Skip to main content Accessibility help
Hostname: page-component-55597f9d44-t4qhp Total loading time: 0.889 Render date: 2022-08-14T00:33:31.456Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

3 - Island Populations

Genetic Factors Driving Declines

Published online by Cambridge University Press:  15 June 2018

Jamieson A. Copsey
IUCN Conservation Planning Specialist Group (CPSG)
Simon A. Black
Durrell Institute of Conservation and Ecology at the University of Kent
Jim J. Groombridge
Durrell Institute of Conservation and Ecology at the University of Kent
Carl G. Jones
Durrell Wildlife Conservation Trust
Get access
Species Conservation
Lessons from Islands
, pp. 51 - 82
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Acevedo-Whitehouse, K., Gulland, F., Greig, D. and Amos, W. (2003). Inbreeding: disease susceptibility in California sea lions. Nature 422(6927): 35.CrossRefGoogle ScholarPubMed
Aguilar, A., Roemer, G., Debenham, S. et al. (2004). High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal. Proceedings of the National Academy of Sciences USA 101(10): 3490–94.CrossRefGoogle Scholar
Allendorf, F. W., Hohenlohe, P. A. and Luikart, G. (2010). Genomics and the future of conservation genetics. Nature Reviews Genetics 11(10): 697709.CrossRefGoogle Scholar
Armbruster, P. and Reed, D. H. (2005). Inbreeding depression in benign and stressful environments. Heredity 95(3): 235–42.CrossRefGoogle ScholarPubMed
Avise, J. C. (2010). Perspective: conservation genetics enters the genomics era. Conservation Genetics 11(2): 665–69.CrossRefGoogle Scholar
Baskin, J. N. and Williams, E. E. (1966). The Lesser Antillean ameiva. Studies on the Fauna Curacao and Other Caribbean Islands 89: 143–76.Google Scholar
Beaumont, M. A. (2003). Estimation of population growth or decline in genetically monitored populations. Genetics 164(3): 1139–60.Google ScholarPubMed
Bijlsma, R., Bundgaard, J. and Boerema, A. C. (2000). Does inbreeding affect the extinction risk of small populations?: predictions from Drosophila. Journal of Evolutionary Biology 13(3): 502–14.CrossRefGoogle Scholar
Bijlsma, R. and Loeschcke, V. (2012). Genetic erosion impedes adaptive responses to stressful environments. Evolutionary Applications 5(2): 117–29.CrossRefGoogle ScholarPubMed
Brekke, P., Bennett, P. M., Wang, J., Pettorelli, N. and Ewen, J. G. (2010). Sensitive males: inbreeding depression in an endangered bird. Proceedings of the Royal Society of London B: Biological Sciences 277: 3677–684.CrossRefGoogle Scholar
Brekke, P., Bennett, P. M., Santure, A. W. and Ewen, J. G. (2011). High genetic diversity in the remnant island population of hihi and the genetic consequences of reintroduction. Molecular Ecology 20(1): 2945.CrossRefGoogle Scholar
Brekke, P., Ewen, J. G., Clucas, G. and Santure, A. W. (2015). Determinants of male floating behaviour and floater reproduction in a threatened population of the hihi (Notiomystis cincta). Evolutionary Applications 8(8): 796806.CrossRefGoogle Scholar
Buley, K. R., Prior, K. A. and Gibson, R. C. (1997). In search of the St. Lucia racer Liophis ornatus, with further observations on the reptile fauna of the Maria Islands, St. Lucia, West Indies. Dodo – Journal of the Wildlife Preservation Trusts 33: 104–17.Google Scholar
Charlesworth, D. and Willis, J. H. (2009). The genetics of inbreeding depression. Nature Reviews Genetics 10(11): 783–96.CrossRefGoogle ScholarPubMed
Cheke, A. and Hume, J. P. (2010). Lost Land of the Dodo: The Ecological History of Mauritius, Réunion and Rodrigues. Bloomsbury Publishing, London.Google Scholar
Collar, N. J. and Stuart, S. N. (1985). Threatened Birds of Africa and Related Islands. International Council for Bird Preservation, London.Google Scholar
Craig, J. L. (1994). Meta-populations: is management as flexible as nature?, pp. 5066 in Olney, P. J. S., Mace, G. M. and Feistner, A. T. C. (eds.), Creative Conservation, Interactive Management of Wild and Captive Animals. Chapman & Hall, London.Google Scholar
Crandall, K. A., Bininda-Emonds, O. R., Mace, G. M. and Wayne, R. K. (2000). Considering evolutionary processes in conservation biology. Trends in Ecology and Evolution 15(7): 290–95.CrossRefGoogle ScholarPubMed
Crnokrak, P. and Roff, D. A. (1999). Inbreeding depression in the wild. Heredity 83(3): 260–70.CrossRefGoogle ScholarPubMed
Crook, J. H. (1960). The present status of certain rare land birds of the Seychelles islands. Government Bulletin 1060: 15.Google Scholar
Crooks, K. R., Scott, C. A. and Van Vuren, D. H. (2001). Exotic disease and an insular endemic carnivore, the island fox. Biological Conservation 98(1): 5560.CrossRefGoogle Scholar
Crooks, K. R., Garcelon, D. K., Scott, C. A. et al. (2004). Ectoparasites of a threatened insular endemic mammalian carnivore: the island spotted skunk. American Midland Naturalist 151(1): 3541.CrossRefGoogle Scholar
Crow, J. F. (2010). Wright and Fisher on inbreeding and random drift. Genetics 184(3): 609–11.CrossRefGoogle Scholar
Crow, J. F. and Kimura, M. (1970). An introduction to population genetics theory, in An Introduction to Population Genetics Theory. Harper & Row, New York.Google Scholar
Crump, J. A., Murdoch, D. R. and Baker, M.G. (2001). Emerging infectious diseases in an island ecosystem: the New Zealand perspective. Emerging Infectious Diseases 7(5): 767.CrossRefGoogle Scholar
DeRose, M. A. and Roff, D. A. (1999). A comparison of inbreeding depression in life-history and morphological traits in animals. Evolution 53: 1288–92.CrossRefGoogle ScholarPubMed
Dickinson, H. C. and Fa, J. E. (2000). Abundance, demographics and body condition of a translocated population of St. Lucia whiptail lizards (Cnemidophorus vanzoi). Journal of Zoology 251(2): 187–97.CrossRefGoogle Scholar
Ewing, S. R., Nager, R. G., Nicoll, M. A. et al. (2008). Inbreeding and loss of genetic variation in a reintroduced population of Mauritius kestrel. Conservation Biology 22(2): 395404.CrossRefGoogle Scholar
Fox, C. W. and Reed, D. H. (2011). Inbreeding depression increases with environmental stress: an experimental study and meta‐analysis. Evolution 65(1): 246–58.CrossRefGoogle ScholarPubMed
Fox, C. W., Stillwell, R. C., Wallin, W. G., Curtis, C. L. and Reed, D. H. (2011). Inbreeding-environment interactions for fitness: complex relationships between inbreeding depression and temperature stress in a seed-feeding beetle. Evolutionary Ecology 25(1): 2543.CrossRefGoogle Scholar
Frankham, R. (1995). Effective population size/adult population size ratios in wildlife: a review. Genetics Research 66(2): 95107.CrossRefGoogle Scholar
Frankham, R., Gilligan, D. M., Morris, D. and Briscoe, D. A. (2001). Inbreeding and extinction: effects of purging. Conservation Genetics 2(3): 279–84.CrossRefGoogle Scholar
Frankham, R., Briscoe, D. A. and Ballou, J. D. (2002). Introduction to Conservation Genetics. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Funk, S. M. and Fa, J. E. (2006). Phylogeography of the endemic St. Lucia whiptail lizard Cnemidophorus vanzoi: conservation genetics at the species boundary. Conservation Genetics 7(5): 651–63.CrossRefGoogle Scholar
Gentile, G., Fabiani, A., Marquez, C. et al. (2009). An overlooked pink species of land iguana in the Galápagos. Proceedings of the National Academy of Sciences USA 106(2): 507–11.CrossRefGoogle ScholarPubMed
Groombridge, J. J., Dawson, D. A., Burke, T. et al. (2009). Evaluating the demographic history of the Seychelles kestrel (Falco araea): genetic evidence for recovery from a population bottleneck following minimal conservation management. Biological Conservation 142(10): 2250–57.CrossRefGoogle Scholar
Groombridge, J. J., Nicoll, M. A., Jones, C. G. and Watson, J. (2004). Associations of evolutionary and ecological distinctiveness amongst Indian Ocean kestrels, pp. 679–92 in Chancellor, R. D. and Meyburg, B.-U. (eds.), Raptors Worldwide, Proceedings of the VI World Conference on Birds of Prey and Owls. Mauritian Wildlife Foundation, Mauritius.Google Scholar
Groombridge, J. J., Bruford, M. W., Jones, C. G. and Nichols, R. A. (2001). Evaluating the severity of the population bottleneck in the Mauritius kestrel Falco punctatus from ringing records using MCMC estimation. Journal of Animal Ecology 70(3): 401–9.CrossRefGoogle Scholar
Grueber, C. E. and Jamieson, I. G. (2008). Quantifying and managing the loss of genetic variation in a free-ranging population of takahe through the use of pedigrees. Conservation Genetics 9(3): 645–51.CrossRefGoogle Scholar
Grueber, C. E. and Jamieson, I. G. (2013). Primers for amplification of innate immunity toll-like receptor loci in threatened birds of the Apterygiformes, Gruiformes, Psittaciformes and Passeriformes. Conservation Genetics Resources 5(4): 1043–47.CrossRefGoogle Scholar
Grueber, C. E., Knafler, G. J., King, T. M. et al. (2015). Toll-like receptor diversity in 10 threatened bird species: relationship with microsatellite heterozygosity. Conservation Genetics 16(3): 595611.CrossRefGoogle Scholar
Gutierrez‐Espeleta, G. A., Hedrick, P. W., Kalinowski, S. T., Garrigan, D. and Boyce, W. M. (2001). Is the decline of desert bighorn sheep from infectious disease the result of low MHC variation?. Heredity 86(4): 439–50.CrossRefGoogle ScholarPubMed
Hale, K. A. and Briskie, J. V. (2007). Decreased immunocompetence in a severely bottlenecked population of an endemic New Zealand bird. Animal Conservation 10(1): 210.CrossRefGoogle Scholar
Harf, R. and Sommer, S. (2005). Association between major histocompatibility complex class II DRB alleles and parasite load in the hairy‐footed gerbil, Gerbillurus paeba, in the southern Kalahari. Molecular Ecology 14(1): 8591.CrossRefGoogle ScholarPubMed
Hawkins, C. E., Baars, C., Hesterman, H. et al. (2006). Emerging disease and population decline of an island endemic, the Tasmanian devil Sarcophilus harrisii. Biological Conservation 131(2): 307–24.CrossRefGoogle Scholar
Hawley, D. M., Sydenstricker, K. V., Kollias, G. V. and Dhondt, A. A. (2005). Genetic diversity predicts pathogen resistance and cell-mediated immunocompetence in house finches. Biology Letters 1(3): 326–29.CrossRefGoogle ScholarPubMed
Hedrick, P. W., 1994. Purging inbreeding depression and the probability of extinction: full-sib mating. Heredity 73(4): 363–72.CrossRefGoogle ScholarPubMed
Hill, A. V., Allsopp, C. E., Kwiatkowski, D. et al. (1991). Common West African HLA antigens are associated with protection from severe malaria. Nature 352(6336): 595600.CrossRefGoogle ScholarPubMed
Hoeck, P. E., Beaumont, M. A., James, K. E. et al. (2009). Saving Darwin’s muse: evolutionary genetics for the recovery of the Floreana mockingbird. Biology Letters 6: 212–15.Google ScholarPubMed
Hoelzel, A. R., Stephens, J. C. and O’Brien, S. J. (1999). Molecular genetic variation and evolution at the MHC DQβ locus in four species of pinnipeds. Molecular Biology and Evolution 16: 291–96.CrossRefGoogle ScholarPubMed
International Union for Conservation of Nature (2008). Red List of Threatened Species. IUCN Species Survival Commission, IUCN, Cambridge.
Jamieson, I. G. (2011). Founder effects, inbreeding, and loss of genetic diversity in four avian reintroduction programs. Conservation Biology 25(1): 115–23.CrossRefGoogle ScholarPubMed
Jamieson, I. G., Wallis, G. P. and Briskie, J. V. (2006). Inbreeding and endangered species management: is New Zealand out of step with the rest of the world?. Conservation Biology 20(1): 3847.CrossRefGoogle Scholar
Jarvi, S. I., Tarr, C. L., Mcintosh, C. E., Atkinson, C. T. and Fleischer, R. C. (2004). Natural selection of the major histocompatibility complex (MHC) in Hawaiian honeycreepers (Drepanidinae). Molecular Ecology 13(8): 2157–68.CrossRefGoogle Scholar
Jones, C. G., Burgess, M. D., Groombridge, J. J. et al. (2013). Mauritius kestrel Falco punctatus, in Safford, R. J. and Hawkins, A. F. A. (eds.), The Birds of Africa, vol. VIII: The Malagasy Region, Christopher Helm, London.Google Scholar
Jones, C. G., Heck, W., Lewis, R. E. et al. (1995). The restoration of the Mauritius kestrel Falco punctatus population. Ibis 137: S17380.CrossRefGoogle Scholar
Kay, S., Millet, J., Watson, J. and Shah, N. J. (2002). Status of the Seychelles kestrel Falco araea: a reassessment of the populations on Mahé and Praslin 2001–2002, in Report by BirdLife Seychelles, Victoria. Republic of Seychelles, Mahé.Google Scholar
Kay, S., Millet, J., Watson, J. and Shah, N. J. (2004). Status of the Seychelles kestrel Falco araea on Praslin: an assessment of a re-introduced population on Praslin 2002–2003, in Report by BirdLife Seychelles, Victoria. Republic of Seychelles, Mahé.Google Scholar
Keller, L. F. and Waller, D. M. (2002). Inbreeding effects in wild populations. Trends in Ecology and Evolution 17(5): 230–41.CrossRefGoogle Scholar
Keller, L. F., Grant, P. R., Grant, B. R. and Petren, K. (2002). Environmental conditions affect the magnitude of inbreeding depression in survival of Darwin’s finches. Evolution 56(6): 1229–39.CrossRefGoogle ScholarPubMed
Keller, L. F., Biebach, I., Ewing, S. R. and Hoeck, P. E. (2012). The genetics of reintroductions: inbreeding and genetic drift. Reintroduction Biology: Integrating Science and Management 9: 360.CrossRefGoogle Scholar
Kimura, M. (1968). Evolutionary Rate at the Molecular Level. Nature. 217: 624–6.CrossRefGoogle ScholarPubMed
Kjøglum, S., Larsen, S., Bakke, H. G. and Grimholt, U. (2006). How specific MHC class I and class II combinations affect disease resistance against infectious salmon anaemia in Atlantic salmon (Salmo salar). Fish & Shellfish Immunology 21(4): 431–41.CrossRefGoogle Scholar
Klein, J., 1986. Natural History of the Major Histocompatibility Complex. Wiley, New York, NY.Google Scholar
Kruuk, L. E., Slate, J. and Wilson, A. J. (2008). New answers for old questions: the evolutionary quantitative genetics of wild animal populations. Annual Review of Ecology, Evolution, and Systematics 39: 525–48.CrossRefGoogle Scholar
Lacy, R. C. (1987). Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection, and population subdivision. Conservation Biology 1(2): 143–58.CrossRefGoogle Scholar
Lande, R. (1999). Extinction Risks from Anthropogenic, Ecological and Genetic Factors, pp. 122 in Landweber, I. F. and Dobson, A. P. (eds.), Genetics and the Extinction of Species. Princeton University Press, Princeton, NJ.Google Scholar
Lande, R. (1995). Mutation and conservation. Conservation Biology 9(4): 782–91.CrossRefGoogle Scholar
Lynch, M., Conery, J. and Burger, R. (1995). Mutation accumulation and the extinction of small populations. American Naturalist 146(4): 489518.CrossRefGoogle Scholar
Madsen, T., Shine, R., Olsson, M. and Wittzell, H. (1999). Conservation biology: restoration of an inbred adder population. Nature 402(6757): 3435.CrossRefGoogle Scholar
Matocq, M. D. and Villablanca, F. X. (2001). Low genetic diversity in an endangered species: recent or historic pattern? Biological Conservation 98(1): 6168.CrossRefGoogle Scholar
McCallum, H. (2008). Tasmanian devil facial tumour disease: lessons for conservation biology. Trends in Ecology and Evolution 23(11): 631–37.CrossRefGoogle ScholarPubMed
Miller, W., Hayes, V. M., Ratan, A. et al. (2011). Genetic diversity and population structure of the endangered marsupial Sarcophilus harrisii (Tasmanian devil). Proceedings of the National Academy of Sciences USA 108(30): 12348–53.CrossRefGoogle Scholar
Moritz, C. (1994). Defining ‘evolutionarily significant units’ for conservation. Trends in Ecology and Evolution 9(10): 373–75.CrossRefGoogle ScholarPubMed
Murchison, E. P., Schulz-Trieglaff, O. B., Ning, Z. et al. (2012). Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer. Cell 148(4): 780–91.CrossRefGoogle ScholarPubMed
Murray, B. W., Malik, S. and White, B. N. (1995). Sequence variation at the major histocompatibility complex locus DQ beta in beluga whales (Delphinapterus leucas). Molecular Biology and Evolution 12(4): 582–93.Google Scholar
Nichols, R. A., Bruford, M. W. and Groombridge, J. J. (2001). Sustaining genetic variation in a small population: evidence from the Mauritius kestrel. Molecular Ecology 10(3): 593602.CrossRefGoogle Scholar
Ouborg, N. J., Pertoldi, C., Loeschcke, V., Bijlsma, R. K. and Hedrick, P. W. (2010). Conservation genetics in transition to conservation genomics. Trends in Genetics 26: 177–87.CrossRefGoogle ScholarPubMed
Pain, S. (2002). No dodo. New Scientist, June: 3237.
Pemberton, J. M. (2008). Wild pedigrees: the way forward. Proceedings of the Royal Society of London B: Biological Sciences 275(1635): 613–21.CrossRefGoogle ScholarPubMed
Perry, G. H., Louis, E. E., Ratan, A. et al. (2012). Aye-aye population genomic analyses highlight an important center of endemism in northern Madagascar. Proceedings of the National Academy of Sciences USA 110(15): 5823–28.Google Scholar
Potts, W. K. and Slev, P. R. (1995). Pathogen‐based models favouring MHC genetic diversity. Immunological Reviews 143(1): 181–97.CrossRefGoogle Scholar
Raisin, C. (2010). Conservation genetics of the Mauritius parakeet. PhD thesis, University of Kent, United Kingdom.
Raisin, C., Dawson, D. A., Greenwood, A. G., Jones, C. G. and Groombridge, J. J. (2009). Characterization of Mauritius parakeet (Psittacula eques) microsatellite loci and their cross‐utility in other parrots (Psittacidae, Aves). Molecular Ecology Resources 9(4): 1231–35.CrossRefGoogle Scholar
Raisin, C., Frantz, A. C., Kundu, S. et al. (2012). Genetic consequences of intensive conservation management for the Mauritius parakeet. Conservation Genetics 13(3): 707–15.CrossRefGoogle Scholar
Reed, D. H. (2010). Albatrosses, eagles and newts, Oh My!: exceptions to the prevailing paradigm concerning genetic diversity and population viability? Animal Conservation 13(5): 448–57.CrossRefGoogle Scholar
Reed, D. H. and Frankham, R. (2001). How closely correlated are molecular and quantitative measures of genetic variation?. A meta-analysis. Evolution 55(6): 1095–103.CrossRefGoogle ScholarPubMed
Reid, J. M., Arcese, P. and Keller, L. F. (2003). Inbreeding depresses immune response in song sparrows (Melospiza melodia): direct and inter-generational effects. Proceedings of the Royal Society of London B: Biological Sciences 270(1529): 2151–57.CrossRefGoogle Scholar
Richardson, D. and Westerdahl, H. (2003). MHC diversity in two Acrocephalus species: the outbred Great reed warbler and the inbred Seychelles warbler. Molecular Ecology 12(12): 3523–29.CrossRefGoogle ScholarPubMed
Rowe, G., Dickinson, H. C., Gibson, R., Funk, S. M. and Fa, J. E. (2002). St Lucia whiptail lizard Cnemidophorus vanzoi (Sauria: Teiidae) microsatellite primers. Molecular Ecology Notes 2(2): 124–26.CrossRefGoogle Scholar
Ryder, O. A. (1986). Species conservation and systematics: the dilemma of subspecies. Trends in Ecology and Evolution 1(1): 910.CrossRefGoogle Scholar
Salgueiro, P., Coelho, M. M., Palmeirim, J. M. and Ruedi, M. (2004). Mitochondrial DNA variation and population structure of the island endemic Azorean bat (Nyctalus azoreum). Molecular Ecology 13(11): 3357–66.CrossRefGoogle Scholar
Shafer, A. B., Wolf, J. B., Alves, P. C. et al. (2015). Genomics and the challenging translation into conservation practice. Trends in Ecology and Evolution 30(2): 7887.CrossRefGoogle ScholarPubMed
Siddle, H. V., Marzec, J., Cheng, Y., Jones, M. and Belov, K. (2010). MHC gene copy number variation in Tasmanian devils: implications for the spread of a contagious cancer. Proceedings of the Royal Society of London B: Biological Sciences 277(1690): 2001–6.CrossRefGoogle ScholarPubMed
Snell, H. L., Snell, H. M. and Tracy, C. R. (1984). Variation among populations of Galapagos island iguanas (Conolophus): contrasts of phylogeny and ecology. Biological Journal of the Linnean Society 21(1–2): 185207.CrossRefGoogle Scholar
Snell, H. M., Stone, P. A. and Snell, H. L. (1996). A summary of geographical characteristics of the Galapagos Islands. Journal of Biogeography 23(5): 619–24.CrossRefGoogle Scholar
Sommer, S. (2005). The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Frontiers in Zoology 2(1): 16.CrossRefGoogle ScholarPubMed
Soulé, M. E. (1985). What is conservation biology?. BioScience 35(11): 727–34.Google Scholar
Spielman, D., Brook, B. W., Briscoe, D. A. and Frankham, R. (2004). Does inbreeding and loss of genetic diversity decrease disease resistance?. Conservation Genetics 5(4): 439–48.CrossRefGoogle Scholar
Steiner, C. C., Putnam, A. S., Hoeck, P. E. and Ryder, O. A. (2013). Conservation genomics of threatened animal species. Annual Review Of Animal Bioscience 1(1): 261–81.Google ScholarPubMed
Swinnerton, K. J., Groombridge, J. J., Jones, C. G., Burn, R. W. and Mungroo, Y. (2004). Inbreeding depression and founder diversity among captive and free‐living populations of the endangered pink pigeon Columba mayeri. Animal Conservation 7(4): 353–64.CrossRefGoogle Scholar
Templeton, A. R. (1998). Species and speciation: geography, population structure, ecology, and gene trees, pp. 3243 in Howard, D. J. and Berlocher, S.A. (eds.), Endless Forms: Species and Speciation. Oxford University Press, New York, NY.Google Scholar
Templeton, A. R. and Read, B. (1984). Factors eliminating inbreeding depression in a captive herd of Speke’s gazelle (Gazella spekei). Zoo Biology 3(3): 177–99.CrossRefGoogle Scholar
Tollington, S., Jones, C. G., Greenwood, A. et al. (2013). Long-term, fine-scale temporal patterns of genetic diversity in the restored Mauritius parakeet reveal genetic impacts of management and associated demographic effects on reintroduction programmes. Biological Conservation 161: 2838.CrossRefGoogle Scholar
Tompkins, D. M., Mitchell, R. A. and Bryant, D. M. (2006). Hybridization increases measures of innate and cell‐mediated immunity in an endangered bird species. Journal of Animal Ecology 75(2): 559–64.CrossRefGoogle Scholar
Townsend, S. M. and Jamieson, I. G. (2013). Molecular and pedigree measures of relatedness provide similar estimates of inbreeding depression in a bottlenecked population. Journal of Evolutionary Biology 26(4): 889–99.CrossRefGoogle Scholar
Tzika, A. C., Rosa, S. F., Fabiani, A. et al. (2008). Population genetics of Galapagos Islands iguana (genus Conolophus) remnant populations. Molecular Ecology 17(23): 4943–52.CrossRefGoogle ScholarPubMed
Waller, D. M., Dole, J. and Bersch, A. J. (2008). Effects of stress and phenotypic variation on inbreeding depression in Brassica rapa. Evolution 62(4): 917–31.CrossRefGoogle ScholarPubMed
Waples, R. S. (2002). Definition and estimation of effective population size in the conservation of endangered species, pp. 147–48 in Beissinger, S. R. and McCullough, D. R. (eds.), Population Viability Analysis. Chicago, IL: University of Chicago Press.Google Scholar
Watson, J. (1989). Successful translocation of the endemic Seychelles kestrel Falco araea to Praslin, pp. 363–67 in Meyburg, B.-U. and Chancellor, R. D. (eds.), Raptors in the Modern World. World Working Group on Birds of Prey and Owls, Berlin.Google Scholar
Westerdahl, H., Waldenström, J., Hansson, B. et al. (2005). Associations between malaria and MHC genes in a migratory songbird. Proceedings of the Royal Society of London B: Biological Sciences 272(1571): 1511–18.CrossRefGoogle Scholar
Whiteman, N. K., Matson, K. D., Bollmer, J. L. and Parker, P. G. (2006). Disease ecology in the Galapagos hawk (Buteo galapagoensis): host genetic diversity, parasite load and natural antibodies. Proceedings of the Royal Society of London B: Biological Sciences, 273(1588): 797804.CrossRefGoogle ScholarPubMed
Wikelski, M., Foufopoulos, J., Vargas, H. and Snell, H. (2004). Galapagos birds and diseases: invasive pathogens as threats for island species. Ecology and Society 9(1): 5.CrossRefGoogle Scholar
Wood, A. R. and Gardner, J. P. A. (2007). Small spatial scale population genetic structure in two limpet species endemic to the Kermadec Islands, New Zealand. Inter-Research, Marine Ecology Progress Series 349: 159–70.Google Scholar
Wright, S. (1931). Evolution in Mendelian populations. Genetics 16: 97159.Google ScholarPubMed
Wright, S. (1938). Size of population and breeding structure in relation to evolution. Science 87(2263): 430–31.Google Scholar
Wright, D. J., Spurgin, L. G., Collar, N. J. et al. (2014). The impact of translocations on neutral and functional genetic diversity within and among populations of the Seychelles warbler. Molecular Ecology 23(9): 2165–77.CrossRefGoogle ScholarPubMed
Wright, B., Morris, K., Grueber, C. E. et al. (2015). Development of a SNP-based assay for measuring genetic diversity in the Tasmanian devil insurance population. BMC Genomics 16: 791.CrossRefGoogle ScholarPubMed
Wright, D. J., Brouwer, L., Mannarelli, M.-E. et al. (2015). Social pairing of Seychelles warblers under reduced constraints: MHC, neutral heterozygosity, and age. Behavioral Ecology 27: 295303.CrossRefGoogle Scholar
Wyatt, K. B., Campos, P. F., Gilbert, M. T. P. et al. (2008). Historical mammal extinction on Christmas Island (Indian Ocean) correlates with introduced infectious disease. PloS ONE 3(11): e3602.CrossRefGoogle ScholarPubMed
Young, R. P., Fa, J. E., Ogrodowczyk, A. et al. (2006). The St Lucia whiptail lizard Cnemidophorus vanzoi: a conservation dilemma?. Oryx 40(3): 358–61.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats