Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-md8df Total loading time: 0.517 Render date: 2021-12-09T14:22:48.492Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

1 - Soil carbon relations: an overview

Published online by Cambridge University Press:  11 May 2010

Werner L. Kutsch
Affiliation:
Max-Planck-Institut für Biogeochemie, Jena
Michael Bahn
Affiliation:
Leopold-Franzens-Universität Innsbruck, Austria
Andreas Heinemeyer
Affiliation:
Stockholm Environmental Institute, University of York
Get access

Summary

INTRODUCTION

Soils are localized between base rock, atmosphere and vegetation, and represent a home for numerous organisms and the place of countless biogeochemical transformation and transfer processes. In addition, soils store many substances that are essential to maintain human life and ecosystem processes. Therefore, soils have been a research focus for more than a century and soil science has deep connections to ecology, agriculture and nature conservation.

The most important practical applications of soil science are diagnostics and maintenance of soil fertility and, more recently, definition of the role of soils in the terrestrial carbon balance in the context of increasing atmospheric CO2 concentration and the resulting greenhouse effect. Carbon stored in soils represents the largest carbon pool in nearly all terrestrial biomes (Bolin et al., 2001) and thus it has a huge potential for either sequestering or releasing carbon into the atmosphere. Consequently, knowledge of the dynamics of soil carbon is essential for a better understanding of the terrestrial carbon balance. However, inter-annual changes in soil carbon stocks are small compared to the total carbon stored in soils, and thus determining any changes in soil carbon stocks by repeated inventories is difficult. On the other hand, flux measurements also bear inaccuracies and uncertainties, confounding attempts to directly measure and model the CO2 flux from the soil and linking this flux to the underlying processes. There are considerable challenges in monitoring soil fluxes without disturbing the plant–soil carbon flow.

Type
Chapter
Information
Soil Carbon Dynamics
An Integrated Methodology
, pp. 1 - 15
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ågren, G I. and Bosatta, E. (1996) Theoretical Ecosystem Ecology: Understanding Element Cycles. Cambridge: Cambridge University Press.Google Scholar
Akselsson, C., Berg, B., Meentemeyer, V. and Westling, O. (2005) Carbon sequestration rates in organic layers of boreal and temperate forest soils: Sweden as a case study. Global Ecology and Biogeography, 14, 77–84.CrossRefGoogle Scholar
Albertsen, M. (1977) Labor- und Felduntersuchungen zum Gasaustausch zwischen Grundwasser und Atmosphäre über natürlichen und verunreinigten Grundwassern. Christian-Albrechts-Universität, Kiel.
Alef, K. and Nannipieri, P. (1995) Methods in Applied Soil Microbiology and Biochemistry. San Diego, CA: Academic Press.Google Scholar
Anderson, T. H. and Domsch, K H. (1990) Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biology and Biochemistry, 22, 251–5.CrossRefGoogle Scholar
Arthur, M. F. and Frea, J. I. (1988) Microbial activity in soils contaminated with 2,3,7,8-TCDD. Environmental Toxicology and Chemistry, 7, 5–14.CrossRefGoogle Scholar
Bahn, M., Knapp, M., Garajova, Z., Pfahringer, N. and Cernusca, A. (2006) Root respiration in temperate mountain grasslands differing in land use. Global Change Biology, 12, 995–1006.CrossRefGoogle Scholar
Bardgett, R. D. and Saggar, S. (1994) Effects of heavy metal contamination on the short-term decomposition of labelled 14C-glucose in a pasture soil. Soil Biology and Biochemistry, 26, 727–33.CrossRefGoogle Scholar
Bewley, R. J. and Stotzky, G. (1983) Simulated acid rain (H2SO4) and microbial activity in soil. Soil Biology and Biochemistry, 15, 425–9.CrossRefGoogle Scholar
Bolin, B., Sukumar, R., Ciais, P.et al. (2001) The global perspective. In IPCC Special Report on Land Use, Land-use Change and Forestry, ed. Watson, R. T., Noble, I. R., Bolin, B.et al. Cambridge: Cambridge University Press, pp. 23–51.Google Scholar
Bond-Lamberty, B., Wang, C. K. and Gower, S. T. (2004) A global relationship between the heterotrophic and autotrophic components of soil respiration?Global Change Biology, 10, 1756–66.CrossRefGoogle Scholar
Burton, A. J., Pregitzer, K. S., Zogg, G. P. and Zak, D. R. (1998) Drought reduces root respiration in sugar maple forests. Ecological Applications, 8, 771–8.CrossRefGoogle Scholar
Butnor, J. R., Johnsen, K. H. and Maier, C. A. (2005) Soil properties differently influence estimates of soil CO2 efflux from three chamber-based measurement systems. Biogeochemistry, 73, 283–301.CrossRefGoogle Scholar
Chopra, P. and Magu, S. P. (1985) Effect of selected herbicides and city compost on the rhizospheric microflora of wheat and maize. Indian Journal of Agronomy, 30, 5–9.Google Scholar
Christensen, S., Ronn, R., Ekelund, F.et al. (1996) Soil respiration profiles and protozoan enumeration agree as microbial growth indicators. Soil Biology and Biochemistry, 28, 865–8.CrossRefGoogle Scholar
Conant, R. T., Smith, G. R. and Paustian, K. (2003) Spatial variability of soil carbon in forested and cultivated sites: implications for change detection. Journal of Environmental Quality, 32, 278–86.CrossRefGoogle ScholarPubMed
Conant, R. T., Drijber, R. A., Haddix, M. L.et al. (2008) Sensitivity of organic matter decomposition to warming varies with its quality. Global Change Biology, 14, 868–77.CrossRefGoogle Scholar
Conen, F., Yakutin, M. V. and Sambuu, A. D. (2003) Potential for detecting changes in soil organic carbon concentrations resulting from climate change. Global Change Biology, 9, 1515–20.CrossRefGoogle Scholar
Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. and Totterdell, I. J. (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184–7.CrossRefGoogle Scholar
Davidson, E. A. and Janssens, I. A. (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165–73.CrossRefGoogle ScholarPubMed
Davidson, E. A., Janssens, I. A. and Luo, Y. Q. (2006) On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Global Change Biology, 12, 154–64.CrossRefGoogle Scholar
Domsch, K. H. (1961) Bodenatmung – Sammelbericht über Methoden und Ergebnisse. Zentralblatt fuer Bakteriologie, Mikrobiologie und Parasitenkunde Abt II, 116, 33–78.Google Scholar
Edwards, N. T. and Sollins, P. (1973) Continuous measurements of carbon dioxide evolution from partitioned forest floor components. Ecology, 54, 406–12.CrossRefGoogle Scholar
Eidmann, F. E. (ed) (1943) Untersuchungen über die Wurzelatmung und Transpiration unserer Hauptholzarten. Frankfurt am Main: J. D. Sauerländer's Verlag.Google Scholar
Ekschmitt, K., Kandeler, E., Poll, C.et al. (2008) Soil-carbon preservation through habitat constraints and biological limitations on decomposer activity. Journal of Plant Nutrition and Soil Science, 171, 27–35.CrossRefGoogle Scholar
Eliasson, P. E., McMurtrie, R. E., Pepper, D. A.et al. (2005) The response of heterotrophic CO2 flux to soil warming. Global Change Biology, 11, 167–81.CrossRefGoogle Scholar
Epron, D., Farque, L., Lucot, E. and Badot, P. M. (1999) Soil CO2 efflux in a beech forest: dependence on soil temperature and soil water content. Annals of Forest Science, 56, 221–6.CrossRefGoogle Scholar
Falloon, P. and Smith, P. (2002) Simulating SOC changes in long-term experiments with RothC and CENTURY: model evaluation for a regional scale application. Soil Use and Management, 18, 101–11.CrossRefGoogle Scholar
Fang, C. and Moncrieff, J. B. (1999) A model for soil CO2 production and transport 1: model development. Agricultural and Forest Meteorology, 95, 225–36.CrossRefGoogle Scholar
Fang, C., Smith, P. and Smith, J. U. (2005a) Is resistant soil organic matter more sensitive to temperature than the labile organic matter?Biogeosciences, 3, 65–8.CrossRefGoogle Scholar
Fang, C., Smith, P., Moncrieff, J. B. and Smith, J. U. (2005b) Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature, 433, 57–9.CrossRefGoogle ScholarPubMed
Flechard, C. R., Neftel, A., Jocher, M.et al. (2007) Temporal changes in soil pore space CO2 concentration and storage under permanent grassland. Agricultural and Forest Meteorology, 142, 66–84.CrossRefGoogle Scholar
Gadgil, R. L. and Gadgil, P. D. (1971) Mycorrhiza and litter decomposition. Nature, 233, 133.CrossRefGoogle ScholarPubMed
Giardina, C. P. and Ryan, M. G. (2000) Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature, 404, 858–61.CrossRefGoogle Scholar
Haber, W. (1958) Ökologische Untersuchung der Bodenatmung. Mit einer Übersicht über frühere Bearbeitungen, insbesondere deren Methoden. Flora, 146, 109–57.Google Scholar
Hanson, P. J., Edwards, N. T., Garten, C. T. and Andrews, J. A. (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry, 48, 115–46.CrossRefGoogle Scholar
Heinemeyer, A., Ineson, P., Ostle, N. and Fitter, A. H. (2006) Respiration of the external mycelium in the arbuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature. New Phytologist, 171, 159–70.CrossRefGoogle Scholar
Heinemeyer, A., Hartley, I. P., Evans, S. P., Fuente, J. A. C. and Ineson, P. (2007) Forest soil CO2 flux: uncovering the contribution and environmental responses of ectomycorrhizas. Global Change Biology, 13, 1786–97.CrossRefGoogle Scholar
Högberg, P., Nordgren, A., Buchmann, N.et al. (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature, 411, 789–92.CrossRefGoogle ScholarPubMed
Högberg, P., Nordgren, A. and Agren, G. I. (2002) Carbon allocation between tree root growth and root respiration in boreal pine forest. Oecologia, 132, 579–81.CrossRefGoogle ScholarPubMed
Huggins, D. R., Buyanovsky, G. A., Wagner, G. H.et al. (1998) Soil organic C in the tallgrass prairie-derived region of the corn belt: effects of long-term crop management. Soil and Tillage Research, 47, 219–34.CrossRefGoogle Scholar
Hunt, H. W. (1977) A simulation model for decomposition in grasslands. Ecology, 58, 469–84.CrossRefGoogle Scholar
Hunt, H. W., Cole, C. V., Klein, D. A. and Coleman, D. C. (1977) A simulation model for the effect of predation on bacteria in continuous culture. Microbial Ecology, 3, 259–78.CrossRefGoogle ScholarPubMed
,IPCC (2001) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
Janssens, I. A., Kowalski, A. S., Longdoz, B. and Ceulemans, R. (2000) Assessing forest soil CO2 efflux: an in situ comparison of four techniques. Tree Physiology, 20, 23–32.CrossRefGoogle Scholar
Janssens, I. A., Lankreijer, H., Matteucci, G.et al. (2001) Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biology, 7, 269–78.CrossRefGoogle Scholar
Jenkinson, D. S. and Johnston, A. E. (1977) Soil Organic Matter in the Hoosfield Continuous Barley Experiment. Rothamsted Experimental station. Report no. part 2.
Kimball, B. A. and Lemon, E. R. (1971) Air turbulence effects upon soil gas exchange. Soil Science Society of America Proceedings, 35, 16–21.CrossRefGoogle Scholar
Kirschbaum, M. U. F. (2004) Soil respiration under prolonged soil warming: are rate reductions caused by acclimation or substrate loss?Global Change Biology, 10, 1870–7.CrossRefGoogle Scholar
Knorr, W., Prentice, I. C., House, J. I. and Holland, E. A. (2005a) Long-term sensitivity of soil carbon turnover to warming. Nature, 433, 298–433.CrossRefGoogle ScholarPubMed
Knorr, W., Prentice, I. C., House, J. I. and Holland, E. A. (2005b) On the available evidence for the temperature dependence of soil organic carbon. Biogeosciences Discussions, 2, 749–55.CrossRefGoogle Scholar
Koch, G. W., Schulze, E. D., Percival, F., Mooney, H. A. and Chu, C. (1988) The nitrogen balance of Raphanus sativus x raphanistrum plants. II. Growth, nitrogen redistribution and photosynthesis under NO3 deprivation. Plant Cell and Environment, 11, 55.CrossRefGoogle Scholar
Kögel-Knabner, I., Guggenberger, G., Kleber, M.et al. (2008) Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry. Journal of Plant Nutrition and Soil Science, 171, 61–82.CrossRefGoogle Scholar
Körschgens, M. (1996) Long-term datasets from Germany and Eastern Europe. In Evaluation of Soil Organic Matter Models Using Existing, Long-term Datasets, ed. Powlson, D. S., Smith, P. and Smith, J. U.. Vol. 38. NATO ASI Series I. Berlin: Springer, pp. 69–80.CrossRefGoogle Scholar
Kutsch, W. L. (1996) Untersuchung zur Bodenatmung zweier Ackerstandorte im Bereich der Bornhöveder Seenkette. EcoSys, Beiträge zur Ökosystemforschung, Suppl. 16, 125.Google Scholar
Kutsch, W. L. and Kappen, L. (1997) Aspects of carbon and nitrogen cycling in soils of the Bornhoved lake district. 2. Modelling the influence of temperature increase on soil respiration and organic carbon content in arable soils under different managements. Biogeochemistry, 39, 207–24.CrossRefGoogle Scholar
Kutsch, W. L., Staack, A., Wötzel, J., Middelhoff, U. and Kappen, L. (2001) Field measurements of root respiration and total soil respiration in an alder forest. New Phytologist, 150, 157–68.CrossRefGoogle Scholar
Lambers, H., Werf, A. and Konings, H. (1991) Respiratory patterns in roots in relation to their functioning. In Plant Roots: The Hidden Half, ed. Waisel, Y., Eshel, A. and Kafkafi, U.. New York: Marcel Dekker, pp. 229–64.Google Scholar
Lambers, H., Chapin, F. S. I. and Pons, T. L. (1998) Plant Physiological Ecology. New York: Springer.CrossRefGoogle Scholar
Liski, J. and Westman, C. J. (1997) Carbon storage in forest soil of Finland 1. Effect of thermoclimate. Biogeochemistry, 36, 239–60.CrossRefGoogle Scholar
Liski, J., Ilvesniemi, H., Mäkelä, A. and Westman, K. J. (1999) CO2 emissions from soil in response to climatic warming are overestimated: the decomposition of old soil organic matter is tolerant of temperature. Ambio, 28, 171–4.Google Scholar
Lohm, U., Larsson, K. and Nommik, H. (1984) Acidification and liming of coniferous forest soil: long-term effects on turnover rates of carbon and nitrogen during an incubation experiment. Soil Biology and Biochemistry, 16, 343–6.CrossRefGoogle Scholar
Luckai, N. and Larocque, G. R. (2002) Challenges in the application of existing process-based models to predict the effect of climate change on C pools in forest ecosystems. Climatic Change, 55, 39–60.CrossRefGoogle Scholar
Lundegårdh, H. (1924) Der Kreislauf der Kohlensäure in der Natur. Ein Beitrag zur Pflanzenökologie und zur Landwirtschaftlichen Düngungslehre. Jena: Gustav Fischer Verlag.Google Scholar
Lundegårdh, H. (1927) Carbon dioxide evolution of soil and crop growth. Soil Science, 23, 417–53.CrossRefGoogle Scholar
Luo, Y. Q., Wan, S. Q., Hui, D. F. and Wallace, L. L. (2001) Acclimatization of soil respiration to warming in a tall grass prairie. Nature, 413, 622–5.CrossRefGoogle Scholar
Mai, H. and Fiedler, H. J. (1988) Microbiological characterization of different soil forms of a Gneiss Catena under deciduous forests. Zentralblatt Fur Mikrobiologie, 143, 73–82.Google Scholar
Manefield, M., Whiteley, A. S., Griffiths, R. I. and Bailey, M. J. (2002) RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Applied Environmental Microbiology, 68, 5367–73.CrossRefGoogle Scholar
McGill, W. B. (1996) Review and classification of ten soil organic matter (SOM) models. In Evaluation of Soil Organic Matter Models Using Existing, Long-term Data-sets, ed. Powlson, D. S., Smith, P. and Smith, J. U.. NATO ASI I38. Berlin: Springer-Verlag, pp. 111–33.CrossRefGoogle Scholar
McHale, P. J., Mitchell, M. J. and Bowles, F. P. (1998) Soil warming in a northern hardwood forest: trace gas fluxes and leaf litter decomposition. Canadian Journal of Forest Research, 28, 1365–72.CrossRefGoogle Scholar
Melillo, J. M., Steudler, P. A., Aber, J. D.et al. (2002) Soil warming and carbon-cycle feedbacks to the climate system. Science, 298, 2173–6.CrossRefGoogle ScholarPubMed
Moncrieff, J. B. and Fang, C. (1999) A model for soil CO2 production and transport 2: application to a Florida Pinus elliotte plantation. Agricultural and Forest Meteorology, 95, 237–56.CrossRefGoogle Scholar
Moyano, F. E., Kutsch, W. L. and Schulze, E.-D. (2007) Response of mycorrhizal, rhizosphere and soil basal respiration to temperature and photosynthesis in a barley field. Soil Biology and Biochemistry, 39, 843–53.CrossRefGoogle Scholar
Nadelhoffer, K. J. and Raich, J. W. (1992) Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology, 73, 1139–47.CrossRefGoogle Scholar
Nannipieri, P., Ascher, J., Ceccherini, M. T.et al. (2003) Microbial diversity and soil functions. European Journal of Soil Science, 54, 655–70.CrossRefGoogle Scholar
Odum, E. P. (1969) The strategy of ecosystem development. Science, 164, 262–70.CrossRefGoogle ScholarPubMed
Paul, E. A. and Clark, F. E. (1989) Soil Microbiology and Biochemistry. New York: Academic Press.Google Scholar
Pendall, E., Bridgham, S., Hanson, P. J.et al. (2004) Below-ground process responses to elevated CO2 and temperature: a discussion of observations, measurement methods, and models. New Phytologist, 162, 311–22.CrossRefGoogle Scholar
Powlson, D. S., Smith, P., Coleman, K.et al. (1998) A European network of long-term sites for studies on soil organic matter. Soil and Tillage Research, 47, 263–74.CrossRefGoogle Scholar
Prescott, C. E., Blevins, L. L. and Staley, C. (2004) Litter decomposition in British Columbia forests: controlling factors and influences of forestry activities. Journal of Ecosystems and Management, 5, 45–57.Google Scholar
Pumpanen, J., Kolari, P., Ilvesniemi, H.et al. (2004) Comparison of different chamber techniques for measuring soil CO2 efflux. Agricultural and Forest Meteorology, 123, 159–76.CrossRefGoogle Scholar
Raich, J. W. and Schlesinger, W. H. (1992) The global carbon-dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus Series B – Chemical and Physical Meteorology, 44, 81–99.CrossRefGoogle Scholar
Raich, J. W. and Tufekciogul, A. (2000) Vegetation and soil respiration: correlations and controls. Biogeochemistry, 48, 71–90.CrossRefGoogle Scholar
Reichstein, M., Rey, A., Freibauer, A.et al. (2003) Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Global Biogeochemical Cycles, 17, 1104.CrossRefGoogle Scholar
Reichstein, M., Katterer, T., Andren, O.et al. (2005) Temperature sensitivity of decomposition in relation to soil organic matter pools: critique and outlook. Biogeosciences, 2, 317–21.CrossRefGoogle Scholar
Ritz, K., Dighton, J. and Giller, K. (1994) Beyond the Biomass. Chichester: Wiley.Google Scholar
Romell, L. G. (1922) Luftväxlingen i marken som ekologisk faktor. Medd Seadens Shogsfarsösanstalt, 19.Google Scholar
Schulze, W. X., Gleixner, G., Kaiser, K.et al. (2005) A proteomic fingerprint of dissolved organic carbon and of soil particles. Oecologia, 142, 335–43.CrossRefGoogle ScholarPubMed
Simard, S. W., Perry, D. A., Jones, M. D.et al. (1997) Net transfer of carbon between ectomycorrhizal tree species in the field. Nature, 388, 579–82.CrossRefGoogle Scholar
Singh, J. S. and Gupta, S. R. (1977) Plant decomposition and soil respiration in terrestrial ecosystems. Botanical Review, 43, 449–528.CrossRefGoogle Scholar
Smith, P. (2004) How long before a change in soil organic carbon can be detected?Global Change Biology, 10, 1878–83.CrossRefGoogle Scholar
Smith, P., Powlson, D. S., Smith, J. U. and Glendining, M. J. (1996) The GCTE SOMNET: a global network and database of soil organic matter models and long-term datasets. Soil Use and Management, 12, 104.Google Scholar
Smith, P., Powlson, D. S., Smith, J. U. and Elliott, E. T. (1997) Special issue: evaluation and comparison of soil organic matter models using datasets from seven long-term experiments – preface. Geoderma, 81, 1–3.CrossRefGoogle Scholar
Staddon, P. L., Heinemeyer, A. and Fitter, A. H. (2002) Mycorrhizas and global environmental change: research at different scales. Plant Soil, 244, 253–61.CrossRefGoogle Scholar
Stoklasa, J. and Ernest, A. (1922) Über den Ursprung, die Menge und die Bedeutung des Kohlendioxyds im Boden. Zentralblatt fuer Bakteriologie, Mikrobiologie und Parasitenkunde Abt II, 14, 732–6.Google Scholar
Subke, J. A., Inglima, I. and Cotrufo, M. F. (2006) Trends and methodological impacts in soil CO2 efflux partitioning: a meta-analytical review. Global Change Biology, 12, 921–43.CrossRefGoogle Scholar
Takle, E. S., Massman, W. J., Brandle, J. R.et al. (2004) Influence of high-frequency ambient pressure pumping on carbon dioxide efflux from soil. Agricultural and Forest Meteorology, 124, 193–206.CrossRefGoogle Scholar
Tansley, A. G. (1935) The use and abuse of vegetational concepts and terms. Ecology, 16, 284–307.CrossRefGoogle Scholar
Thornley, J. H. M. and Cannell, M. G. R. (2001) Soil carbon storage response to temperature: an hypothesis. Annals of Botany, 87, 591–8.CrossRefGoogle Scholar
Torn, M. S., Lapenis, A. G., Timofeev, A.et al. (2002) Organic carbon and carbon isotopes in modern and 100-year-old-soil archives of the Russian steppe. Global Change Biology, 8, 941–53.CrossRefGoogle Scholar
Trumbore, S. (2006) Carbon respired by terrestrial ecosystems: recent progress and challenges. Global Change Biology, 12, 141–53.CrossRefGoogle Scholar
't Hoff, J. H. (1898) Lectures on Theoretical and Physical Chemistry. Part 1. Chemical Dynamics. London: Edward Arnold.Google Scholar
Bavel, C. H. M. (1951) A soil aeration theory based on diffusion. Soil Science, 72, 33–46.CrossRefGoogle Scholar
Bavel, C. H. M. (1952) Gaseous diffusion and porosity in porous media. Soil Science, 73, 91–104.CrossRefGoogle Scholar
Suchtelen, F. H. H. (1910) Über die Messung der Lebenstätigkeit der aerobiotischen Bakterien im Boden durch Kohlensäureproduktion. Zentralblatt fuer Bakteriologie, Mikrobiologie und Parasitenkunde Abt II, 28, 45–89.Google Scholar
Vance, E. D. and Chapin, F. S. (2001) Substrate limitations to microbial activity in taiga forest floors. Soil Biology and Biochemistry, 33, 173–88.CrossRefGoogle Scholar
Wallman, P., Belyazid, S., Svensson, M. G. E. and Svedrup, H. (2004) DECOMP: a semi-mechanistic model of litter decomposition. Environmental Modelling and Software, 21, 33–44.CrossRefGoogle Scholar
Walterscheidt, W. (1960) Die Bedeutung des Blasius-Segens für die Bodenfruchtbarkeit, dargestellt am Beispiel der Bodenatmung gesegneter und ungesegneter Äcker im Hochsauerland. Schriftenreihe der Kath Landbewegung im Erzbistum Köln, 52, 132–8.Google Scholar
Wilke, B. M. (1988) Effects of sodium selenite on microbial activity of mull, moder and mor soils. Biology and Fertility of Soils, 6, 148–52.CrossRefGoogle Scholar
Wollny, E. (1880) Untersuchungen über den Kohlensäuregehalt der Bodenluft. Die landwirtschaftlichen Versuchs-Stationen, 25, 373–93.Google Scholar
1
Cited by

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×