 109, B10210.CrossRefGoogle Scholar
Kanzaki, M. (2010). Crystal structure of a new high-pressure polymorph of topaz-OH. American Mineralogist, 95(8–9), 13491352.CrossRefGoogle Scholar
Kim, D., Tracy, S. J., Smith, R. F., et al. (2021). Femtosecond X-ray diffraction of laser-shocked forsterite (Mg2SiO4) to 122 GPa. Journal of Geophysical Research: Solid Earth, 126(1), e2020JB020337.CrossRefGoogle Scholar
Langenhorst, F., Hornemann, U. (2005). Shock experiments on minerals: basic physics and techniques, in Miletich, R., ed., Mineral Behaviour at Extreme Conditions. Mineralogical Society, pp. 357387.Google Scholar
Lei, L., He, D., Zou, Y., et al. (2008). Phase transitions of LiAlO2 at high pressure and high temperature. Journal of Solid State Chemistry, 181(8), 18101815.CrossRefGoogle Scholar
Li, X., Kobayashi, T., Zhang, F., Kimoto, K., Sekine, T. (2004). A new high-pressure phase of LiAlO2. Journal of Solid State Chemistry, 177(6), 19391943.Google Scholar
Lin, C., Liu, J., Lin, J.-F., et al. (2013). Garnet-to-perovskite transition in Gd3Sc2Ga3O12 at high pressure and high temperature. Inorganic Chemistry, 52(1), 431434.CrossRefGoogle ScholarPubMed
Liu, G., Liu, H. (2018). First principles study of LiAlO2: new dense monoclinic phase under high pressure. Journal of Physics: Condensed Matter, 30(11), 115401.Google ScholarPubMed
Liu, L.-G. (1978). High-pressure phase transformations of albite, jadeite and nepheline. Earth and Planetary Science Letters, 37(3), 438444.Google Scholar
Luo, S.-N., Akins, J. A., Ahrens, T. J., et al. (2004). Shock-compressed MgSiO3 glass, enstatite, olivine, and quartz: optical emission, temperatures, and melting. Journal of Geophysical Research, 109, B05205.Google Scholar
Mao, H. -k., Xu, J., Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91(B5), 46734676.CrossRefGoogle Scholar
Mao, Z., Dorfman, S. M., Shieh, S. R., et al. (2011). Equation of state of a high-pressure phase of Gd3Ga5O12. Physical Review B, 83(5), 054114.Google Scholar
Marsh, S. P. (1980). LASL Shock Hugoniot Data, University of California Press.Google Scholar
Mashimo, T., Chau, R., Zhang, Y., et al. (2006). Transition to a virtually incompressible oxide phase at a shock pressure of 120 GPa (1.2 Mbar): Gd3Ga5O12. Physical Review Letters, 96(10), 105504.Google Scholar
McQueen, R. G., Marsh, S. P., Fritz, J. N. (1967). Hugoniot equation of state of 12 rocks. Journal of Geophysical Research, 72(20), 49995036.Google Scholar
Mookherjee, M., Tsuchiya, J., Hariharan, A. (2016). Crystal structure, equation of state, and elasticity of hydrous aluminosilicate phase, topaz-OH (Al2SiO4(OH)2) at high pressures. Physics of the Earth and Planetary Interiors, 251, 2435.Google Scholar
Mosenfelder, J. L., Asimow, P. D., Ahrens, T. J. (2007). Thermodynamic properties of Mg2SiO4 liquid at ultra-high pressures from shock measurements to 200 GPa on forsterite and wadsleyite. Journal of Geophysical Research-Solid Earth, 112(B6), B06208.Google Scholar
Mosenfelder, J. L., Asimow, P. D., Frost, D. J., Rubie, D. C., Ahrens, T. J. (2009). The MgSiO3 system at high pressure: thermodynamic properties of perovskite, postperovskite, and melt from global inversion of shock and static compression data. Journal of Geophysical Research-Solid Earth, 114, B01203.Google Scholar
Nellis, W. J. (2007). Adiabat-reduced isotherms at 100 GPa pressures. High Pressure Research, 27(4), 393407.CrossRefGoogle Scholar
Nestola, F., Redhammer, G. J., Pamato, M. G., Secco, L., Negro, A. D. (2009). High-pressure phase transformation in LiFeGe2O6 pyroxene. American Mineralogist, 94(4), 616621.CrossRefGoogle Scholar
Newman, M. G., Kraus, R. G., Akin, M. C., et al. (2018). In situ observations of phase changes in shock compressed forsterite. Geophysical Research Letters, 45(16), 81298135.Google Scholar
O’Bannon, E., Beavers, C. M., Kunz, M., Williams, Q. (2018). High-pressure study of dravite tourmaline: Insights into the accommodating nature of the tourmaline structure. American Mineralogist, 103(10), 16221633.Google Scholar
O’Bannon, E. F., Williams, Q. (2019). A Cr3+ luminescence study of natural topaz Al2SiO4(F,OH)2 up to 60 GPa. American Mineralogist, 104(11), 16561662.CrossRefGoogle Scholar
Ohtani, E. (2020). The role of water in Earth’s mantle. National Science Review, 7(1), 224232.Google Scholar
Ozaki, N., Nellis, W. J., Mashimo, T., et al. (2016). Dynamic compression of dense oxide (Gd3Ga5O12 ) from 0.4 to 2.6 TPa: universal Hugoniot of fluid metals. Scientific Reports, 6(1), 19.Google Scholar
Pamato, M. G., Myhill, R., Boffa Ballaran, T., Frost, D. J., Heidelbach, F., Miyajima, N. (2015). Lower-mantle water reservoir implied by the extreme stability of a hydrous aluminosilicate. Nature Geoscience, 8(1), 7579.Google Scholar
Panero, W. R., Caracas, R. (2020). Stability and solid solutions of hydrous alumino-silicates in the Earth’s mantle. Minerals, 10(4), 330.Google Scholar
Pommier, C. J. S., Denton, M. B., Downs, R. T. (2003). Raman spectroscopic study of spodumene (LiAlSi2O6) through the pressure-induced phase change from C2/c to P21/c. Journal of Raman Spectroscopy, 34(10), 769775.Google Scholar
Rubin, A. E., Ma, C. (2017). Meteoritic minerals and their origins. Geochemistry, 77(3), 325385.Google Scholar
Sano, A., Ohtani, E., Kondo, T., et al. (2008). Aluminous hydrous mineral δ-AlOOH as a carrier of hydrogen into the core-mantle boundary. Geophysical Research Letters, 35(3), L03303.Google Scholar
Schoelmerich, M. O., Tschentscher, T., Bhat, S., et al. (2020). Evidence of shock-compressed stishovite above 300 GPa. Scientific Reports, 10(1), 10197.CrossRefGoogle ScholarPubMed
Sekine, T., Ahrens, T. J. (1992). Shock-induced transformations in the system NaAlSiO4-SiO2: a new interpretation. Physics and Chemistry of Minerals, 18(6), 359364.Google Scholar
Sharp, T. G., DeCarli, P. S. (2006). Shock effects in meteorites, in Lauretta, D. S., McSween, H. Y., eds., Meteorites and the Early Solar System II. University of Arizona Press, pp. 653677.Google Scholar
Shen, G., Mao, H. K. (2017). High-pressure studies with X-rays using diamond anvil cells. Reports on Progress in Physics, 80(1), 153.Google Scholar
Shieh, S. R., Dorfman, S. M., Kubo, A., Prakapenka, V. B., Duffy, T. S. (2011). Synthesis and equation of state of post-perovskites in the (Mg,Fe)3Al2Si3O12 system. Earth and Planetary Science Letters, 312(3–4), 422428.Google Scholar
Simakov, G. V., Pavlovskiy, M. N., Kalashnikov, N. G., Trunin, R. F. (1974). Shock compressibility of twelve minerals. Izvestiya Akademii Nauk SSSR Fizika Zemli, 10, 488492.Google Scholar
Simakov, G. V., Trunin, R. F. (1980). Minerals compression by shock waves (in Russian). Izvestiya Akademii Nauk SSSR Fizika Zemli, 2, 7781.Google Scholar
Soga, N. (1967). Elastic constants of garnet under pressure and temperature. Journal of Geophysical Research, 72(16), 42274234.Google Scholar
Stan, C. V., Wang, J., Zouboulis, I. S., Prakapenka, V., Duffy, T. S. (2015). High-pressure phase transition in Y3Fe5O12. Journal of Physics: Condensed Matter, 27(40), 405401.Google Scholar
Svendsen, B., Ahrens, T. J. (1983). Dynamic compression of diopside and salite to 200 GPa. Geophysical Research Letters, 10(7), 501504.Google Scholar
Svendsen, B., Ahrens, T. J. (1990). Shock-induced temperatures of CaMgSi2O6. Journal of Geophysical Research, 95(B5), 69436953.Google Scholar
Takazawa, E., Sekine, T., Kobayashi, T., Zhu, Y. (1998). Hugoniot equation of state and high-pressure transformation of jadeite. Journal of Geophysical Research: Solid Earth, 103(B6), 1226112268.CrossRefGoogle Scholar
Telegin, G. S., Antoshev, G. V., Bugayeva, V. A., Simakov, G. V., Trunin, R. F. (1980). Calculated determination of Hugoniot curves of rocks and minerals. Izvestiya: Physics of the Solid Earth, English Translation, 16, 319324.Google Scholar
Tracy, S. J., Smith, R. F., Wicks, J. K., et al. (2019). In situ observation of a phase transition in silicon carbide under shock compression using pulsed X-ray diffraction. Physical Review B, 99(21), 214106.CrossRefGoogle Scholar
Tracy, S. J., Turneaure, S. J., Duffy, T. S. (2018). In situ X-ray diffraction of shock-compressed fused silica. Physical Review Letters, 120(13), 135702.Google Scholar
Tracy, S. J., Turneaure, S. J., Duffy, T. S. (2020). Structural response of alpha-quartz under plate-impact shock compression. Science Advances, 6(35), eabb3913.Google Scholar
Trunin, R. F. (2005). Shock Compression of Condensed Materials. Cambridge University Press.Google Scholar
Tutti, F., Dubrovinsky, L. S., Saxena, S. K. (2000). High pressure phase transformation of jadeite and stability of NaAlSiO4 with calcium-ferrite type structure in the lower mantle conditions. Geophysical Research Letters, 27(14), 20252028.CrossRefGoogle Scholar
Ullrich, A., Schranz, W., Miletich, R. (2009). The nonlinear anomalous lattice elasticity associated with the high-pressure phase transition in spodumene: a high-precision static compression study. Physics and Chemistry of Minerals, 36(10), 545.CrossRefGoogle Scholar
Wackerle, J. (1962). Shock‐wave compression of quartz. Journal of Applied Physics, 33(3), 922937.CrossRefGoogle Scholar
Wentzcovitch, R., Stixrude, L., eds. (2010). Theoretical and Computational Methods in Mineral Physics: Geophysical Applications, Vol. 71. Mineralogical Society of America.CrossRefGoogle Scholar
Wicks, J. K., Duffy, T. S. (2016). Crystal structures of minerals in the lower mantle, in Terasaki, H., Fischer, R. A., eds., Deep Earth: Physics and Chemistry of the Lower Mantle and Core. American Geophysical Union, pp. 6987.Google Scholar
Xu, J., Kuang, Y., Zhang, B., et al. (2016). Thermal equation of state of natural tourmaline at high pressure and temperature. Physics and Chemistry of Minerals, 43(5), 315326.CrossRefGoogle Scholar
Yusa, H., Yagi, T., Shimobayashi, N. (1995). A new unquenchable high-pressure polymorph of Ca3Al2Si3O12. Physics of the Earth and Planetary Interiors, 92(1), 2531.Google Scholar
Zhang, L., Ahsbahs, H., Kutoglu, A., Geiger, C. A. (1999). Single-crystal hydrostatic compression of synthetic pyrope, almandine, spessartine, grossular and andradite garnets at high pressures. Physics and Chemistry of Minerals, 7(1), 5258.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×